2017九年级数学解直角三角形教案.doc
- 格式:doc
- 大小:311.21 KB
- 文档页数:7
1.4 解直角三角形1.正确运用直角三角形中的边角关系解直角三角形;(重点)2.选择适当的关系式解直角三角形.(难点)一、情境导入如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为该市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC 上的A ,B 两点处,利用测角仪分别对东岸的观景台D 进行了测量,分别测得∠DAC =60°,∠DBC =75°.又已知AB =100米,根据以上条件你能求出观景台D 到徒骇河西岸AC 的距离吗?二、合作探究探究点:解直角三角形【类型一】 利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对应边分别为a 、b 、c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =6,b =6,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,ac =cosB ,即c =a cosB =3632=243,∴b =12c=12×243=123; (2)在Rt △ABC 中,∵a =6,b =6,∴c =62,∠A =∠B =45°.方法总结:解直角三角形时应求出所有未知元素,尽可能地选择包含所求元素与两个已知元素的关系式求解. 变式训练:见《学练优》本课时练习“课堂达标训练” 第6题【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BMtan60°=43,∴CD =CM -MD =12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC 中,∠B =45°,AB =2,∠A =105°,求△ABC 的面积.解析:过点A 作AD ⊥BC 于点D ,根据勾股定理求出BD 、AD 的长,再根据解直角三角形求出CD 的长,最后根据三角形的面积公式解答即可.解:过点A 作AD ⊥BC 于点D ,∵∠B =45°,∴∠BAD =45°,∴AD =BD =22AB =22×2=1.∵∠A =105°,∴∠CAD =105°-45°=60°,∴∠C =30°,∴CD =AD tan30°=133=3,∴S △ABC =12(CD +BD)·AD =12×(3+1)×1=3+12.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第7题三、板书设计 解直角三角形1.解直角三角形的概念2.解直角三角形的基本类型及其解法 3.解直角三角形的简单应用本节课的设计,力求体现新课程理念.给学生自主探索的时间,给学生宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新能力、合作能力,激发学生学习数学的积极性、主动性.。
28.2.1 解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.在上述的Rt△ABC中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】利用解直角三角形求边或角已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.(1)若a=36,∠B=30°,求∠A的度数和边b、c的长;(2)若a=62,b=66,求∠A、∠B的度数和边c的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,∵cos B=ac,即c=acos B=3632=243,∴b=sin B·c=12×243=123;(2)在Rt△ABC中,∵a=62,b=66,∴tan A=ab=33,∴∠A=30°,∴∠B=60°,∴c=2a=12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴BM=sin45°BC=122×22=12,CM=BM=12.在△EFD 中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan60°=43,∴CD=CM-MD=12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型三】运用解直角三角形解决面积问题如图,在△ABC中,已知∠C=90°,sin A=37,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进一步求解.解:∵∠C=90°,∴在Rt△ABC中,sin A=BCAB=37,设BC=3k,则AB=7k(k>0),在Rt△BCD中,∵∠BCD=90°,∴∠BDC=45°,∴∠CBD=∠BDC=45°,∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC=AB2-BC2=142-62=410,∴S△ABC =12AC·BC=12×410×6=1210.所以△ABC的面积是1210.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】解直角三角形与等腰三角形的综合已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC中,AB=AC,BC=2,∵周长为2+2,∴AB=AC=1.过A作AD⊥BC于点D,则BD=22,在Rt△ABD中,cos∠ABD=BDAB=22,∴∠ABD=45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】解直角三角形与圆的综合已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O于点C,连接AC交OB于点P.(1)求证:BP=BC;(2)若sin∠P AO=13,且PC=7,求⊙O的半径.解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA=∠OAC,再由∠AOB=90°,可得出所要求证的结论;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP和Rt△ACE中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC,∵BC是⊙O的切线,∴∠OCB=90°,∴∠OCA+∠BCA=90°.∵OA=OC,∴∠OCA=∠OAC,∴∠OAC+∠BCA=90°,∵∠BOA=90°,∴∠OAC+∠APO =90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠P AO=13,设OP=x,AP =3x,∴AO=22x.∵AO=OE,∴OE=22x,∴AE=42x.∵sin∠P AO=13,∴在Rt△ACE 中CEAE=13,∴ACAE=223,∴3x+742x=223,解得x=3,∴AO=22x=62,即⊙O的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.数学选择题解题技巧1、排除法。
