(何嘉涛)反应器温度控制系统设计.
- 格式:doc
- 大小:507.00 KB
- 文档页数:15
温控系统设计摘要:温度是工业控制的主要被控参数之一。
可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。
本文以温度控制系统为研究对象设计一个PID控制器。
PID控制是当今最通用的控制方法,大多数反馈回路采用该方法来进行控制。
PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器。
在PID控制器的设计中,参数整定是最为重要的设计过程。
随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。
本设计就是借助MATLAB软件,主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过SIMULINK进行系统仿真,观察系统完善后在阶跃信号输入下的输出波形。
关键词: PID控制器;PID参数整定; MATLAB;SIMULINK第一章引言1.1 课题背景及意义在现实的控制系统中,任何闭环的控制系统都有它固有的特性,可以采用很多种数学形式来描述它,比如微分方程、传递函数、方块图、状态空间方程等等。
如果对系统不做任何的优化改造,系统很难达到最佳的控制效果,比如快速性要求、稳定性要求及准确性要求等[1]。
为了达到最佳的控制效果,我们通常会在闭环系统的中间加入PID控制器并通过调整PID 参数来改造系统的结构特性,使其达到理想的控制效果。
而在人们的日常生活,工业制造,制冷等领域,温度作为一种环境的重要因素,被人们广泛的作为参数来使用,从来保证各项工作有条不紊的进行,通过温度控制系统我们可以实现对温度的控制与调节,有着重大的应用意义,比如说粮仓的温度控制,恒温箱,火灾报警,冷库温度的调节等等。
所以说温度控制系统无论在我们的日常生活,还是工业制造与生产中都起着不可或缺的作用,因此做好对温控系统的研究对我们来说意义是重大的。
因此本设计针对温度设计了一个PID控制系统,并且通过调整PID参数来获得较理想的控制效果。
反应釜温控系统课程设计一、课程目标知识目标:1. 学生能理解反应釜的基本原理和温度控制的重要性。
2. 学生能掌握反应釜温度控制系统的组成、工作原理及各部分功能。
3. 学生能了解温度传感器、控制器、执行器等关键部件的类型及选用原则。
技能目标:1. 学生能运用所学知识分析反应釜温度控制系统的故障原因并进行排查。
2. 学生能设计简单的反应釜温度控制方案,包括参数设置、设备选型等。
3. 学生能通过实验操作,验证温度控制系统的稳定性和可靠性。
情感态度价值观目标:1. 学生培养对化学反应过程的兴趣,增强对化学工程领域的认识。
2. 学生树立安全意识,认识到温度控制在化学反应过程中的重要性。
3. 学生培养团队协作精神,提高沟通与表达能力,为未来从事相关工作奠定基础。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在理解反应釜温控系统基本原理的基础上,掌握实际操作和设计能力,同时培养安全意识、团队协作和沟通能力,为未来从事化学工程及相关领域工作打下坚实基础。
通过本课程的学习,学生将能够具备解决实际问题的能力,为我国化学工业的发展贡献力量。
二、教学内容1. 反应釜基本原理及温度控制概述- 介绍反应釜的作用、类型及在化工生产中的应用。
- 阐述温度控制在反应釜操作中的重要性。
2. 反应釜温度控制系统组成与工作原理- 分析温度控制系统的组成部分,包括温度传感器、控制器、执行器等。
- 讲解各部分的工作原理及相互关系。
3. 温度传感器及其选用- 介绍常见温度传感器的类型、特点及应用场景。
- 分析温度传感器的选用原则,包括精度、响应时间等方面。
4. 温度控制器原理与操作- 阐述温度控制器的原理,包括PID控制算法。
- 指导学生操作温度控制器,实现反应釜温度的精确控制。
5. 反应釜温度控制方案设计- 分析反应釜温度控制方案的设计原则,包括设备选型、参数设置等。
- 指导学生设计简单的反应釜温度控制方案。
6. 实验操作与故障排查- 安排实验操作环节,让学生动手验证温度控制系统的稳定性和可靠性。
~~第1章自动控制系统基本概念~~1-3 自动控制系统主要由哪些环节组成?解自动控制系统主要由检测变送器、控制器、执行器和被控对象等四个环节组成。
~~ 1-5 题1-5图为某列管式蒸汽加热器控制流程图。
