抚州市数学中考一模试卷
- 格式:doc
- 大小:624.00 KB
- 文档页数:14
江西省抚州市九年级下学期数学中考一模联考试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10个小题,每小题4分,共40分,) (共10题;共40分)1. (4分)(2016·聊城) -2的相反数是()A . 0B . 2C . -2D . 42. (4分)(2020·汝南模拟) 2019年1月至8月,某市汽车产量为80万辆,其中80万用科学记数法表示为()A . 8×104B . 0.8×105C . 8×106D . 8×1053. (4分)从不透明的口袋中摸出红球的概率为,若袋中红球有3个,则袋中共有球().A . 5个B . 8个C . 10个D . 15个4. (4分)(2018·伊春) 如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A . 3B . 4C . 5D . 65. (4分)如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A . 0B . -3C . -2D . -16. (4分) (2020八上·辽阳期末) 下列命题中的假命题是()A . 过直线外一点有且只有一条直线与这条直线平行B . 平行于同一直线的两条直线平行C . 直线y=2x﹣1与直线y=2x+3一定互相平行D . 如果两个角的两边分别平行,那么这两个角相等7. (4分) (2020八下·新城期末) 某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配人力使每天完成的校服比原计划多20%,结果提前4天完成任务.问:原计划每天能完成多少套校服?设原来每天完成校服x套,则可列出方程()A . + =4B . ﹣=4C . = +4D . =4+8. (4分)下列说法:①长度相等的弧是等弧;②圆周角的度数等于圆心角度数的一半;③相等的圆心角所对的弦相等;④方程x2+x+1=0的两个实数根之积为-1.你认为正确的共有()A . 0个B . 1个C . 2个D . 3个9. (4分)(2017·碑林模拟) 如图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC,BD交于点E,则 =()A .B .C . 1﹣D .10. (4分) (2017九上·鄞州月考) 如图,△ABC是的内接等边三角形,AB=1.点D , E在圆上,四边形为矩形,则这个矩形的面积是()A .B .C .D . 1二、填空题(本题共6个小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2016七下·东台期中) 已知a+b=4,ab=1,则a2+b2的值是________.12. (5分) (2020七下·营山期末) 若,则的值为________.13. (5分) (2017七下·顺义期末) 北京市某一周的最高气温统计如下表:则这组数据的平均数是________中位数是________14. (5分) (2019八上·天台月考) 如图,在△ABC中,∠A=105°,∠C=15°,AB=2,作AC的垂直平分线交AC,BC于点E,D,则BD的长度为________.15. (5分)(2020·泰兴模拟) 在平面直角坐标系xOy中,点A(m,n)在双曲线上,点A关于y轴的对点B在,则k =________.16. (5分) (2018九上·渝中期末) 如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B 落在B’,点D ,点E分别为BC和AB′上的点,连接DE交AC于点F ,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H ,交DE于点G .若AB=3,BC=4,则GE的长为________.三、解答题(本题共8个小题,共80分) (共8题;共80分)17. (8分)(2017·绵阳模拟) 计算题:二次根式与分式运算(1)计算:()﹣2+(﹣)0+(﹣1)1001+(﹣3 )×tan30°(2)先化简,再求值:﹣(﹣a2+b2),其中a=3﹣2 ,b=3 ﹣3.18. (8.0分)(2017·玄武模拟) 某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表查找方式频数频率搜索引擎1632%专题网站15a在线网校48%试题题库1020%其他b10%(1)频数分布表中a,b的值:a=________;b=________;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?19. (8分)(2014·常州) 已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.20. (8分) (2019九上·孝感月考) 已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5(1)求证:AB≠AC(2)如果△ABC是以BC为斜边的直角三角形,求k的值(3)填空:当k=________时,△ABC是等腰三角形,△ABC的周长为________21. (10分)(2020·新乡模拟) 已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O 于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.22. (12分)(2017·兰山模拟) 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC 的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.23. (12分)(2012·葫芦岛) 某经销商销售一种圆盘,圆盘的半径x(cm),圆盘的售价y与x成正比例,圆盘的进价与x2成正比例,售出一个圆盘的利润是P(元).当x=10时,y=80,p=30.(利润=售价﹣进价).(1)求y与x满足的函数关系式;(2)求P与x满足的函数关系式;(3)当售出一个圆盘所获得的利润是32元时,求这个圆盘的半径.24. (14分) (20120九上·天河期末) 已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.参考答案一、选择题(本题有10个小题,每小题4分,共40分,) (共10题;共40分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题共6个小题,每小题5分,共30分) (共6题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题共8个小题,共80分) (共8题;共80分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
2022年江西省抚州市中考数学第一次模拟试题考试时间:90分钟;命题人:数学教研组考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )A .B .C .D .2、如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),4AB =.设弦AC 的长为x ,ABC ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是·线○封○密○外( )A .B .C .D .3、已知23a b =,则a ba b -+的值为( )A .15-B .15C .23-D .234、如图,小玲将一个正方形纸片剪去一个宽为2cm 的长条后,再从剩下的长方形纸片上剪去一个宽为3cm 的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm .A .4B .6C .12D .185、某优秀毕业生向我校赠送1080本课外书,现用A 、B 两种不同型号的纸箱包装运送,单独使用B 型纸箱比单独使用A 型纸箱可少用6个;已知每个B 型纸箱比每个A 型纸箱可多装15本.若设每个A 型纸箱可以装书x 本,则根据题意列得方程为( )A .10801080615x x =+- B .10801080615x x =-- C .10801080615x x=-+ D .10801080615x x=++ 6、已知点()11,A x y 、()22,B x y 在二次函数2y x bx c =++的图象上,当11x =,23x =时,12y y =.若对于任意实数1x 、2x 都有122y y +≥,则c 的范围是( ). A .5c ≥B .6c ≥C .5c <或6c >D .56c <<7、下列说法中不正确的是( ) A .平面内,垂直于同一条直线的两直线平行 B .过一点有且只有一条直线与已知直线平行 C .平面内,过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离8、如图,在ABC 中,AB AC =.分别以点A ,B 为圆心,大于12AB 的长为半径画弧.两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若52C ∠=︒,则CAD ∠的度数是( )A .22°B .24°C .26°D .28°9、下列关于x 的方程中,一定是一元二次方程的是( ) A .33x x +=B .()221x x x -=- C .20x =D .20ax bx c ++=10、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( ) ·线○封○密·○外A .50cmB .35cmC .25cmD .20cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、计算:60°18′________°.2、如图是某个几何体的表面展开图,若围成几何体后,与点E 重合的两个点是______.3、已知f (x )=3−x 2x +1,那么f (12)=___.4、用同样大小的两种不同颜色的正方形纸片,按如图方式拼成正方形.