激光器的发展历史及钇铝石榴石激光晶体
- 格式:ppt
- 大小:3.06 MB
- 文档页数:14
本科生课程作业(论文)简述激光技术发展史与应用技术前沿姓名:***学院:应用数理学院学号:********2015年9月13日简述激光技术发展史与应用技术的普及摘要20世纪以来物理学的基础研究不断推进科技的发展。
直至21世纪,我们无时无刻不享用着新技术给我们生活带来的便利。
而在各个领域均大规模投入使用的激光技术已经说明现代电子技术的先进性。
本文将结合课上所学内容,着重介绍激光技术概念的提出及激光器问世过程;从国内与国外的角度对比主流技术区别,同时简要介绍激光技术的应用。
关键词:光的产生;Laser;梅曼;国内;应用普及目录第1章引言第2章激光概念的提出与激光器的问世2.1自发辐射2.2 Laser概念的问世2.2.1受激辐射2.3以梅曼的红宝石激光器为开端第3章国内激光技术的发展3.1第一次听到“激光”3.2早期激光技术的发展第4章激光技术的应用4.1激光器的构成4.2激光器的特点4.3国内外前沿4.3.1国外:世界上最大的激光器4.3.2国内:矢量漩涡光束激光器研究取得突破参考文献第1章引言激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。
意思是“通过受激发射光扩大”。
激光的英文全名已经完全表达了制造激光的主要过程。
1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。
激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的亮度约为太阳光的100亿倍。
激光的原理早在 1917年已被著名的美国物理学家爱因斯坦发现,但直到1960 年激光才被首次成功制造。
激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。
Nd:YAG激光(N eodymium-d oped Y ttrium A luminium G arnet;Nd:Y3Al5O12或称之为钇铝石榴石晶体),钇铝石榴石晶体为其激活物质,晶体内Nd原子的含量为0.6~1.1%,属固体激光,发射激光为红外波长1.064um.属四能级系统。
Nd:YAG激活物质晶体主要使用氪气(kryton)或氙气(xenon)灯管作为泵浦源,泵浦灯的发射光谱是一个宽带连续谱,但仅少数固定的光谱峰被Nd离子吸收,所以泵浦灯仅利用了很少部分的光谱能量,大部分的使用率偏低。
Nd:YAG吸收的光谱区域由0.730um~0.760um与0.790um~0.820um,光谱被吸收后释放出相同频率单色光谱,但所释放的光谱并无固定方向与相位,所以尚无法形成激光。
激光生成原理。
当将激活物质放在两个互相平行的反射镜,(其中一片100%反射另一片50%透射镜)就可构成光学谐振腔,非轴向传播的单色光谱被排除谐振腔外,轴向传播的单色光谱在腔内往返传播。
当单色光谱在激光物质中往返传播时,称为谐振腔内“自激振荡”。
当泵浦灯提供足够的高能级的原子在激光物质内,具有高能级的原子在两能级间存在着自发辐射跃迁,受激吸收跃迁和受激辐射跃迁等三种过程。
受激辐射跃迁所产生的受激发射光,与入射光具有相同的频率,相位。
当光重复在谐振腔内通过“粒子数反转状态”的激活物质后,相同频率单色光谱的光强被增大生成了激光,激光高渗透率就能通过谐振腔内50%的透射镜发射出来,成为连续激光。
钇铝石榴石(YAG)粉体的制备及应用简介
1. 钇铝石榴石(YAG)的性质与结构
钇铝石榴石(Y3Al5O12)是人造化合物,没有天然矿物,无色,莫氏硬度可达到8.5,熔点为1950℃,不溶于硫酸、盐酸、硝酸氢氟酸等。
YAG 晶体具有良好的透明度、物理化学性质非常稳定,不溶于水,不易诶强酸强碱腐蚀,机械强度高,具有良好的抗热蠕变性且各向同性,是一种应用广泛、性能理想的激光晶体材料。
钇铝石榴石晶体单胞的1/8结构模型