试分别说明图中PI-307、TRC-303、FRC-305所代表的意义。
题1-5图加热器控制流程图解PI-307表示就地安装的压力指示仪表,工段号为3,仪表序号为07;TRC-303表示集中仪表盘安装的,具有指示记录功能的温度控制仪表;工段号为3,仪表序号为03;FRC-305表示集中仪表盘安装的,具有指示记录功能的流量控制仪表;工段号为3,仪表序号为05。
~~~~~ 1-7 在自动控制系统中,测量变送装置、控制器、执行器各起什么作用?解测量变送装置的功能是测量被控变量的大小并转化为一种特定的、统一的输出信号(如气压信号或电压、电流信号等)送往控制器;控制器接受测量变送器送来的信号,与工艺上需要保持的被控变量的设定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用特定信号(气压或电流)发送出去执行器即控制阀,它能自动地根据控制器送来的信号值来改变阀门的开启度,从而改变操纵变量的大小。
~~~1-8.试分别说明什么是被控对象、被控变量、给定值、操纵变量、操纵介质?解:被控对象(对象)——自动控制系统中,工艺参数需要控制的生产过程、生产设备或机器。
被控变量——被控对象内要求保持设定值的工艺参数。
控系统通常用该变量的名称来称呼,如温度控制系统,压力制系统等。
给定值(或设定值或期望值)——人们希望控制系统实现的目标,即被控变量的期望值。
它可以是恒定的,也可以是能按程序变化的。
操纵变量(调节变量)——对被控变量具有较强的直接影响且便于调节(操纵)的变量。
或实现控制作用的变量。
操纵介质(操纵剂)——用来实现控制作用的物料。
~~~1-11 题l-11图所示为一反应器温度控制系统示意图。
A、B两种物料进入反应器进行反应,通过改变进入夹套的冷却水流量来控制反应器内的温度不变。
1 第一章 绪论 现代社会要求制造业市场需求迅速的反应,生产出小批量、多品种、多规格、低成本和高质量的产品。为了满足这一需求,生产设备的控制系统必须具有极高的灵活性和可靠性,可编程控制器就顺应而生。随着微处理器、计算机和数字通信技术的飞跃发展,计算机控制已扩展到所有控制领域。在建材、化工、食品、机械、钢铁、煤矿等工业生产中广泛应用时运输机运送原料物品。 从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。 本文介绍了以锅炉为被控对象,以锅炉出口水温为被控参数,以以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。 电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决 定了产品的质量好坏。目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。 本文主要从温度控制算法角度进行阐述。通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。 2
第二章 硬件配置及说明 2.1控制要求 本课设以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。要求锅炉内胆的水温稳定至给定量,将铂电阻检测到的锅炉内胆温度信号TT1作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。 给定值(目标值)可以预先设定后直接输入到回路中;过程变量由在受热体中的Pt100测量并经温度变送器给出,为单极性电压模拟量;输出值是送至加热器的电压,其允许变化范围为最大值的0% 至100%。 2.2系统整体设计方案
化学反应炉温度控制系统设计与仿真科目:姓名:学号:专业:日期:摘要:本文针对化学反应炉温度控制系统中的纯滞后环节,设计了以大林算法为基础的计算机控制器。
经过控制器的调节作用,使系统的稳定性及性能指标得到满足,消除了纯滞后环节对控制系统的不利影响。
在控制器的设计过程中,通过改变设计参数,进一步了解了大林算法的设计理念,并通过系统仿真,对结果进行了进一步的分析。
关键词:纯滞后环节;大林算法;计算机控制器;系统仿真;1 前言温度是最为普遍和重要的热工参数之一,温度控制在化工生产、金属冶炼及其他领域中,具有十分普遍的应用。
在化学反应过程中,反应炉内部温度变化一般划分为四个阶段:自由升温阶段、恒速升温阶段、保温阶段、自由降温阶段。
生产过程对以上每个阶段温度变化过程的时间要求,及对整个控制系统的性能要求,可以归结为以下几点。