第90个比第89个多___个小正方形纸片.5、如图,在△xxx 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是______三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt △ABC 与Rt △ABD 中,∠ACB =∠DAB =90°,AB 2=BC ·BD ,AB =3,过点A 作AE ⊥BD ,垂足为点E ,延长AE 、CB 交于点F ,连接DF(1)求证:AE =AC ;(2)设BC x =,AEy EF=,求y 关于x 的函数关系式及其定义域; (3)当△ABC 与△DEF 相似时,求边BC 的长. 2、如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠A =120°,∠C =60°,AB =17,AD =12.(1)求证:AD =DC ; (2)求四边形ABCD 的周长. 3、下列是我们常见的几何体,按要求将其分类(只填写编号). ·线○封○密○外(1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______; (2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______.4、已知在平面直角坐标系xOy 中,拋物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点 ()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度. 5、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人. (1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人?(2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用. -参考答案-一、单选题 1、A 【分析】 由平面图形的折叠及图形的对称性展开图解题. 【详解】 由第一次对折后中间有一个矩形,排除B 、C ; 由第二次折叠矩形正在折痕上,排除D ; 故选:A . 【点睛】 本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.2、B 【分析】由AB 为圆的直径,得到∠C =90°,在Rt △ABC中,由勾股定理得到BC =而列出△ABC 面积的表达式即可求解. 【详解】解:∵AB 为圆的直径, ∴∠C =90°,·线○封○密○外4AB =,AC x =,由勾股定理可知:∴BC ==∴1122∆=⋅=⋅ABC S BC AC x 此函数不是二次函数,也不是一次函数,∴排除选项A 和选项C ,AB 为定值,当OC AB ⊥时,ABC ∆面积最大,此时AC =即x =y 最大,故排除D ,选B . 故选:B . 【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键. 3、A 【分析】 由23a b =设23a k b k ==,,代入a b a b -+计算求解即可.【详解】解:∵23a b =∴设23a k b k ==, ∴231=2355a b k k k a b k k k ---==-++ 故选:A 【点睛】本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键. 4、B 【分析】设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm ,根据两次剪下的长条面积正好相等列方程求解. 【详解】 解:设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm , 依题意得:2x =3(x -2), 解得x =6 故选:B . 【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键. 5、C 【分析】 由每个B 型包装箱比每个A 型包装箱可多装15本课外书可得出每个B 型包装箱可以装书(x +15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x 的分式方程,此题得解. 【详解】解:∵每个A 型包装箱可以装书x 本,每个B 型包装箱比每个A 型包装箱可多装15本课外书, ∴每个B 型包装箱可以装书(x +15)本.依题意得:10801080615x x=-+ 故选:C . 【点睛】·线○封○密·○外本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程. 6、A 【分析】先根据二次函数的对称性求出b 的值,再根据对于任意实数x 1、x 2都有y 1+y 2≥2,则二次函数y =x 2-4x +n 的最小值大于或等于1即可求解. 【详解】解:∵当x 1=1、x 2=3时,y 1=y 2, ∴点A 与点B 为抛物线上的对称点,∴1322b +-=,∴b =-4;∵对于任意实数x 1、x 2都有y 1+y 2≥2, ∴二次函数y =x 2-4x +n 的最小值大于或等于1,即241(4)141c ⨯⨯--≥⨯, ∴c ≥5. 故选:A . 【点睛】本题考察了二次函数的图象和性质,对于二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0),其对称轴是直线:2b x a=-,顶点纵坐标是244ac b a -,抛物线上两个不同点P 1(x 1,y 1),P 2(x 2,y 2),若有y 1=y 2,则P 1,P 2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:122x x x +=. 7、B 【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A 、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确. 故选:B 【点睛】 本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立. 8、B 【分析】 由尺规作图痕迹可知MN 垂直平分AB ,得到DA=DB ,进而得到∠DAB =∠B =50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC ,然后计算∠BAC -∠DAB 即可. 【详解】解:∵AB AC , ∴∠B =∠C =52°,∠BAC =180°-∠B -∠C =180°-52°-52°=76°, 由尺规作图痕迹可知:MN 垂直平分AB , ∴DA=DB , ∴∠DAB =∠B =52°, ∴∠CAD =∠BAC -∠DAB =76°-52°=24°. 故选:B . 【点睛】·线○封○密○外本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.9、C【分析】根据一元二次方程的定义判断.【详解】A.含有3x ,不是一元二次方程,不合题意;B.()221x x x -=-整理得,-x +1=0,不是一元二次方程,不合题意;C .x 2=0是一元二次方程,故此选项符合题意;D.当a =0时,ax 2+bx +c =0,不是一元二次方程,不合题意.故选C.【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0).10、C【分析】由垂径定理,可得出BC 的长;连接OB ,在Rt △OBC 中,可用半径OB 表示出OC 的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O ,连接OB .Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题1、60.3【分析】根据1′=(160)°先把18′化成0.3°即可.【详解】∵1'=(160)°∴18′=18×(160)°=0.3°·线○封○密○外∴60°18′=60.3°故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.2、A和C【分析】根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.【详解】折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.所以与点E重合的两个点是A点和C点.故答案为:A和C.【点睛】此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.3、5##4【分析】把x=1代入函数解析式进行计算即可.2【详解】解:∵f(x)=3−x,2x+1∴x (12)=3−122×12+1=522=54, 故答案为:54 【点睛】 本题考查的是已知自变量的值求解函数值,理解12f ⎛⎫ ⎪⎝⎭的含义是解本题的关键. 4、179【分析】 根据已知图形得出第2个图形比第1个图形多:4﹣1=3个;第3个图形比第2个图形多:9﹣4=5个;第4个图形比第3个图形多:16﹣9=7个;即可得出后面一个图形比前面一个图形多的个数是连续奇数,进而得出公式第n 个图形比第(n ﹣1)个图形多2n ﹣1个小正方形;由此利用规律得出答案即可. 【详解】 解:根据分析可得出公式:第n 个图形比第(n ﹣1)个图形多2n ﹣1个小正方形 ∴第90个比第89个图形多2×90﹣1=179个小正方形 故答案为:179 【点睛】 此题主要考查了图形的变化规律,利用已知图形得出图形相邻之间的个数变化规律是解题关键.5、103【分析】根据等腰三角形的等边对等角可得∠ABC =∠C =∠BDC ,根据相似三角形的判定证明△ABC ∽△BDC ,根据相似三角形的性质求解即可. 【详解】 解:∵AB =AC ,BD =BC ,·线○封○密○外∴∠ABC =∠C ,∠C =∠BDC ,∴△ABC ∽△BDC ,∴xx xx =xx xx ,∵AB =AC =6,BC =4,BD =BC ,∴64=4xx ,∴xx =83, ∴AD =AC -CD =6-83=103, 故答案为:103.【点睛】本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.