钇铝石榴石属于立方晶系,空间群是Oh10-Ia3d,点群是m3m,晶格常数是12.002Å,其每个晶胞内都包含8个Y3Al5O12分子,合计共有96个O2-离子,40个Al3+离子以及24个Y3+离子。
2.YAG粉体的制备
YAG粉体的常用制备方法主要包括高温固相法、共沉淀法、水热法、溶胶凝胶法、喷雾热解法、溶剂热法等。
(a)高温固相法
高温固相法是制备YAG粉体的传统方法,按照氧化钇和氧化铝的二元相图中得到的比例混合两种粉体在高温下焙烧,通过氧化物之间的固相反应形成YAG粉体。
在高温条件下,氧化铝和氧化钇的反应中,会先生成中间相YAM和YAP,最终形成YAG。
反应过程如下:
固相反应法不使用溶剂、工艺也较为简单、效率高成本低,以实现工业化生产,但反应温度高、中间产物不易剔除。
(b)机械化学法。
掺钕钇铝石榴石(Nd:YAG )Nd:YAG 是最早和最著名的激光晶体。
由于它的很多基本性能优越,故Nd:YAG 仍常被用于近远红外固态激光及其倍频,三倍频应用中。
Nd:YAG 的优势基本属性:高增益激光阈值低功率高1064nm 光波吸收少热传导性和热冲击特性好光学性质好适用于多种工作方式(连续,脉冲,Q-开关,锁模)化学式Y 3Al 5O 12晶体结构Cubic 点阵参数12.01Å熔点1970°C 密度 4.5g/cm 3反射率 1.82热膨胀系数7.8x10-6/K <111>,0-250oC 导热性14W/m/K,20°C 10.5W/m/K,100°C 莫氏硬度8.5受激发射横截面 2.8x10-19cm-2损失系数0.003cm -1@1064nm 行宽0.6nm 辐射寿命550ms·直径:尺寸从直径10x160mm 到最大直径为20mmx2mm ·掺Nd 标准:0.5~1.2(±0.1)atm%·定向:<111>±30arc ·直径公差:±0.05mm·长度公差:±0.05mm·垂直度:小于5弧分·平行度:小于10弧秒·波前畸变:l/8·平面:l/10·表面光洁度:小于10/5(MIL-O-13830A,美国军标)·膜系:HR-Coating:R>99.8%@1064nm and R<5%@808nmAR-Coating(Single layer MgF2):R<0.25%per surface(@1064nm)·也可提供:HR@1064/532nm,HR@946nm,HR1319nm等不同膜系损伤阈值:>500MW/cm^2Nd:YAG晶体的光参数直径(mm)等级标准优良等级最佳等级≤0.5fringes/inch≤0.25fringes/inch≤0.1fringes/inch φ3-6.35≥25dB≥28dB≥30dB≤0.7fringes/inch≤0.4fringes/inch≤0.16fringes/inch φ7-10≥22dB≥25dB≥28dB≤1fringes/inch≤0.6fringes/inch≤0.2fringes/inch φ11-13≥20dB≥23dB≥26dB≤1.2fringes/inch≤0.8fringes/inch≤0.25fringes/inch φ14-16≥18dB≥20dB≥23dB。
yag激光器的能级结构特点,工作物质组成及各成分的作
用。
YAG激光器是一种固体激光器,其工作物质是掺有钕(Nd)离子的钇铝石榴石(Y3Al5O12)晶体。
YAG晶体的能级结构是由Nd离子的电子构成的。
Nd离子的电子具有四个能级,分别为基态能级、第一激发态、第二激发态和第三激发态。
在YAG激光器的激发过程中,用氙气气体放电使激光材料钇铝石榴石(YAG)晶体的Nd离子受到激发,处于基态的Nd离子吸收外界光或电子能量,电子从基态跃迁到第一激发态,在第一激发态时,Nd离子处于高能态,能量被积累并随时准备从基态返回,当Nd离子被持续激发,会随时从第一激发态向低能态跃迁,释放能量。
Nd离子到达第三激发态时,再弛豫到激光产生所需的第四激发态,从而产生激光。