1.自由升温阶段:系统启动工作后,对炉温进行监视,而不检测和反馈,直接控制反应炉的温度由常温快速上升至某指定温度。
2.恒速升温阶段:反应炉的温度一旦上升至某指定温度,系统进入对温度的监测状态,目的是使反应炉的温度能够按要求变化。
恒速升温阶段要求反应炉的温度线性上升。
3.保温阶段:反应炉温度到达恒速升温阶段的指定值后,系统进入保温阶段。
要求温度保持在恒定值一段时间。
4.自由降温阶段:保温阶段结束后,系统又恢复到只对炉温进行监视,而不检测和反馈的状态,直接控制反应炉的温度迅速下降至常温,然后停止工作。
反应炉温度控制系统是一个具有纯滞后环节的不稳定系统,其滞后性对温度的控制造成了不利的影响,为了满足以上各阶段的反应要求,需要设计有效的控制器,克服纯滞后环节的影响,使系统能够较准确的跟随温度的给定值。
研究表明,对于被控对象无滞后的控制系统应用常规PID控制方法和最小拍无纹波设计能够得到很好的控制效果。
而对于被控制对象含有大滞后的控制系统,仅仅应用常规PID控制方法和最小拍无纹波设计,其控制效果并不理想。
(完整版)基于PLC的温度控制系统毕业设计论⽂基于PLC的温度控制系统设计摘要可编程控制器(plc)作为传统继电器控制装置的替代产品已⼴泛应⽤⼯业控制的各个领域,由于它可通过软件来改变控制过程,⽽且具有体积⼩,组装灵活,编程简单抗⼲扰能⼒强及可靠性⾼等特点,⾮常适合于在恶劣的⼯业环境下使⽤。
本⽂所涉及到的温度控制系统能够监控现场的温度,其软件控制主要是编程语⾔,对PLC⽽⾔是梯形语⾔,梯形语⾔是PLC⽬前⽤的最多的编程语⾔。
关键字:PLC 编程语⾔温度Design of the temperature control Systems based on PLCAbstractProgramming controler ( plc ) the replacing product as traditional relay control equipment each that already applies industrial control extensively field ,Since it can change control course through software ,It is little to is strong and reliability bad industrial environment use. The temperature control system that this paper is concerned with can the temperature of monitoring , its software control is programming language mainly, for PLC is ladder-shaped language, ladder-shaped language is the most programming language that PLC now uses.Keyword:PLC Programming language Temperature⽬录摘要----1Abstrack1引⾔-31.1课题研究背景1.2温度控制系统的发展状况1.3 总体设计分析2系统结构模块63.1 PLC的定义--73.2 PLC的发展--83.2.1 我国PLC的发展-83.3 PLC的系统组成和⼯作原理-----93.3.1 PLC的组成结构--93.3.2PLC的扫描⼯作原理3.4PLC的发展趋势3.5 PLC的优势--103.6 PLC的类型选择4.1 PID控制程序设计4.1.1 PID控制算法---124.1.2PID在PLC中的回路指令-144.1.3PID参数设置4.23A模块及其温度控制4.2.13A模块的介绍--174.2.2 数据转换4.2.3软件编程的思路---195程序的流程图---196 整个系统的软件编程---207结束语谢词24参考⽂献1 引⾔1.1 课题研究背景温度是⼯业⽣产中常见的⼯艺参数之⼀,任何物理变化和化学反应过程都与温度密切相关。
蒸汽加热反应釜控制系统的设计蒸汽加热反应釜是一种常用于工业生产中的反应器,其特点是能够通过蒸汽加热的方式,使反应釜中的物质得到加热,从而实现反应的进行。
为了保证反应釜的稳定运行,需要设计一个可靠的控制系统,下面具体介绍蒸汽加热反应釜控制系统的设计。
一、系统功能需求蒸汽加热反应釜的控制系统需要实现以下功能:1.测量和控制反应釜内的温度,保证反应釜内的物质能够达到设定温度。
