生理学:神经系统对运动的调节
- 格式:doc
- 大小:27.50 KB
- 文档页数:8
副交感神经系统和运动调节关系互动副交感神经系统和运动调节是人体生理学中相互关联且相互作用的两个重要方面。
副交感神经系统是自主神经系统的一个分支,主要负责调节心率、呼吸、消化和代谢等基础生理功能。
而运动调节则是指人体在不同运动状态下,为了适应运动需要而通过神经、肌肉和内分泌等系统进行调节的过程。
副交感神经系统和运动调节之间的关系是一种互动关系。
首先,副交感神经系统在运动调节中起着重要的作用。
当人体进行轻度运动时,副交感神经系统会相应地调节身体的各项功能,使得心率和呼吸率减慢,肌肉得到放松,从而达到节省能量的目的。
这种调节可以帮助人体更好地适应轻度运动,并保持身体的平衡。
其次,运动调节也会对副交感神经系统产生影响。
运动时,肌肉的运动会引起安静时副交感神经活性的下降。
这是因为副交感神经系统的调节主要是针对机体安静状态下的一些生理功能,当运动活动开始时,机体需要更多的能量和氧气供应,这就需要副交感神经系统放松,以便给予其他系统足够的资源来完成运动的需求。
然而,副交感神经系统和运动调节之间的互动关系并不是单向的。
研究发现,副交感神经系统的活性水平受到运动调节的影响。
有氧运动可以增加副交感神经系统的活性,从而提高机体的抗压能力和恢复能力。
此外,适度的有氧运动还可以改善副交感神经系统的功能,减少疾病的发生风险,提升身体健康水平。
总的来说,副交感神经系统和运动调节之间存在着相互关联和相互影响的互动。
副交感神经系统通过调节心率、呼吸和消化等生理功能,为机体提供适应轻度运动的基础支持。
而运动调节则通过改变副交感神经系统的活动水平,调节机体的代谢和肌肉运动,以适应不同运动状态下的需求。
然而,需要注意的是,副交感神经系统和运动调节之间的关系也会受到其他因素的影响。
例如,精神压力、环境因素和疾病等都可能对副交感神经系统和运动调节产生影响,进而干扰它们之间的互动关系。
因此,在运动和副交感神经系统的调节过程中,需要综合考虑各种因素,以达到更好的效果。
人类运动控制的生理学基础运动是人类生活中的重要组成部分。
人类通过运动可以保持身体健康、改善心理状况,同时也可以表达自己的情感和思想。
运动控制是运动的基础,是人类行为的重要组成部分。
对运动控制的深入了解可以帮助人们更好地理解和改善自己的运动能力。
本文将探讨人类运动控制的生理学基础。
一、神经系统与运动控制人类的运动由神经系统控制。
神经系统分为中枢神经系统和周围神经系统。
中枢神经系统是大脑和脊髓组成的,周围神经系统则由神经节和神经组织构成。
中枢神经系统是运动控制的核心,可以感知外界环境、调节内部机能,并且控制肌肉的收缩和松弛。
周围神经系统则传递中枢神经系统发出的信号,使肌肉能够向特定方向收缩。
人类运动控制的过程包括三个阶段:感知输入、中枢处理和反应输出。
感知输入主要由感觉神经和生理学上的信号组成,包括触觉、肌肉运动感觉和视觉等。
中枢处理是指神经系统处理感知输入的过程,将其转化为运动命令。
反应输出是指将中枢处理的运动命令传递到肌肉,使其收缩或松弛。
二、肌肉力量的产生肌肉力量的产生源于肌肉中的肌肉纤维。
肌肉纤维是最小的功能单位,每个肌肉纤维里都有数百个肌球蛋白基本单位组成的肌原纤维。
肌原纤维收缩时,肌球蛋白互相滑动,从而使肌肉纤维缩短。
肌肉力量的产生主要取决于肌肉纤维的数量和肌肉收缩的频率。
运动需要肌肉发生收缩,而肌肉收缩需要神经系统的控制。
神经元通过神经冲动传递信号,使肌肉纤维发生收缩,产生力量。
肌肉力量的大小取决于肌肉纤维的数量和肌肉收缩的频率。
三、神经肌肉接头神经肌肉接头是神经系统和肌肉系统之间的交界点。
神经肌肉接头由神经动作电位引起的信号传导与肌纤维的肌球蛋白发生作用产生的肌肉纤维收缩相互作用而实现神经和肌肉系统之间的精确连接。
当神经传导信号到达神经肌肉接头时,神经肌肉接头释放乙酰胆碱等神经递质,引起肌肉纤维的收缩。
肌肉收缩需要ATP的支持,ATP由自由线粒体产生,同时 ATP 还可以通过血液供给。