YAG激光器中的Nd离子起到了激发和放射光子的作用。
Nd离子的浓度越高,则能够获取激光能力的晶体就越多,从而可以获得更高的激光输出功率。
激光器的衰减时间与Nd的原子密度、泵浦能量等因素有关,因此对于激光器的性能和稳定性也有很大影响。
YAG激光器技术原理及应用YAG 激光器是以钇铝石榴石晶体为基质的一种固体激光器。
钇铝石榴石的化学式是Y3 Al5 O15 ,简称为YAG。
在YAG基质中掺入激活离子Nd3+ (约1%)就成为Nd:YAG。
实际制备时是将一定比例的Al2 O3 、Y2 O3 和NdO3 在单晶炉中熔化结晶而成。
Nd:YAG属于立方晶系, 是各向同性晶体。
由于Nd:YAG属四能级系统, 量子效率高, 受激辐射面积大, 所以它的阈值比红宝石和钕玻璃低得多。
又由于Nd:YAG晶体具有优良的热学性能, 因此非常适合制成连续和重频器件。
它是目前在室温下能够连续工作的唯一固体工作物质,在中小功率脉冲器件中, 目前应用Nd:YAG的量远远超过其他工作物质。
和其他固体激光器一样, YAG 激光器基本组成部分是激光工作物质、泵浦源和谐振腔。
不过由于晶体中所掺杂的激活离子种类不同, 泵浦源及泵浦方式不同, 所采用的谐振腔的结构不同,以及采用的其他功能性结构器件不同,YAG激光器又可分为多种, 例如按输出波形可分为连续波YAG激光器、重频YAG激光器和脉冲激光器等; 按工作波长分为1.06μmYAG 激光器、倍频YAG激光器、拉曼频移YAG 激光器(λ=1.54μm)和可调谐YAG 激光器(如色心激光器)等; 按掺杂不同可分为Nd:YAG激光器、掺Ho、Tm、Er等的YAG激光器; 以晶体的形状不同分为棒形和板条形YAG 激光器;根据输出功率(能量)不同, 可分为高功率和中小功率YAG激光器等。
形形色色的YAG 激光器, 成为固体激光器中最重要的一个分支。
[相关技术]激光材料;泵浦技术;固体激光器技术;电子技术[技术难点]尽管以YAG晶体为基质的YAG 激光器从问世迄今已经20多年, 技术和工艺都比较成熟并得到广泛应用, 但随着相关技术的进步, YAG激光器的研究工作仍旧方兴未艾, 依然是目前激光器研究的热点。
为了提高YAG 激光器的效率、输出功率和光束质量, 扩展其频谱范围, 人们在激光材料、结构和泵浦源及泵浦方式等技术和工艺方面继续开展研究和改进工作, 要解决的关键技术主要有:1、寻求新的激光材料。
yag工作原理YAG激光器工作原理解析激光器作为一种重要的光学设备,广泛应用于医疗、军事、通信等领域。
其中,YAG激光器是一种常见的固体激光器,具有较高的功率输出和较长的寿命。
本文将重点解析YAG激光器的工作原理,让读者对其工作过程有更清晰的了解。
YAG激光器是基于YAG晶体的激光器,其中YAG指的是钇铝石榴石(Yttrium Aluminum Garnet)晶体。
YAG晶体是一种具有高硬度、高熔点和优良的光学性能的材料。
它的基本化学式为Y3Al5O12,晶体结构为立方晶系。
YAG激光器的工作原理是通过外界能量的输入使YAG晶体产生受激辐射,进而实现激光的发射。
其工作过程主要包括泵浦、能级跃迁和激光放大三个阶段。
首先是泵浦阶段。
在YAG激光器中,通常采用氙灯或Nd:YAG激光器作为泵浦源。
当泵浦源提供足够的能量时,YAG晶体中的铒原子(Er)将被激发到高能级。
这种高能级通常称为激发态。
接下来是能级跃迁阶段。
在YAG晶体中,铒原子的能级结构较为复杂,其中最重要的能级是4I13/2和4I15/2。
铒原子从激发态跃迁到基态时,会经历一系列的能级跃迁。
在这个过程中,铒原子会释放出能量,并且放射出相应波长的光。
这种光具有高度相干性和单色性,即激光。
最后是激光放大阶段。
在YAG激光器中,激光需要经过放大器的增益介质进行放大,才能得到足够的功率输出。
YAG晶体作为放大介质,通过受激辐射的作用,使激光得到放大。
在激光放大器中,YAG晶体通常被制成棒状或片状形式,以便增加光程和提高激光输出功率。