三、解答题1、(1)证明见解析(2)2912y x =-,03x <<(332【分析】(1)由题意可证得ABD EBA ,ABD EBA ,即∠EAB =∠CAB ,则可得AEB ACB ≅,故AE =AC .(2)可证得FEB FCA ,故有FE AC FC BE⋅=,在Rt AFC 中由勾股定理有222AF FC AC =+,联立后化简可得出2912y x =-,BC 的定义域为03x <<. (3)由(1)(2)问可设BC BE x ==,29x DE x -=,AEFE =ABC 与△DEF 相似时,则有ACB DEF 和ACB FED 两种情况,再由对应边成比例列式代入化简即可求得x 的值. (1) ∵AB 2=BC ·BD ∴AB BD BC AB = 又∵∠ACB =∠DAB =90° ∴ABC DBA ∴∠ADB =∠CAB 在Rt △EBA 与Rt △ABD 中 ∠AEB =∠DAB =90°,∠ABD =∠ABD ∴ABD EBA ∴∠ADB =∠EAB ∴∠EAB =∠CAB 在Rt △EBA 与Rt △CAB 中 ∠EAB =∠CAB AB =AB ∠ACB =∠AEB =90° ∴AEB ACB ≅ ∴AE =AC (2) ·线○封○密·○外∵∠ACB =∠FEB =90°,∠F =∠F∴FEB FCA ∴BE AC FE FC= ∴FE AC FC BE ⋅=在Rt AFC 中由勾股定理有222AF FC AC =+即222()FE AE FC AC +=+ 代入化简得2222222FE AC FE AE FE AE AC BE ⋅++⋅⋅=+ 由(1)问知AC =AE ,BE =BC =x 则2222222FE AE FE AE FE AE AE x ⋅++⋅⋅=+ 式子左右两边减去2AE 得22222FE AE FE FE AE x ⋅+⋅⋅= 式子左右两边同时除以2FE 得2212AE AE FE x +⋅= ∵AE y EF= ∴2212AE y x+=在Rt ABE △中由勾股定理有AE =即AE ∴22912x y x-+= 移项、合并同类项得2912y x =-,由图象可知BC 的取值范围为03x <<.(3)由(1)、(2)问可得 BC BE x ==,29x DE x -=,AEFE =当ACB DEF 时由(1)问知AEB DEF 即AE DE BE FE =29x -=229x x -=约分得229212x x -= 移向,合并同类项得294x = 则32x =或32x =-(舍) 当ACB FED 时 由(1)问知AEB FED 即AE FE BE DE =2929x x x -=- ·线○封○密·○外29x x =- 约分得22212929x x x x x =⋅-- 移项得224(92)(9)2x x x --=去括号得22448191822x x x x --+=移向、合并同类项得23x =则x =x =综上所述当△ABC 与△DEF 相似时, BC 32. 【点睛】本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键. 2、(1)证明见解析;(2)70.【分析】(1)在BC 上取一点E ,使BE =AB ,连接DE ,证得△ABD ≌△EBD ,进一步得出∠BED =∠A ,利用等腰三角形的判定与性质与等量代换解决问题;(2)首先判定△DEC 为等边三角形,求得BC ,进一步结合(1)的结论解决问题.(1)证明:在BC 上取一点E ,使BE =AB ,连结DE .∵BD 平分∠ABC , ∴∠ABD =∠CBD .在△ABD 和△EBD 中, AB BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBD (SAS );∴DE =AD =12,∠BED =∠A ,AB =BE =17.∵∠A =120°,∴∠DEC =60°.∵∠C =60°,∴∠DEC =∠C ,∴DE =DC , ∴AD =DC . (2) ∵∠C =60°,DE =DC ,∴△DEC 为等边三角形,∴EC =CD =AD . ∵AD =12, ·线○封○密·○外∴EC =CD =12,∴四边形ABCD 的周长=17+17+12+12+12=70.【点睛】此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答. 3、(1)①②⑥;③④;⑤(2)②③⑤;①④⑥【分析】(1)根据立体图形的特点从柱体的形状特征考虑.(2)根据面的形状特征考虑.(1)解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱, ∴柱体有(1),(2),(6),锥体有(3),(4),球有(5),故答案为:(1),(2),(6);(3),(4);(5);(2)∵(2)(3)(5)有曲面,其它几何体无曲面,∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6).【点睛】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.4、(1)213222y x x =-++(2)(3,2)P(3)158 【分析】 (1)将点(1,0)A -和点(0,2)C 代入212y x bx c =-++,即可求解; (2)分别求出(4,0)B 和直线BC 的解析式为122y x =-+,可得3(2E ,5)4,再求直线AE 的解析式为1122y x =+,联立2112213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,即可求点(3,2)P ; (3)设213(,2)22P t t t -++,则1(,2)2H t t -+,则2122PH t t =-+,用待定系数法求出直线AP 的解析式为4422t t y x --=+,联立1224422y x t t y x ⎧=-+⎪⎪⎨--⎪=+⎪⎩,可求出(5t F t -,205)102t t --,直线AP 与y 轴交点4(0,)2t E -,则2t CE =,再由PF PH =,可得CE EF =,则有方程2222054()()()251022t t t t t t --=+---,求出52t =,即可求2115228PH t t =-+=. (1) 解:将点(1,0)A -和点(0,2)C 代入212y x bx c =-++, ∴1022b c c ⎧--+=⎪⎨⎪=⎩, ∴322b c ⎧=⎪⎨⎪=⎩, 213222y x x ∴=-++; (2)·线○封○密·○外解:213222y x x =-++, ∴对称轴为直线32x =, 令0y =,则2132022x x -++=, 解得1x =-或4x =,(4,0)B ∴,设直线BC 的解析式为y kx m =+,∴402k m m +=⎧⎨=⎩, ∴122k m ⎧=-⎪⎨⎪=⎩,122y x ∴=-+, 3(2E ∴,5)4, 设直线AE 的解析式为y k x n '=+,∴03524k n k n '-+=⎧⎪⎨'+=⎪⎩, ∴1212k n ⎧'=⎪⎪⎨⎪=⎪⎩, 1122y x ∴=+, 联立2112213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,3x ∴=或1x =-(舍),(3,2)P ∴; (3) 解: 设213(,2)22P t t t -++,则1(,2)2H t t -+, 2122PH t t ∴=-+, 设直线AP 的解析式为11y k x b =+, ∴11211013222k b k t b t t -+=⎧⎪⎨+=-++⎪⎩, ∴114242t k t b -⎧=⎪⎪⎨-⎪=⎪⎩, 4422t t y x --∴=+, ·线○封○密○外联立1224422y x t t y x ⎧=-+⎪⎪⎨--⎪=+⎪⎩,5t x t∴=-, (5t F t∴-,205)102t t --, 直线AP 与y 轴交点4(0,)2t E -, 4222t t CE -∴=-=, =PF PH ,PFH PHF ∴∠=∠,//PG y 轴,ECF PHF ∴∠=∠,CFE PFH ∠=∠,CEF CFE ∴∠=∠,CE EF ∴=,2222054()()()251022t t t t t t --∴=+---, 22(4)4(5)t t ∴-+=-,52t ∴=, 2115228PH t t ∴=-+=. 【点睛】本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.5、(1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人(2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元【分析】 (1)设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人,由题意知3427623199x y x y +=⎧⎨+=⎩计算求解即可. (2)设租用甲型客车x 辆,乙型客车20x -辆,由题意知()324520850x x +⨯-≥,解得:5013x ≤,费用()80010002020000200W x x x =+⨯-=-,可知 3x =时费用最低,进而得出结果.(1) 解:设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人 由题意知3427623199x y x y +=⎧⎨+=⎩ 解得3245x y =⎧⎨=⎩ ∴1辆甲型客车与1辆乙型客车的载客量分别是32,45人. (2) 解:设租用甲型客车x 辆,乙型客车20x -辆 由题意知()324520850x x +⨯-≥ 解得:5013x ≤ 费用()80010002020000200W x x x =+⨯-=-·线○封○密○外x=费用最低时,3-=-=辆2020317xW=-⨯=元20000200319400min∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.。