运动生理学问答题绪论人体生理机能的调节方式及其特点?(简答)人体生理机能调节包括神经调节、体液调节、自身调节。
1)神经调节:由神经系统的活动调节生理功能的调节方式。
调节方式:通过反射进行调节,反射分为条件反射和非条件反射。
特点:作用迅速,调节精确,范围局限,时间短暂。
2)体液调节:机体细胞释放的特殊化学物质经体液运输调节机体的生理功能的调节方式。
调节方式:a远分泌:内分泌腺→激素→血液运输→受体→生理效应。
b旁分泌:激素不经血液运输而经组织扩散达到的局部性体液调节。
c神经分泌:神经细胞分泌的激素释放入血液达到的体液调节。
特点:缓慢、持久、弥散。
3)自身调节:环境变化时,器官、组织、细胞不依赖神经或体液调节而产生的适应性反应。
特点:调节幅度小,不灵敏、局限。
第一章运动的能量代谢试比较三种能量系统的特点(论述)人体有三种能量系统,分别是磷酸原供能系统、糖酵解系统、有氧氧化系统。
1)磷酸原供能系统由ATP-CP供能,无氧代谢,体内储量少,输出功率大,供能速度极快,持续时间短,不产生疲劳的副产品,适于短跑或任何高功率活动。
2)糖酵解系统由糖原、葡萄糖供能,无氧代谢,供能速度快,ATP生成有限,同时产生乳酸可导致肌肉疲劳,适于耗时2-3分钟的最大强度运动,评价指标为血乳酸。
3)有氧氧化系统由糖、脂肪、蛋白质供能,有氧代谢,供能速度慢,不产生导致疲劳的副产品,适用于耐力或长时间运动,评价指标为最大摄氧量、无氧阈。
第二章肌肉活动从事不同项目运动员的肌纤维类型的组成有什么特点?1)时间短,强度大项目运动员:快肌纤维百分比高于从事耐力项目运动员和一般人。
2)耐力项目运动员:慢肌纤维百分比高于从事非耐力项目运动员和一般人。
3)既需耐力又需速度项目的运动员(如中跑、自行车等):快肌纤维百分比与慢肌纤维百分比相当。
第三章躯体运动的神经控制状态反射的规律是什么?举例说明它在完成一些运动技能时所引起的重要作用。
(论述)1)状态反射:头部空间位置的改变以及头部与躯干相对位置发生改变时,将反射性的引起四肢肌肉紧张性改变。
绪论及细胞一、名词解释神经调节:通过神经系统调控机体功能活动的方式体液调节:(全身性体液调节局部性体液调节)指体内的一些化学物质通过细胞外液或血液循环,作用于机体靶器官(某些组织或器官),对活动起促进或抑制的调节方式。
即体液中化学物质对机体功能的调节。
主要指激素调节自身调节:指不依赖于神经、体液和免疫调节,机体组织、细胞自身对刺激发生的一种适应性反应正反馈:指受控部分返回信息促进或加强了控制部分的活动负反馈:指受控部分返回信息抑制或减弱了控制部分的活动单纯扩散:脂溶性小分子物质顺浓度梯度从胞膜高浓度一侧通过脂质分子间隙转运到低浓度一侧的跨膜转运称为单纯扩散易化扩散:非脂溶性的小分子物质或带电离子在细胞膜特殊蛋白的帮助下,顺电-化学梯度进行跨膜性转运的形式称为易化扩散主动转运(原发、继发):是指细胞膜通过本身的能量消耗,将物质逆电-化学梯度进行转运的过程,主要特点是需要额外供能原发性主动转运:是指在主动运输的过程中,额外消耗的能量直接由ATP分解提供继发性主动转运:动力来自原发性主动转运形成的离子浓度梯度,这种间接利用ATP的转运方式称为继发性主动转运阈强度:在刺激的持续时间和强度-时间变化率固定的情况下,能够引起可兴奋细胞产生兴奋的最小刺激强度,称为阈强度阈电位:当刺激使膜电位去极化到某一临界值,就出现膜上的电压控钠通道大量开放,Na+大量内流而产生动作电位静息电位:细胞安静时存在于细胞膜内外两侧的电位差,称为静息电位动作电位:当细胞受有效刺激时,膜电位在静息电位的基础上发生快速、可传播性的电位变化局部兴奋:阈下刺激引起的低于阈电位的去极化(即局部电位),称局部反应或局部兴奋极化去极化:膜内负电位(绝对值)减小超极化:膜内负电位(绝对值)增大复极化:细胞发生去极化后再向静息电位方向恢复的过程兴奋-收缩耦联:将膜的电位变化为特征的兴奋和以肌纤维机械变化为基础的收缩联系起来的中介过程完全强直收缩:当新刺激落在前一次收缩的缩短期,所出现的强而持久的收缩过程不完全强直收缩:当新刺激落在前一次收缩的舒张期,所出现的强而持久的过程二、问答题1、试述跨细胞膜物质转运的主要形式和特点。