2.根据反应釜所需温度和反应速率等参数,自动调节蒸汽阀门的开启程度。
3.根据反应釜内的压力变化,自动控制蒸汽阀门的开启程度,保证反应釜内的压力在安全范围内。
4.提供手动操作模式,方便维护和检修反应釜。
二、系统硬件设计1.硬件组成蒸汽加热反应釜的控制系统由下列硬件组成:①温度传感器:用于探测反应釜内的温度变化。
②控制器:接收温度传感器的信号,计算蒸汽阀门的开度,并控制蒸汽阀门的开合。
③蒸汽阀门:控制蒸汽的流量,实现加热反应釜内的物质。
④压力传感器:用于探测反应釜内的压力变化。
2.控制器选型选择适合的控制器对于系统的稳定性和可靠性至关重要。
蒸汽加热反应釜控制系统可以采用PID控制器或者高级控制器。
PID控制器是较为经济实用的控制器,适用于工业控制领域的大多数应用场合。
高级控制器性能更加强大,能够调整更多的工艺参数,但是价格较高。
三、系统软件设计蒸汽加热反应釜的控制系统需要一个可靠的软件来实现温度和压力的监控和调节。
1.温度检测和控制温度传感器将反应釜内的温度变化转换为电信号,并经过处理后传给控制器。
控制器计算出蒸汽阀门的开度,并将蒸汽信号发送给蒸汽阀门,实现对反应釜内温度的控制。
在软件设计中,可以通过调节PID参数来实现温度控制。
需要注意的是,这些参数需要根据具体工艺来进行调整,以实现最佳的温度控制效果。
2.压力检测和控制压力传感器将反应釜内的压力变化转换为电信号,并经过处理后传给控制器。
控制器通过比较实际压力和预设压力的大小,调节蒸汽阀门的开合程度,以保证反应釜内的压力变化在安全范围内。
化学反应釜最优温度控制系统的设计与实现
化学反应釜最优温度控制系统是一种基于自动控制技术的温度控制系统,可以用于化学反应过程中的温度控制,实现反应过程中温度的稳定控制、快速恢复和最优化运行。
其设计和实现需要以下步骤:
1. 确定温度控制策略:根据不同的化学反应过程和温度要求,确定最合适的温度控制策略,例如PID控制、模型预测控制等。
2. 选择温度控制器:选用能够实现所选温度控制策略的温度控制器,如PLC、微型控制器等,并根据其特性进行适当的配置。
3. 安装温度传感器:在化学反应釜中安装温度传感器,用于实时获取温度信号,并将其传送至温度控制器。
4. 设计控制算法:根据所选温度控制策略和配置好的温度控制器,设计出对应的控制算法,并结合温度传感器实时反馈的温度信号,控制反应釜内的温度。
5. 调试和优化:在实际应用过程中,根据反应过程和温度变化情况进行调试和优化,优化控制算法,最终实现化学反应釜最优温度控制。
过程控制系统与装置课程设计(论文)题目:换热器温度控制系统的设计课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器学号学生姓名专业班级课程设计(论文)题目换热器温度控制系统的设计课程设计(论文)任务在某生产过程中,冷物料通过热交换器用热水(工业废水)和蒸汽对其进行加热,工艺要求出口温度为140±2℃。
当用热水加热不能满足出口温度要求时,则在同时使用蒸气加热,试设计换热器温度控制系统。
1.技术要求:测量范围:0-180℃控制温度:140±2℃最大偏差:5℃;2.说明书要求:确定控制方案并绘制原理结构图、方框图;选择传感器、变送器、控制器、执行器,给出具体型号;确定控制器的控制规律以及控制器正反作用方式;若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及程序流程图;编写设计说明书。
指导教师评语及成绩成绩:指导教师签字:年月日目录第1章换热器温度控制系统设计概述 (4)第2章换热器温度控制系统设计方案论证 (4)第3章系统内容设计 (7)3.1 温度传感器的选择 (7)3.2 流量变送器的选择 (8)3.3 调节器的选择 (8)3.4 执行器的选择 (9)3.5 变送器的选择 (11)3.6 调节阀的选择 (12)第4章系统性能分析 (13)4.1参数整定 (13)4.2.控制算法的确定 (14)第5章课程设计总结 (16)参考文献 (17)第1章换热器温度控制系统设计概述换热器的应用广泛,比如中央空调系统,机械润滑油冷却系统,制药消毒系统,饮料行业消毒系统,船用冷却,化工行业特殊介质冷却系统日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。
它还广泛应用于化工、石油、动力和原子能等工业部门。
它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。