江西省抚州市2020年(春秋版)中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2012·钦州) 估算的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间2. (2分)下列说法中正确的是()A . 能重合的图形一定是成轴对称图形B . 成中心对称的图形一定是重合的图形C . 两个成中心对称的图形的对称点连线不一定过对称中心D . 两个会重合的三角形一定关于某一点成中心对称3. (2分) (2018八下·花都期末) 下列计算正确的是()A .B .C . =1D .4. (2分) (2017八上·海勃湾期末) 一副三角板如图叠放在一起,则图中∠α的度数为()A . 75°B . 60°C . 65°D . 55°5. (2分)样本方差的作用是()A . 估计总体的平均水平B . 表示样本的平均水平C . 表示总体的波动大小D . 表示样本的波动大小,从而估计总体的波动大小6. (2分)如图是一个几何体的三视图,则这个几何体是()A . 圆柱B . 圆锥C . 球D . 三棱柱7. (2分) (2018八上·太原期中) 下列各点在一次函数y=2x﹣3的图象上的是()A . (2,3)B . (2,1)C . (0,3)D . (3,08. (2分) (2018九上·南召期末) 一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根9. (2分)(2019·江川模拟) 如图,已知A,B是反比例函数图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A .B .C .D .10. (2分)(2017·鄞州模拟) 用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是()A . 4B . 3C . 2D . 1二、填空题 (共6题;共6分)11. (1分)(2017·东莞模拟) 分解因式:2b2﹣8b+8=________.12. (1分)(2017·黄石模拟) 分式方程的解是________.13. (1分)(2019·香坊模拟) 已知一个扇形的弧长为12π厘米,所对圆心角为120°,则该扇形的面积是________平方厘米.(结果保留π)14. (1分) (2020九上·温州期末) 已知二次函数y=x2-4x+3,当a≤x≤a+5时,函数y的最小值为-1,则a的取值范围是________。
江西省抚州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -(-1)的相反数的倒数是()A . 0B . -1C . 1D . 不存在2. (2分) (2019七上·龙华月考) 2018年10月23日,港珠澳大桥开通,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连按珠海和澳门人工岛,止于珠海祺湾,工程项目总投资额1269亿元,数据1269亿元用科学记数法可表示为()A . 1269×108元B . 126.9×109元C . 1.269×1011元D . 1.269×108元3. (2分)(2013·义乌) 如图几何体的主视图是()A .B .C .D .4. (2分) (2017七下·惠山期中) 下列从左到右的变形,属于因式分解的是()A . (x+3)(x﹣2)=x2+x﹣6B . ax﹣ay﹣1=a(x﹣y)﹣1C . 8a2b3=2a2•4b3D . x2﹣4=(x+2)(x﹣2)5. (2分)(2018·商河模拟) 在下列交通标志中,即是轴对称图形,又是中心对称图形的是()A .B .C .D .6. (2分)已知方程组,且﹣1<x﹣y<0,则m的取值范围是()A . ﹣1<m<﹣B . 0<m<C . 0<m<1D . <m<17. (2分) (2017七下·苏州期中) 如图,直线,∠1=40°,∠2=75°,则∠3等于()A . 55°B . 60°C . 65°D . 70°8. (2分)下列给出的方程:①(x+1)(x﹣1)﹣x2=0;②x2+1=0;③y2﹣2y﹣1=0;④x2﹣1= .其中是一元二次方程的是()A . ①②③B . ②③④C . ①②④D . ②③9. (2分) (2016九上·鄞州期末) 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A . 3:2B . 3:1C . 1:1D . 1:210. (2分) (2018九上·诸暨月考) 如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P 运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2018九上·萧山开学考) 要使代数式有意义,x的取值范围是________.12. (1分)(2018·黄浦模拟) 女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是________.13. (1分)如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD 的度数为________ .14. (1分) (2018七上·吉首期中) 若,那么 =________.15. (1分)如图,把△ABC绕点C顺时针旋转得到△A′B′C,此时A′B′⊥AC于D,已知∠A=54°,则∠B′CB 的度数是________16. (1分)(2018·衢州) 定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。
江西省抚州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)2. (2分)某几何体的三视图如图所示,这个几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥3. (2分)(2017·滨江模拟) 据统计,2017年春节黄金周7天,杭州共接待中外游客约450万人次,将450万用科学记数法表示,以下表示正确的是()A . 450×104B . 45.0×105C . 4.50×106D . 4.50×1074. (2分) (2017九上·乐清月考) 根据下列条件不能判断△ABC是直角三角形的是()A . ∠B=50° ,∠C=40°B . ∠B=∠C=45°C . ∠A,∠B,∠C的度数比为5:3:2D . ∠A-∠B=90°5. (2分) (2017七下·江苏期中) 下列多项式相乘,不能用平方差公式计算的是()A . (x+3y)(x-3y)B . (-2x+3y)(-2x-3y)C . (x-2y)(2y+x)D . (2x-3y)(3y-2x)6. (2分)如图:①AB=AD.②∠B=∠D,③∠BAC=∠DAC,④BC=DC,以上4等式中的2个等式不能作为依据来证明△ABC≌△ADC的是()A . ①,②B . ①,③C . ①,④D . ②,③7. (2分)若关于x的方程有正数解,则k的取值为()A . k>1B . k>3C . k≠3D . k>1且k≠38. (2分) (2018九上·梁子湖期末) 如图,是的直径,点、在上,且点、在的异侧,连接、、、,若,且,则的度数为()A . 120°B . 105°C . 100°D . 110°9. (2分)如图,直径AB为6的半圆O,绕A点逆时针旋转60°,此时点B 到了点,则图中阴影部分的面积为()A . 6πB . 5πC . 4πD . 3π10. (2分)如图,二次函数y=ax2+bx+c图象的一部分,其中对称轴为x=﹣1,且过(﹣3,0),下列说法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是抛物线上的点,则y1<y2 ,其中说法正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)11. (1分) (2018七上·萧山期中) 已知:数轴上一个点到﹣2的距离为5,则这个点表示的数是________.12. (1分) (2019九上·浙江期中) 在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是红球的概率为________.13. (1分)(2017·昌乐模拟) 分解因式:9﹣a2=________.14. (1分)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________°.三、计算题 (共2题;共15分)15. (10分)(2017·仪征模拟) 化简计算(1)计算:﹣2﹣2+ sin45°﹣|1﹣ |(2)解不等式组:.16. (5分)先化简,再求值:()÷ ,其中a=2,b=﹣3.四、综合题 (共12题;共83分)17. (11分) (2019九上·深圳期末) 初中生对待学习的态度一直是教育工作者关注的问题之一,为此市教育局对部分学校的八年级学生对待学习的态度进行了一次抽样调查,把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣,并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)求出图②中C级所占的圆心角的度数并将图①补充完整;(3)根据抽样调查结果,请你估计该市近2000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B级)?18. (2分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?19. (10分) (2018八下·永康期末) 如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知, .(1)求的度数;(2)求反比例函数的函数表达式;(3)若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.20. (15分) (2018九上·柯桥月考) 如图,等腰△ABC内接于半径为5的⊙O,AB=AC,BC=8.(1)如图1,连结OA.①求证:OA⊥BC;②求腰AB的长.(2)如图2,点P是边BC上的动点(不与点B,C重合),∠APE=∠B=∠C,PE交AC于E.