运动生理学知识:身体系统对运动的适应性身体系统对运动的适应性在进行运动的过程中,身体系统可以对运动进行适应和调节,以保证身体的适应能力和健康状况。
这种适应性是运动生理学研究的重点之一。
身体系统包括神经系统、心血管系统、肌肉系统、呼吸系统、内分泌系统和免疫系统等,各系统的适应性不同,但它们都可以受到运动的影响而进行适应性调节。
神经系统的适应性调节:神经系统在运动中发挥着重要的作用,可以控制肌肉的收缩和放松、协调运动、调节心率和血压等。
长期进行高强度的运动可以使神经系统更加敏感,从而提高神经的反应速度和协调性,并可以减少神经退行性疾病的发生。
心血管系统的适应性调节:运动可以加强心血管系统的功能,包括增加心肌收缩力、提高心率和血压、促进血液循环等。
长期进行有氧运动可以增加心肺功能和心肌能力,降低心血管疾病的患病率,预防心脏病、高血压、中风等。
肌肉系统的适应性调节:肌肉系统是支撑我们进行运动的重要组织,通过运动可以促进肌肉组织的生长和代谢,增加肌肉的力量、耐力和灵活性。
长期进行力量训练可以增加肌肉的质量和力量,促进肌肉的生长和维持,减少骨质疏松、骨折等疾病的发生。
而进行有氧运动则可以增加肌肉的耐力和灵活性,降低肌肉疲劳的程度。
呼吸系统的适应性调节:运动可以促进呼吸系统的生长和发展,使肺活量增加,呼吸肌肉更加强健,提高氧气的运输和利用效率。
长期进行有氧运动可以增加肺活量和强度,减少呼吸道感染和呼吸系统疾病的发生。
内分泌系统的适应性调节:运动可以刺激内分泌系统的功能,增加分泌代谢激素、调节血糖水平、促进脂肪代谢等。
长期进行运动可以减少胰岛素抵抗性,降低糖尿病、肥胖等代谢性疾病的患病率,并促进睾丸激素的分泌,有助于维护男性生育健康。
免疫系统的适应性调节:运动可以提高免疫系统的功能,增加白细胞的产生和分泌,增强免疫系统对细菌、病毒和其他病原体的抵抗力。
长期进行运动可以减少感染性疾病的发生,预防癌症等慢性疾病的发生。
神经系统大纲要求1.神经元活动的一般规律:神经纤维传导的特征,速度,神经纤维的分类以及神经的营养性作用,神经胶质细胞的功能。
2.突触与突触传递:兴奋性突触与抑制性突触传递的过程和原理,突触前抑制。
神经递质。
突触传递的特点。
3.反射中枢的概念,中枢兴奋和抑制的过程。
4.神经系统的感觉机能:感觉的特异与非特异投射系统及其在感觉形成中的作用。
痛觉。
5.神经系统对躯体运动的调节:骨骼肌的运动单位,牵张反射,肌紧张及其调节。
锥体系统及锥体外系统在运动调节中的作用,中枢神经调节系统其他部位对运动的调节作用。
6.神经系统对内脏机能的调节:植物性神经系统及其化学传递,低位脑干对内脏机能的调节,下丘脑对内脏活动的调节。
7.脑的高级机能:条件反射的形成和生物学意义,人类条件反射的特征。
大脑皮层的语言中枢及两侧大脑半球的职能分工。
8.两种睡眠状态及其特点。
讲义精要一、神经元和神经纤维1.神经元即神经细胞,是神经系统的基本结构和功能单位。
神经元由胞体和突起两部分组成,胞体是神经元代谢和营养的中心,能进行蛋白质的合成;突起分为树突和轴突,树突较短,一个神经元常有多个树突,轴突较长,一个神经元只有一条。
胞体和突起主要有接受刺激和传递信息的作用。
2.神经纤维即神经元的轴突,主要生理功能是传导兴奋。
神经元传导的兴奋又称神经冲动,是神经纤维上传导的动作电位。
神经元轴突始段的兴奋性较高,往往是形成动作电位的部位。
3.神经胶质:主要由胸质细胞构成,在神经组织中起支持、保护和营养作用。
二、神经冲动在神经纤维上传导的特征1.生理完整性:包括结构和功能的完整,如果神经纤维被切断或被麻醉药作用,则神经冲动不能传导。
2.绝缘性:一条神经干内有许多神经纤维,每条神经纤维上传导的神经冲动互不干扰,表现为传导的绝缘性。
3.双向传导:神经纤维上任何一点产生的动作电位可同时向两端传导,表现为传导的双向性,但在整体情况下是单向传导的。
4.相对不疲劳性:神经冲动的传导以局部电流的方式进行,耗能远小于突触传递。