近几年来,我国在节能方面虽然已取得很大的成绩,但能源的供应矛盾依然十分尖锐。
基于PLC的加热反应炉自动控制系统设计加热反应炉是一种常见的工业设备,广泛应用于化工、制药、食品等领域。
为了提高生产效率和产品质量,自动控制系统在加热反应炉中的应用变得越来越重要。
本文将基于PLC的加热反应炉自动控制系统设计作为主题,深入探讨其原理、设计方法和实现过程。
一、引言加热反应炉是化学反应中常见的设备之一,其主要作用是提供适宜的温度条件来促进化学反应的进行。
传统上,人工操作是控制加热反应过程的主要方式,但存在操作不稳定、效率低下等问题。
因此,引入自动控制系统成为提高生产效率和产品质量的重要途径。
二、PLC在自动控制系统中的优势PLC(可编程逻辑控制器)作为一种广泛使用于工业自动化领域的电子设备,在加热反应炉自动控制系统设计中具有许多优势。
首先,PLC具有高度可编程性和灵活性,在不同场景下可以根据需求进行定制化编程。
其次,PLC具有良好的稳定性和可靠性,能够长时间稳定运行,适用于工业生产环境。
此外,PLC还具有良好的扩展性和可升级性,方便系统的后期升级和扩展。
三、PLC加热反应炉自动控制系统设计原理1. 系统结构设计基于PLC的加热反应炉自动控制系统主要由传感器、执行器、控制器和人机界面组成。
传感器用于采集反应过程中的温度、压力等参数;执行器用于控制加热源、搅拌机等设备;控制器通过对传感器采集到的数据进行处理,并发送相应指令给执行器;人机界面用于操作人员与系统进行交互。
2. 控制策略设计在加热反应过程中,温度是一个重要参数。
通过对温度进行实时监测和调节,可以实现对反应过程的精确控制。
常见的温度控制策略有比例-积分-微分(PID)控制和模型预测控制(MPC)。
PID控制是一种经典且简单有效的方法,适用于线性系统;而MPC在非线性系统中具有更好的性能。
3. 程序设计PLC的程序设计是实现加热反应炉自动控制的关键步骤。
程序设计需要根据具体的反应过程和控制策略,将控制逻辑转化为PLC可执行的指令。
换热器温度控制系统设计热交换器是工业生产中常见的设备,用于传递热量。
为了保证热交换器的高效运行,需要设计一个温度控制系统,使得热交换器内的温度始终保持在合适的范围内。
本文将从系统的硬件组成、控制策略、控制算法和性能评价四个方面对热交换器温度控制系统进行设计。
1.系统的硬件组成热交换器温度控制系统的硬件组成包括传感器、执行器和控制器。
传感器用于实时测量热交换器内的温度,常用的传感器包括热电偶和温度传感器。
执行器通过控制热交换器内的冷却或加热装置,来调节温度。
常用的执行器包括冷却水泵和加热器。
控制器负责采集传感器的数据,并根据控制策略进行控制,常用的控制器包括PLC和单片机。
2.控制策略热交换器温度控制系统的常用控制策略包括比例控制、比例积分控制和模糊控制。
比例控制是基于测量值与设定值之间的误差进行控制的,根据误差的大小来调节执行器,使得误差逐渐减小,温度稳定在设定值附近。
比例积分控制在比例控制的基础上增加了对误差的积分项。
积分项的作用是累积误差,并在误差连续一段时间内较大时进行补偿。
这种控制策略可以更好地消除系统的定常误差,使得温度更加稳定。
模糊控制是一种基于人类智慧的控制方法。
它通过建立模糊规则来描述输入变量和输出变量之间的关系。
根据传感器测量到的温度值和设定值,模糊控制器会根据事先设定的模糊规则来决定执行器的控制信号,从而实现温度的控制。
3.控制算法在选择控制算法时,可以采用经典的PID控制算法或者先进的自适应控制算法。
PID控制算法是一种常见的经典控制算法。
它根据误差的大小和变化率来计算控制信号,并通过加权比例、积分和微分项来调节执行器,最终实现温度的控制。
自适应控制算法是一种先进的控制算法,它能够根据实际的系统动态特性,自动调整控制参数。
自适应控制算法通过建立数学模型来描述系统,并根据系统的响应来修正控制参数,从而实现更好的控制效果。
4.性能评价热交换器温度控制系统的性能评价主要包括控制精度、稳定性和快速性。
西华大学课程设计说明书 过程控制系统课程设计
题目:反应器串级控制系统设计——系统设计部分 学生:何嘉涛 班级:2013电气7班 学号:************* 指导老师:***
2016年12月12日 西华大学课程设计说明书