①求线段CE的最大值;②当AP=PC时,求BP的长.21. (1分)(2018·青羊模拟) 已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=________22. (1分)(2018·盘锦) 如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是________.24. (1分)(2017·黑龙江模拟) 如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.25. (1分)(2018·宿迁) 如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图像分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.26. (10分) (2017九下·潍坊开学考) 某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?27. (15分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD 于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.28. (15分)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题 (共2题;共15分)15-1、15-2、16-1、四、综合题 (共12题;共83分) 17-1、17-2、17-3、18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、24-1、25-1、26-1、26-2、27-1、27-2、27-3、28-1、。
江西省抚州市2020年九年级数学中考一模试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·正阳模拟) 的相反数是()A .B .C . 2018D . ﹣20182. (2分)(2020·南京模拟) 下列各式中,正确的是()A . a3+a2=a5B . 2a3•a2=2a6C . (﹣2a3)2=4a6D . a6÷a2=a33. (2分)下列各组数中,互为相反数的是()A . 和B . ﹣(+3)和+|﹣3|C . ﹣(﹣3)和+(+3)D . ﹣4和﹣(+4)4. (2分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15,s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A . 甲B . 乙C . 丙D . 丁5. (2分)(2014·台州) 下列整数中,与最接近的是()A . 4B . 5C . 6D . 76. (2分)(2017·宜城模拟) 如图,AD是∠EAC的平分线,AD∥BC,∠B=35°,则∠C的度数为()A . 55°B . 45°C . 35°D . 25°7. (2分)(2017·枝江模拟) 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为()A . 45°B . 50°C . 60°D . 75°8. (2分)在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A . (-2,6)B . (-2,0)C . (1,3)D . (-5,3)9. (2分)如图,在△ABC中,AB=4,AC=3,AD平分∠BAC,则S △ABD:S△ADC为()A . 4:3B . 16:19C . 3:4D . 不能确定10. (2分)如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A . 64B . 60C . 56D . 3211. (2分)线段,当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A . 6B . 8C . 9D . 1012. (2分) (2019九上·蜀山月考) 若实数a使关于x的二次函数y=x2+(a-1)x-a+2,当x<-1时,y随x 的增大而减小,且使关于y的分式方程有非负数解,则满足条件的所有整数a值的和为()A . 1B . 4C . 0D . 3二、填空题 (共6题;共7分)13. (1分) (2019八上·东台月考) 把5087精确到百位,这个近似数是________.14. (1分)(2018·无锡模拟) 因式分解:a2(x﹣y)﹣4b2(x﹣y)=________.15. (1分) (2019八下·黄冈月考) 若直角三角形的两边长为 a,b,且满足(a﹣3)2+|b﹣4|=0,则该直角三角形的斜边长为________.16. (1分)(2016·赤峰) 数据499,500,501,500的中位数是________.17. (1分)如图,河堤横断面如图所示,迎水坡AB的坡比为1: ,则坡角∠A的度数为________18. (2分) (2019七下·舞钢期中) 某汽车生产厂对其生产的型汽车进行油耗试验,试验中汽车为匀速行驶,在行使过程中,油箱的余油量(升)与行驶时间(小时)之间的关系如下表:(小时)0123(升)100928476由表格中与的关系可知,当汽车行驶________小时,油箱的余油量为40升.三、解答题 (共8题;共65分)19. (2分) (2019八上·灵宝月考) 如图,在△ABC中,∠A=60º,∠B=70º,∠ACB的平分线交AB于D,DE∥BC 交AC于E,求∠BDC、∠EDC的度数。
抚州市中考模拟数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2 ,则FAST的反射面总面积约为()A . 7.14×103m2B . 7.14×104m2C . 2.5×105m2D . 2.5×106m22. (2分) (2018七上·临颍期末) 地球上海洋的面积约为361 000 000平方千米,用科学记数法表示为()平方千米.A . 361×106B . 36.1×107C . 3.61×108D . 3.61×1093. (2分)(2017·微山模拟) 一个几何体的三视图如图所示,则这个几何体的侧面积是()A . 4πB . 2πC . 4D . π4. (2分)若不等式组的解集是x>3,则m的取值范围是()A . m>3B . m=3C . m≤3D . m<35. (2分)如图,若△ABC与△A'B'C'关于直线MN对称,BB'交MN于点O,则下列说法中不一定正确的是()A . AC=A'C'B . AB∥B'C'C . AA'⊥MND . BO=B'O6. (2分) (2019九上·松滋期末) 如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A,B,C为格点.作△ABC的外接圆⊙O,则的长等于()A .B .C .D .7. (2分)已知样本数据 2,1, 4,4,3,下列说法不正确的是()A . 平均数是2.8B . 中位数是4C . 众数是4D . 极差是38. (2分)(2017·市中区模拟) 如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧上一点,若∠ABC=32°,则∠P=()度.A . 16B . 26C . 36D . 469. (2分)(2017·温州模拟) 温州为了推进“中央绿轴”建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树50棵,现在植树600棵所需时间与原计划植树400棵所需时间相同,设原计划平均每天植树x棵,则列出的方程为()A . =B . =C . =D . =10. (2分) (2017九上·香坊期末) 反比例函数y= 的图象经过()象限.A . 一、二B . 一、三C . 二、三D . 二、四二、填空题 (共5题;共5分)11. (1分)(2018·德阳) 分解因式 ________12. (1分)某口袋中有10个红球、8个黄球和若干个白球,将它们充分摇匀后从中摸出一球,小明通过多次摸球试验后,发现摸到白球的频率稳定在0.4左右,则口袋中大约有________ 个白球.13. (1分) (2018九上·来宾期末) 将方程2x2=1-3x化为一般形式是________.14. (1分)(2017·新泰模拟) 如图,⊙O的半径为R,以圆内接正方形ABCD的顶点B为圆心,AB为半径.画弧AC,则阴影部分的面积是________.15. (1分)如图,将长方形ABCD沿对角线BD折叠,使C恰好落在C'位置,∠DBC=25°,则∠ABC'=________.三、解答题 (共8题;共75分)16. (5分)计算(﹣2)﹣1﹣+(﹣3)0 .17. (10分)(2017·潮南模拟) 如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.18. (15分) (2018九下·绍兴模拟) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A,B,C,D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将不完整的条形图和扇形图补充完整;(2)若居民区有8000人,请估计爱吃C ,D粽的总人数;(3)若有外型完全相同的A,B,C,D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.19. (5分) (2017·北区模拟) 如图,某社会实践活动小组地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向(Ⅰ)求∠CBA的度数(Ⅱ)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73)20. (10分)(2018·深圳模拟) 如图,直线y=3x与双曲线y= (k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.21. (10分)(2020·哈尔滨模拟) 禹驰商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需950元;若购进A种纪念品5件,B种纪念品6件,需800元。