总结起来,YAG激光器的工作原理可以简单概括为:通过泵浦源的作用,将YAG晶体中的铒原子激发到高能级,然后通过能级跃迁,释放出激光光子。
最后,激光光子在放大器中得到放大,形成高功率的激光输出。
YAG激光器具有许多优点,如高功率输出、较长的使用寿命、较高的光束质量等。
因此,它被广泛应用于材料加工、激光医疗、通信等领域。
同时,YAG晶体也可以掺杂其他稀土元素,如钆、铽等,以实现不同波长的激光输出。
钇铝石榴石(YAG)透明激光陶瓷的研究进展*张晓荣,范桂芬,汤艳琴,吕文中(华中科技大学光学与电子信息学院,武汉430074)摘要 透明陶瓷的制备技术不断成熟,其中部分透明陶瓷可用作激光放大介质,即透明激光陶瓷。
透明激光陶瓷材料具有传统玻璃和单晶激光材料无法比拟的材料性能和光学特性,稀土离子掺杂的钇铝石榴石(YAG)多晶透明陶瓷是目前应用范围最广的固体激光材料之一。
回顾了透明陶瓷的发展史,并以YAG透明陶瓷为例,介绍了透明陶瓷的应用领域、研究概况、制备工艺及目前面临的技术难题。
关键词 透明激光陶瓷 钇铝石榴石 制备工艺 技术难点中图分类号:TQ174 文献标识码:A DOI:10.11896/j.issn.1005-023X.2014.21.024Research Progress of Yttrium Aluminum Garnet(YAG)Transparent Laser CeramicsZHANG Xiaorong,FAN Guifen,TANG Yanqin,LU Wenzhong(College of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074)Abstract Nowadays,the preparation technology of transparent ceramics is becoming more and more maturing,and partially transparent ceramics which are named the laser ceramics can be used as a laser amplifying medium.Com-pared with the traditional glass and single crystal laser materials,the transparent ceramic materiasl show better per-formance and optical properties.Currently,rare earth ions doped yttrium aluminum garnet(YAG)transparent poly-crystalline ceramics are the most widely used solid laser materials.The history of transparent ceramics is reviewed.And the application domain,research status,preparation technology and facing technical problems for the YAG trans-parent ceramics are also introduced.Key words transparent laser ceramics,YAG,preparation technology,technical problem *国家自然科学基金(61172004) 张晓荣:女,1988年生,博士生,研究方向为透明陶瓷 E-mail:coolxiaorong@163.com 吕文中:男,1968年生,教授,主要从事微波介质材料及其相关通信器件、铁电压电陶瓷材料及其元器件的研究 E-mail:lwz@mail.hust.edu.cn0 引言固态激光器是以掺入激活离子的固体基质材料为工作物质的激光器,已广泛应用于金属加工、半导体微加工、医疗应用(如眼科手术)、红绿蓝(RGB)光源的激光打印机和投影仪、环境仪器和光学传输系统等,并有希望应用于未来的核聚变中。