2 目 录 前言…………………………………………………………………………………4 第一章 连续槽反应器温度控制系统设计的目的意义 …………………………4 1.1 连续槽反应器简介……………………………………………………………4 1.2 目的及意义……………………………………………………………………5 第二章 连续槽反应器温度控制系统工艺流程及控制要求……………………5 第三章 总体设计方案……………………………………………………………6 3.1 方案比较………………………………………………………………………6 3.1.1 简单控制系统………………………………………………………………6 3.1.2 串级控制系统………………………………………………………………7 3.2 方案选择………………………………………………………………………8 第四章 串级控制系统分析………………………………………………………8 4.1 主回路设计……………………………………………………………………8 4.2 副回路设计……………………………………………………………………8 4.3 主、副调节器规律选择………………………………………………………8 4.4 主、副调节器正反作用方式确定……………………………………………9 第五章 仪器仪表的选取及元器件清单…………………………………………9 5.1 温度的测量与变送器的选择…………………………………………………9 5.2 调节器的选择…………………………………………………………………10 第六章 控制系统的组成…………………………………………………………12 6.1控制系统仪表元件清单件清及配接…………………………………………13 6.2利用Matlab进行仿真………………………………………………………13 西华大学课程设计说明书 3
串级反应器温度控制系统设计 摘要:在工业过程中,温度是最常见的控制参数之一,反应器温度控制是典型的温度控制系统。对温度的控制效果将影响生产的效率和产品的质量, 如果控制不当将损害工艺设备甚至对人身安全造成威胁。因此反应器 温度的控制至关重要。 连续槽反应器是化学生产的关键设备是一个具有大时滞、非线性和时变特性、扰动变化激烈且幅值大的复杂控制对象。结合控制要求,通过分析工艺流程,本论文设计了串级PID分程控制方案。方案选定后,进行了硬件和软件的选择。硬件上选用西门子公司的S7-200 PLC,并用相应的STEP7软件编程。然后采用北京三维力控科技有限公司开发的三维力控组态软件设计监控画面并利用Matlab 7.0对系统进行了仿真。 关键词:温度,反应器,串级PID In the industrial process,temperature is one of the most common control parameters,reactor temperature control system is a typical temperature control system.The temperature control effect will influence the production efficiency and product quality,if it is not controlled properly,process equipment will be damaged,even personal safety will be threatened.Thus the reactor temperature control is essential. Continuous stirred tank reactor is the key equipment in chemical production,it is a complicated control object with a large time delay, nonlinearity,time-varying characteristics and drastic changes and large amplitude disturbance. Combined with the control requirements.The hardware and software selection are done following the selection of control scheme.As to hardware, the S7-200 PLC of Siemens is chosen, and the corresponding software STEP7 is chosen for programming.Then Force Control of