江西省抚州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数2.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )A .B .C .D .4.函数y =113x x +--自变量x 的取值范围是( ) A .x≥1 B .x≥1且x≠3 C .x≠3 D .1≤x≤35.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .726.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠37.下列基本几何体中,三视图都是相同图形的是( )A .B .C .D . 8.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .509.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .810.,a b 是两个连续整数,若7a b <<,则,a b 分别是( ). A .2,3 B .3,2 C .3,4 D .6,811.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .3B .8C .3D .612.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.14.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG 的面积最大时,其对角线的长为_______.15.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.16.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).17.函数y=13x-1x-x的取值范围是_____.18.若关于x的方程x2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)化简求值:212(1)211xx x x-÷-+++,其中x是不等式组273(1)423133x xx x-<-⎧⎪⎨+≤-⎪⎩①②的整数解.20.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.21.(6分)化简:23x11x2?x4+⎛⎫+÷⎪--⎝⎭22.(8分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量.24.(10分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.25.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.26.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.27.(12分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.2.D【解析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.3.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.4.B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.5.D【解析】设第一个数为x ,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x ,看是否存在.解:设第一个数为x ,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D .“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.7.C【解析】【分析】根据主视图、左视图、俯视图的定义,可得答案.【详解】球的三视图都是圆,故选C .【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键.8.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A,被开方数含分母,不是最简二次根式;故A选项错误;B,被开方数为小数,不是最简二次根式;故B选项错误;C C选项正确;D D选项错误;故选C.考点:最简二次根式.9.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.10.A【解析】【分析】479<<【详解】479<<a=2,b=1.故选A.【点睛】479<11.D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 12.C【解析】【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A 选项:年最高温度呈上升趋势,正确;B 选项:2014年出现了这6年的最高温度,正确;C 选项:年的温差成下降趋势,错误;D 选项:2016年的温差最大,正确;故选C .考查了折线统计图,利用折线统计图获取正确信息是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.132.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.14.52或76910【解析】【分析】分两种情形画出图形分别求解即可解决问题情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x ∵EF∥AC,∴EFAC=BFBC∴4EF=3x3-∴EF=43(3-x)∴S矩形DEFG=x•43(3-x)=﹣43(x-32)2+3∴x=32时,矩形的面积最大,最大值为3,此时对角线=52.情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,作CH⊥AB于H,交DG于T.则CH=125,CT=125﹣x,∵DG∥AB,∴△CDG∽△CAB,∴CT DG CH AB=∴12x DG 5125 5-=∴DG=5﹣2512x,∴S矩形DEFG=x(5﹣2512x)=﹣2512(x﹣65)2+3,∴x=65时,矩形的面积最大为3,此时对角线226552()()+76910∴矩形面积的最大值为3,此时对角线的长为52或10故答案为52 【点睛】 本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题15.5200【解析】设甲到学校的距离为x 米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:7033900420y x y x ⨯=+⎧⎨⨯=⎩解得240030x y =⎧⎨=⎩ 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息. 16.AB=AD (答案不唯一).【解析】已知OA=OC ,OB=OD ,可得四边形ABCD 是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD 或BC=CD 或AC ⊥BD ,本题答案不唯一,符合条件即可.17.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.18.30°【解析】试题解析:∵关于x 的方程22sin 0x x α-+=有两个相等的实数根, ∴()2241sin 0V ,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1. 【解析】【分析】先化简分式,再解不等式组求得x 的取值范围,在此范围内找到符合分式有意义的x 的整数值,代入计算可得.【详解】原式=÷ =• =, 解不等式组,解不等式①,得:x >﹣4,解不等式②,得:x≤﹣1, ∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x ﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.20. (1)3;(2)①2,②3【解析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE 'V ≌OBF V ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V 四边形OE BF '的面积等于OEB S V =3. 详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD//,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB =∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE 'V ≌OBF V ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE 'V ≌,OBF V∴四边形OE BF '的面积等于OEB S V .点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.21.x+2【解析】【分析】先把括号里的分式通分,化简,再计算除法.【详解】解:原式=x 1x 2+- x 2x 2x 1()+-⨯+=x+2 【点睛】此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.22.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱【解析】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解. 试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得: 2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m+30(20-m )≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵篮球的个数必须为整数,∴m 只能取8、9、2.