中枢神经系统对运动的生理学调节中枢神经系统是人体重要的调节机制,它通过神经元的信号传导,控制生理过程的各个方面,包括呼吸、消化、心跳等。
其中,中枢神经系统对于运动和体力活动的调节起着至关重要的作用。
在运动过程中,中枢神经系统通过一系列生理学调节机制,使我们的身体得以适应各种不同的运动形式和强度。
一、神经元的信号传导神经元是中枢神经系统最基本的单元,它通过信号传导将人体各个部位的信息传递给大脑和脊髓。
神经元是由细胞体、树突、轴突和突触组成。
其中,细胞体包含了神经元的核和其他细胞器。
树突是指神经元的突起,它们负责接收其他神经元的信号。
轴突是指另一个较长的突起,它负责将经过处理的信息传输给其他神经元或肌肉。
而突触是指它与其他神经元或肌肉的连接点。
二、神经元的兴奋和抑制当一个神经元被兴奋时,它会产生一个电信号,这个信号被传递到其他神经元或肌肉,引起生理上的反应。
而当一个神经元被抑制时,它会减弱或抑制信号的传导,从而减少生理反应。
这种兴奋和抑制的机制可以帮助我们适应不同的情况,从而达到生理上的平衡。
三、神经递质和神经调节物质神经递质是指神经元释放到突触前端的化学物质,它们起着传递信号的作用。
当一个神经元释放神经递质时,它会影响接收信息的神经元或肌肉,并引起一系列生理反应。
其中,常见的神经递质有多巴胺、去甲肾上腺素、乙酰胆碱等。
而神经调节物质则是一种更为广泛的化学物质,它们会通过神经系统对全身的生理过程产生影响。
其中,内啡肽是一种常见的神经调节物质,它会对疼痛的感觉产生抑制作用。
四、神经系统对运动的调节在运动过程中,中枢神经系统通过一系列生理学调节机制,使我们的身体得以适应各种不同的运动形式和强度。
其中,下文将在以下几个方面进行论述。
1、肌肉收缩的调节神经系统对肌肉收缩的调节包括两个方面:频率调节和幅度调节。
频率调节是指神经系统通过反复激活肌肉,使其保持一定的收缩状态。
而幅度调节则是指神经系统对肌肉收缩的力度进行调整,以适应不同的强度要求。
运动控制生理学理解运动的中枢控制和神经肌肉协调机制运动控制生理学:理解运动的中枢控制和神经肌肉协调机制运动是人类生活中不可或缺的一部分,它涉及到许多复杂的生理过程。
在运动中,中枢神经系统(CNS)对运动的控制起着至关重要的作用,同时需要与肌肉协调机制相互配合。
运动控制生理学研究了这些过程,可以帮助我们更好地理解运动的本质和机制。
本文将探讨运动的中枢控制和神经肌肉协调机制,并从细胞、系统和整体水平进行讨论。
一、神经系统的中枢控制中枢神经系统是控制人体运动的主要部分,包括大脑和脊髓。
在中枢神经系统中,大脑负责高级运动控制和意识觉醒,而脊髓则负责底层的运动模式生成和反射动作调节。
1. 大脑的运动控制大脑的皮层区域负责高级运动控制和意识觉醒。
在大脑皮层中,运动皮层和运动规划区域起着至关重要的作用。
运动皮层包括运动初级皮层和运动额叶皮质,负责运动信号的生成和传递。
运动规划区域则负责计划和协调运动,包括前额叶皮质和顶叶皮质。
2. 脊髓的运动调节脊髓是连接大脑和肌肉的桥梁,负责底层的运动模式生成和反射动作调节。
脊髓内的神经元网络可以产生基本的运动模式,如步态和握力。
此外,脊髓内的反射弧使得我们能够迅速做出动作反应,而不需要经过大脑的高级运动控制。
二、神经肌肉协调机制神经肌肉协调机制是指神经系统和肌肉系统之间进行合作的过程。
它包括神经肌肉接头结构、神经冲动的传导和运动单位的激活。
1. 神经肌肉接头结构神经肌肉接头是神经末梢和肌肉之间的连接点。
神经冲动到达末梢神经时,通过神经肌肉接头释放乙酰胆碱,从而引发神经肌肉兴奋。
2. 神经冲动的传导神经冲动从中枢神经系统发送到肌肉,通过神经纤维传导完成。
神经冲动沿着神经纤维传导,并在末梢神经肌肉接头释放乙酰胆碱,从而导致肌肉收缩。
3. 运动单位的激活运动单位是指一个神经元和其所支配的肌纤维组成的功能单元。
当神经冲动到达运动单位时,它会激活运动单位中的肌纤维,从而引发肌肉的收缩。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。