Beijing Three-dimensional Force Control Company is chosen to make the supervision picture.Matlab7.0 work for the simulation. Keywords: temperature,reactor, cascade PID 西华大学课程设计说明书 4 前言——串级控制系统 随着科学技术的发展,现代过程工业规模越来越大,复杂程度越来越高,产品的质量要求越来越严格,以及相应的系统安全问题,管理与控制一体化问题等,越来越突出,因此要满足这些要求,解决这些问题,仅靠简单控制系统是不行的,需要引入更为复杂、更为先进的控制系统,由此串级控制系统应运而生。串级控制系统是由两个或两个以上的简单闭合控制系统串联组成的一种比较高级的系统,是改善控制过程极为有效的方法,并且的道理广泛的应用。作为一种比较复杂的系统,串级控制系统有改善了过程的动态特性,提高了系统控制质量,能迅速克服进入副回路的二次扰动,提高了系统的工作频率,对负荷变化的适应性较强等优点。在一些容量滞后较大的过程,纯延时较大的过程,扰动变化激烈而且幅度大的过程,参数互相关联的过程,非线性过程,应用串级控制可以达到明显的效果。 第一章 连续槽反应器温度控制系统设计的目的意义 1.1 连续槽反应器简介
图1-1-1 连续槽反应器结构图 如图1-1-1所示的一个连续槽反应器,物料自顶部连续进入槽中,经反应后从底部排出。反应产生的热量由冷却夹套中的冷却水带走。槽中装有物料搅拌装 西华大学课程设计说明书 5 置,能够通过搅拌物料促使物料的反应和连续槽反应器中物料之间的热扩散而保持各处物料温度一致。冷却水流量可以通过调节阀控制,从而控制反应器内物料温度的恒定。 1.2 目的及意义 为了保证产品质量,必须严格控制反应温度T1,为此采用调节阀来改变冷却水流量。由于冷却水是通过吸收反应器内壁热量来降低物料温度的,这样系统就拥有了三个热容,即夹套中的冷却水、槽壁和槽中的物料。因为系统有三个热容,并且三个热容之间都有影响,所以系统扰动的来源也相应增加了,这样就增加的系统的控制难度。物料的反应是一个放热过程,如果温度过高,则会使物料变质从而造成资源的浪费,生产成本的提升,所以要严格控制反应槽的温度不能超过上限值。 第二章 连续槽反应器温度控制系统工艺流程及控制要求 反应器的主要任务是维持物料在反应过程中温度的恒定,从而保证产品的质量。反应器的工艺流程图如图2-1所示。进料从反应器顶进入反应器内反应,在搅拌装置的搅拌下充分反应并维持物料温度基本处处一致,被冷却水冷却到设定温度T1,在冷却水进水水管上装设一个调节阀,用它来控制冷却水的流量以恒定温度T1的目的。 西华大学课程设计说明书
6 图2-1 连续槽反应器工艺流程图 引起温度T1改变的扰动因素很多,主要有: (1)冷却水方面(水温和阀前的水压)的扰动D2; (2)物料方面(进料的温度和速度)的扰动D1; (3)反应器壁对外界的散热扰动; 其中冷却水方面的扰动和物料方面的扰动为主要扰动,反应器壁的扰动可以不单独考虑,而归结到冷却水方面的扰动去。由于水的比热容比较大,温度扩散起来比较缓慢,所以系统是个滞后较大的系统,可以把冷却水反面(包括反应器壁对外界的散热扰动)用一个专门的调节器来调节使其相对稳定。 第三章 总体设计方案 3.1 方案比较 3.1.1 简单控制系统 如图3-1-1-1所示,温度调节器TC是根据反应器内物料的温度T与设定值的偏差进行控制,当冷却水部分出现干扰后系统并不能及时产生控制作用,克服干扰对被控参数T的影响控制质量差。但在冷却水扰动可以忽略或很小的情况下,并生产工艺对物料温度要求不是很严格时,简单控制系统还是可以满足要求的,如果冷却水的扰动大,而且对系统产生很大影响,则简单控制系统很难满足工艺要求。简单控制系统框图如图3-1-1-2所示。 西华大学课程设计说明书
7 图3-1-1-1 反应器温度简单控制系统
图3-1-1-2 反应器物料温度简单控制系统框图 被控变量:反应器内物料的温度; 操控变量:冷却水流量。 3.1.2 串级控制系统 串级控制系统采用两套检测変送器和两个调节器,前一个调节器的输出作为后一个调节器的输入,后一个调节器的输出送往调节阀。 中间被控变量:夹套和槽壁温度; 被控变量:反应器内物料的温度; 操纵变量:冷却水流量。 夹套和槽壁温度变化时,TC可以及时动作,克服扰动。 图3-1-2-1和图3-1-2-2分别为串级系统工艺流程图和串级系统框图。
图3-1-2-1 串级系统工艺流程图