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.23.现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x 立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x 立方米, 由题意,得40003000300x x =- 解得 x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验. 24.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:25.(1)C (2,-1),A (1,0);(2)①3,②0<t <12+2,1)或(2+2,1)或(-1,0)【解析】【分析】(1)令y=0得:x 2-1x+3=0,然后求得方程的解,从而可得到A 、B 的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C 的纵坐标;(2)①抛物线与y 轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x 的值,从而可得到直线y=3与“L 双抛图形”恰好有3个交点时t 的取值,然后结合函数图象可得到“L 双抛图形”与直线y=3恰好有两个交点时t 的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P 的纵坐标为1,然后由函数解析式可求得点P 的横坐标.【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2+2或2+2.∴点P2+2,1)或(2+2,1),当点P(-1,0)时,也满足条件.,1)或(+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.26.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.27.(1)画图见解析;(2)A1(0,6);(3)弧BB1=102π.【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A1B1C如图所示.(2)A1(0,6).(3) 221310,BC=+=¼1901010. 1801802n rBB ππ∴===.【点睛】本题考查了旋转作图和弧长的计算.。
江西省抚州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·高阳模拟) 下列说法正确是()A . 某商店盈利100元记作+100元,则﹣80元表示亏损20元B . ﹣2与互为相反数C . 将384000用科学记数法表示应为3.84×106D . 如果|x|=5,那么x=±52. (2分) (2019八下·宁德期末) 若代数式在实数范围内有意义,则实数a的取值范围是()A . a≥1B . a≠1C . a<1D . a=﹣13. (2分)(2018·柘城模拟) 方程的根为()A . 或3B .C . 3D . 1或4. (2分)如图,已知AB∥CD,∠E=28°,∠C=52°,则∠EAB的度数是()A . 28°B . 52°C . 70°D . 80°5. (2分)下列条件不能判定四边形ABCD为平行四边形的是()A . AB=CD,AD=BCB . AB∥CD,AB=CDC . AB=CD,AD∥BCD . AB∥CD,AD∥BC6. (2分)已知(-1,y1),(1.8,y2),(- , y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1 ,y2 , y3的大小关系是()A . y3>y1>y2B . y1>y3>y2C . y1>y2>y3D . y3>y2>y17. (2分) (2019八下·淮安月考) 如图,在中,,将绕点顺时针旋转90°后得到(点的对应点是点,点的对应点是点),连接 .若,则的大小是()A . 77°B . 69°C . 67°D . 32°8. (2分)(2017·昌平模拟) 如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比函数图象上移动时,点B也在某一反比例函数图象y= 上移动,k的值为()A . 2B . ﹣2C . 4D . ﹣49. (2分)若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1 , x2 , a,b 的大小关系是()A . a<x1<x2<bB . x1<a<x2<bC . x1<a<b<x2D . x1<x2<a<b10. (2分)(2020·许昌模拟) 如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A . (,)B . (﹣,)C . (﹣,)D . (,﹣)二、填空题 (共6题;共6分)11. (1分)(2014·南宁) 分解因式:2a2﹣6a=________.12. (1分)(2017·荆州) 如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.13. (1分) (2019八上·嘉定月考) 一元二次方程x2+2x+2=0的根的判别式的值为________.14. (1分) (2018九上·库伦旗期末) 如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是 ________元(结果保留整数).15. (1分)端午节当天,“味美早餐店”的粽子打九折出售,小红的妈妈去该店买粽子花了54元,比平时多买了3个.求平时每个棕子卖多少元?设平时每个棕子卖x元,列方程为________.16. (1分) (2019八上·德清期末) 如图,Rt△ABC纸片中,∠C=90°,AC=3,BC=4,点D在边BC上,以AD为折痕将△ABD折叠得到△AB’D,AB'与边BC交于点E.若△DEB’ 为直角三角形,则BD的长是________.三、解答题 (共9题;共75分)17. (10分) (2019七上·柯桥期中) 如图,为建设美丽农村,村委会打算在正方形地块甲和长方形地块乙上进行绿化.在两地块内分别建造一个边长为a的大正方形花坛和四个边长为b的小正方形花坛(阴影部分),空白区域铺设草坪,记S1表示地块甲中空白处铺设草坪的面积,S2表示地块乙中空白处铺设草坪的面积.(1) S1=________,S2=________(用含a,b的代数式表示并化简) .(2)若a=2b,求的值18. (5分) (2019七下·侯马期中) 解不等式组,并把解集在数轴上表示出来.19. (5分) (2020八下·三台期中) 如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF .求证:四边形DEBF是平行四边形.20. (11分)菲尔兹奖(The International Medals for Outstanding Discoveries in Mathematics)是国际数学联盟的国际数学家大会上颁发的奖项。
江西省抚州市2020年(春秋版)数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·平邑期末) 在+5,-4,-π,,22 ,—(),,-,,—(-5) , -42 ,这几个数中,负数()个.A . 3.B . 4C . 5D . 62. (2分)国家统计局发布的第六次全国人口普查公报显示,我国总人口约为1370 000 000人,1 370 000 000用科学记数法表示为()A . 13.7×108B . 1.37×108C . 1.37×109D . 1.371×10-93. (2分)下列各题去括号所得结果正确的是()A . x2-(x-y+2z)=x2-x+y+2zB . x-(-2x+3y-1)=x+2x-3y+1C . 3x-[5x-(x-1)]=3x-5x-x+1D . (x-1)-(x2-2)=x-1-x2-24. (2分)等腰三角形的底角为15°,腰长为2a,则腰上的高为()A . aB . 2aC . 2a-1D . a5. (2分)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)下列说法中,正确的是()A . 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 第一枚硬币,正面朝上的概率为D . 若甲组数据的方差=0.1,乙组数据的方差=0.01,则甲组数据比乙组数据稳定7. (2分)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是(*)A . 3个或4个B . 4个或5个C . 5个或6个D . 6个或7个8. (2分)下列说法中,不正确的是()A . 垂线段最短B . 两直线平行,同旁内角相等C . 对顶角相等D . 两点之间,线段最短9. (2分)上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A .B .C .D .10. (2分)如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()A . n•180°B . 