钇元素激光技术的必备材料钇元素激光技术是一种高端、高效的激光加工技术,广泛应用于医学、制造业和科学研究领域。
在钇元素激光技术的实施过程中,一系列必备材料的应用起到了至关重要的作用。
本文将介绍钇元素激光技术中的几种必备材料。
一、钇铝石榴石晶体钇铝石榴石晶体是钇元素激光技术的核心材料之一。
它具有较高的热导率和光学性能,能够实现激光器的正向光学泵浦和反向光学泵浦。
此外,钇铝石榴石晶体还能够提供较大的增益系数和较高的激光能量输出。
二、氙灯在钇元素激光技术中,氙灯是一种常用的激光器泵浦光源。
氙灯具有较高的亮度和稳定的工作特性,能够提供足够的能量来激发钇铝石榴石晶体的上能级。
通过氙灯的泵浦作用,钇元素激光器才能产生高能量、高品质的激光束。
三、激光波导激光波导是钇元素激光技术中的一个关键组件,它用于引导激光束的传播和放大。
激光波导可以是光纤、波导条或者晶体,它基于钇元素激光器的工作原理,能够将激光束控制在一个特定的方向和模式下,从而提高激光器的输出效果。
四、电子控制系统钇元素激光技术的应用需要一个高效可靠的电子控制系统来实现激光器的控制和调节。
电子控制系统包括激光器的电源和温度控制、激光器的频率和功率稳定性控制等。
这些系统可以实现对钇元素激光器的精准控制,确保激光器的稳定性和可靠性。
五、光学镜片光学镜片是钇元素激光技术中的常见元件,用于调节和控制激光束的波前形状和光束发散度。
光学镜片可以是凹透镜、平行板、布儒斯特角棱镜等,通过反射、折射和散射的原理,能够改变激光束的传播方向和形状,满足不同加工需求。
六、冷却系统钇元素激光器的正常运行需要保持较低的温度,以避免过热和热效应对激光器性能的影响。
冷却系统主要通过循环水或者制冷剂来实现,能够有效控制激光器的温度,保持激光器的稳定性和长寿命。
综上所述,钇元素激光技术的必备材料包括钇铝石榴石晶体、氙灯、激光波导、电子控制系统、光学镜片和冷却系统等。
这些材料在激光器的制造、控制和操作过程中发挥着不可或缺的作用,是实现高效、稳定激光加工的重要保障。
掺钕钇铝石榴石晶体中存在的几种主要缺陷以及对晶体激光特
性的影响
邓珮珍;乔景文;钱振英
【期刊名称】《硅酸盐通报》
【年(卷),期】1982(0)6
【摘要】掺钕钇铝石榴石晶体(简称YAG:Nd)因具有良好的物理化学性能,高的激光效率和激光破坏阈值、且无需电荷补偿而能掺入三价稀土和过渡元素激活或敏化离子等优点,直到现在仍然作为各种晶体激光器(连续、重复频率、脉冲、倍频、可调谐激光器)的最佳工作物质。
有关YAG:Nd晶体制备及性能测试方面的文献国外在1965—1970年间发表较多,以后则报导得很少。
但不论在国内外,到目前为止,由于YAG:Nd晶体制备上的困难,在晶体的质量方面还存在着很多问题。
【总页数】15页(P18-32)
【关键词】激光特性;晶面;面(晶体);晶种;籽晶;种晶;蜷线位错;晶体;粒子沉积;金属颗粒;位错应力场;杂质颗粒;应力双折射效应;主要缺陷
【作者】邓珮珍;乔景文;钱振英
【作者单位】中国科学院上海光学精密机械研究所
【正文语种】中文
【中图分类】TN2
【相关文献】
1.掺钕钇铝石榴石激光断线控制人工晶体术后角膜... [J], 刘奕志;李绍珍
2.不同焦点掺钕-钇铝石榴石(Nd:YAG)激光治疗对人工晶体损伤的观察 [J], 曾思明
3.钕钇铝石榴石(YAG)激光晶体内乳化术的应用 [J], 孙心钰;王燕琪
4.掺钕钇铝石榴石(Nd∶YAG)激光棒激光诱导色心吸收对1064nm激光输出的影响 [J], 薛学刚;张芳;赵海泉
5.雷生强式公司成功生长出世界上最大尺寸掺钕钇铝石榴石激光晶体 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。