2n•180°C . (n﹣1)•180°D . •180°二、填空题 (共8题;共8分)11. (1分)(2018·阿城模拟) 函数y= 中自变量x的取值范围是:________.12. (1分)(2017·广水模拟) 分解因式:x2y﹣y=________.13. (1分)一元二次方程x2﹣8x﹣1=0的解为________.14. (1分) (2016九上·滨州期中) 如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB 与小圆相切,切点为C,则弦AB的长是________15. (1分)圆心角为120°,弧长为12π的扇形半径为________16. (1分)(2017·湖州模拟) 如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则 =________.17. (1分) (2019九下·梁子湖期中) 如图,正方形ABCD的边长为6,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是边AB上一动点,连接PD,PE,则PD+PE的最小值为________.18. (1分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为________三、解答题 (共8题;共53分)19. (10分)(2019·银川模拟) 如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.20. (10分) (2019八下·大名期中) 某校八年级640名学生在“计算机应用”培训前、后各参加了一次水平相同的测试,并以同一标准分成“不合格”、“合格”、“优秀”3个等级,为了解培训效果,用抽样调查的方式从中抽取32名学生的2次测试等级,并绘制成条形统计图:(1)这32名学生经过培训,测试等级“不合格”的百分比比培训前减少了多少?(2)估计该校八年级学生中,培训前、后等级为“合格”与“优秀”的学生各有多少名?21. (5分)(2017·绿园模拟) 某市今年中考理化实验操作考试,采用学生抽签方式决定自己的考试内容.规定每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学试验(用纸签D、E、F表示)中各抽取一个实验操作进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.用列表或画树状图的方法求小刚抽到物理实验B和化学实验F的概率.22. (5分)(2017·鞍山模拟) 如图,已知四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E,求证:四边形AMEN是菱形.23. (5分) (2019九上·玉田期中) 如图,在中,,点在边上,求的值。
第 1 页 共 14 页 抚州市数学中考一模试卷 姓名:________ 班级:________ 成绩:________ 一、 单选题 (共8题;共16分) 1. (2分) (2019·广元) ﹣8的相反数是( )
A . B . ﹣8 C . 8
D . 2. (2分) (2020八下·洪泽期中) 一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大 ( ) A . 红色 B . 白色 C . 黄色 D . 红色和黄色 3. (2分) (2015七上·海淀期末) 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为( )
A . 300×104 B . 3×105 C . 3×106 D . 3000000 4. (2分) (2017七下·乌海期末) 下列表述正确的是( ) A . 27的立方根是±3 B . 9的算术平方根是3
C . 的平方根是±4 D . 立方根等于平方根的数是1 5. (2分) 在△ABC中,AB=9,BC=2,并且AC为奇数,则AC=( ) A . 5 第 2 页 共 14 页
B . 7 C . 9 D . 11 6. (2分) (2019·株洲模拟) 如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是( )
A . 80° B . 100° C . 60° D . 40° 7. (2分) (2019八下·利辛期末) 如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是( )
A . B . C . D . 8. (2分) (2011·钦州) 函数y=ax﹣2(a≠0)与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )
A . 第 3 页 共 14 页
B . C . D . 二、 填空题 (共10题;共12分)
9. (1分) (﹣4)2的算术平方根是________ . 10. (1分) (2019八下·柳州期末) 直角三角形的两直角边是3和4,则斜边是________ 11. (1分) (2018九上·云安期中) 在“线段、等腰三角形、四边形、圆”这几个图形中,中心对称图形是________.
12. (1分) (2016七上·工业园期末) 若单项式2x2ym与- xny3是同类项,则m+n的值是________ 13. (1分) 已知a+ =5,则a2+ 的结果是________. 14. (1分) 五名同学星期天干家务活的时间分别是2,2,3,4,5小时,它们的众数是________ ,中位数是________ 15. (1分) (2019八下·嘉兴期中) 若一个多边形的每个内角都是140°,则这个多边形是________边形. 16. (2分) (2020·重庆模拟) 如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.
17. (1分) (2018·西山模拟) 如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为________. 第 4 页 共 14 页
18. (2分) 如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________. 三、 解答题 (共10题;共93分) 19. (10分) (2017·高港模拟) 根据要求进行计算:
(1) 计算:( )﹣2﹣(π﹣2011)0+| ﹣2|+2cos45°. (2) 先化简,再求值:( + )÷ ,其中x= ﹣1. 20. (2分) (2019八下·滕州期末) 先化简( -m-2)÷ ,然后从-2<m≤2中选一个合适的整数作为m的值代入求值. 21. (6分) 在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y). (1) 用树状图或列表法列举点M所有可能的坐标; (2) 求点M(x,y)在函数y=﹣x+1的图象上的概率; (3) 在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率. 22. (16分) (2019七下·江门期末) 七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整). 请根据统计图信息,解答下列问题:
(1) 一共有多少名学生参与了本次问卷调查; 第 5 页 共 14 页
(2) 补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数; (3) 若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数. 23. (2分) (2017八下·南京期中) 如图,矩形ABCD中,AB=3,BC=5,点E是AD边上一点,BE=BC.
(1) 求证:EC平分∠BED. (2) 过点C作CF⊥BE,垂足为点F,连接FD,与EC交于点O,求FD·EC的值. 24. (10分) 如图,△ABC在平面直角坐标系中,其顶点坐标分别为A(﹣2,2),B(﹣4,﹣2),C(﹣1,﹣2).在坐标系中画出△ABC关于y轴对称的△A′B′C′.
25. (15分) (2020·萧山模拟) 如图,点A是直线y=2x与反比例函数y= (m为常数)的图象的交点.过点A作x轴的垂线,垂足为B,且OB=2.
(1) 求点A的坐标及m的值; (2) 已知点P (0,n) (0<n≤8),过点P作平行于x轴的直线,交直线y=2x于点C(x1 , y1),交
反比例函数y= (m为常数)的图象于点D(x2 , y2),交垂线AB于点E(x3 , y3),若x2<x3<x1 , 结合函数的图象,直接写出x1+x2+x3的取值范围.
26. (10分) (2018·余姚模拟) 如图,AC=BC,D是AB中点,CE∥AB,CE= AB. 第 6 页 共 14 页
(1) 求证:四边形CDBE是矩形. (2) 若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF的长. 27. (11分) (2020·宁波模拟) 已知:如图,矩形ABCD中,点E,F分别在DC,AB边上,且点A,F,C在以点E为圆心,EC为半径的圆上,连结CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.
(1) 求证:∠CAB=∠CEG. (2) 在不增加点的前提下,△CHE与________三点构成的三角形相似,△CHG与________三点构成的三角形相似(空格内填写图中已有的三个字母).
(3) ①求y与x之间的函数关系式. ②x=________时,点F是AB的中点. (4) 当x为何值时,点F是 的中点?此时以A,E,C,F为顶点的四边形是何种特殊四边形?试说明理由. 28. (11分) (2018八上·南召期末) 如图,在长方形ABCD中,AB:BC=3:4,AC=5,点P从点A出发,以每秒1个单位的速度,沿△ABC边A→B→C→A的方向运动,运动时间为t秒.
(1) 求AB与BC的长; (2) 在点P的运动过程中,是否存在这样的点P,使△CDP为等腰三角形?若存在,求出t值;若不存在,说明理由. 第 7 页 共 14 页
参考答案 一、 单选题 (共8题;共16分) 1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 二、 填空题 (共10题;共12分)
9-1、 10-1、 11-1、 12-1、 13-1、
14-1、 15-1、 16-1、 17-1、 18-1、 三、 解答题 (共10题;共93分) 第 8 页 共 14 页
19-1、 19-2、
20-1、 21-1、 第 9 页 共 14 页
21-2、 21-3、 22-1、
22-2、 22-3、
23-1、 第 10 页 共 14 页 23-2、
24-1、 第 11 页 共 14 页
25-1、 25-2、
26-1、 26-2、 第 12 页 共 14 页
27-1、 27-2、 27-3、 第 13 页 共 14 页 27-4、
28-1、