《解直角三角形》教案一、素质教育目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学步骤(一)明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系a2+b2=c2(勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B=90°-42°6′=47°54′,∴a=c. cosB=28.74×0.7420≈213.3.∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.查表得A=78°51′;(2)∠B=90°-78°51′=11°9′注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习P.35中1、2.练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力.参考答案:1.(1)∠B=90°-∠A,a=c·sinA,b=c·cosA;(3)∠B=90°-∠A,a=b·tgA,说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.幻灯片出示图表,请学生完成四、布置作业教材P.46习题6.3A组3.五、课后记解直角三角形是前面一段时间学习四个三角函数的综合应用,因此要求学生对前面知识要十分熟悉,学生表现出对知识连贯性不太好。
解直角三角形教案作为一名教学工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么优秀的教案是什么样的呢?以下是小编整理的解直角三角形教案,欢迎阅读与收藏。
解直角三角形教案1一、教学目标(一)知识教学点巩固用三角函数有关知识解决问题,学会解决坡度问题。
(二)能力目标逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。
(三)德育目标培养学生用数学的意识,渗透理论联系实际的观点。
二、教学重点、难点和疑点1.重点:解决有关坡度的实际问题。
2.难点:理解坡度的有关术语。
3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。
三、教学过程1.创设情境,导入新课。
例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。
这时,教师应根据学生想学的心情,及时点拨。
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。
但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的`意义。
解直角三角形教案2教材与学情:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
义务教育教科书数学SHUXUE■■■■&下册®III I《解直角三角形》教学设计♦教材分析 ]解直角三角形是义务教育课程标准实验教科书(北师版)《数学》九年级下册第一章第四节内容,本章主要研究直角三角形的边角关系;本节要求知道解直角三角形的概念、理解直角三角形中五个元素的关系。
通过综合运用勾股定理,掌握解直角三角形,逐步形成分析问题、解决问题的能力。
渗透数形结合的数学思想,养成良好的学习习惯。
能够用计算器辅助解决含三角函数值计算的实际问题。
因此本节的重点是掌握利用直角三角形边角关系解直角三角形♦教学目标【知识与能力目标】1.知道解直角三角形的概念、理解直角三角形中五个元素的关系。
2.通过综合运用勾股定理,掌握解直角三角形,逐步形成分析问题、解决问题的能力。
3.渗透数形结合的数学思想,养成良好的学习习惯。
【过程与方法目标】1.利用解三角形的知识,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力。
2.发现实际问题中的边角关系,提高学生有条理地思考和表达的能力。
【情感态度价值观目标】1.积极参与数学活动,体会解决问题后的快乐。
2.形成实事求是的态度。
♦教学重难点【教学重点】常握利用直角三角形边角关系解直角三角形【教学难点】锐角三角比在解直角三角形中的灵活运用♦课前准备教师准备课件、多媒体;学生准备;练习本;♦教学过程一、创设情景引入新课:如图所示,一棵大树在一次强烈的地震屮倒下,树干断处离地面3米且树干与地而的夹角是30。
o大树在折断Z前髙多少米?由30°直角边等于斜边的一半就可得AB=6米。
分析树高是AB+AC=9米。
由勾股定理容易得出BC的长为3米。
当然对于特殊锐角的解题用几何定理比较简单,也可以用锐角三角函数来解此题。
二、知识回顾问题:1.在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2.直角三角形ABC中,ZC二90° , &、 b、q、ZA. ZB这五个元素间有哪些等量关系呢?讨论复习师白:RtAABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(PPT)⑴两锐角互余ZA+ZB=90° :⑵三边满足勾股定理a+b2=c2;(3)边与角关系sinA = cosB= , cosA=sinB=,tanA=cotB= , cotA=tanB= 。
24.2 直角三角形的性质教学目标:1、以直角三角形为载体,继续学习几何证明.2、掌握直角三角形的两个锐角互余。
3、通过图形的运动来比较一般三角形与直角三角形中线的性质。
4、在图形的运动中培养学生学习几何的兴趣。
难点与重点:1、直角三角形斜边上的中线等于斜边的一半性质定理的证明思想方法。
2、直角三角形斜边上的中线性质定理的应用。
教学过程:一、1、复习提问:在三角形ABC中,∠C=90°那么,△ABC为什么三角形?2、∠A+∠B=?通过几何画板的演示,在图形不断运动中∠A+∠B=90°3、三边之间有什么关系呢?4、学生归纳出:(1)在直角三角形中,两个锐角互余。
(2)直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理)。
二、观察:1、已知:△ABC以及AB边上的中线CD,2、任意三角形一边上的中线与这边之间有什么关系?3、让学生在图形的变化过程中观察到CD/AB的值不是一个定值,学生不难发现任意三角形一边中线与这边之间没有规律可循。
4、请同学们继续观察,我们今天所研究的直角三角形斜边上的中线与斜边的长度之间有什么系?、三角形中,如果遇到中线问题应如何添加辅助线。
(中线180°,得到90°这样就证明了△ABC≌△CEA。
在直角三角形中,斜边上的中线等于斜边的一半。
已知:在△AB C(鼓励学生采用多种方法解题,请学生上黑板演示证明过程。
五、巩固练习:(一)、观察两个直角在斜边的两侧:1、请学生观察图形,这个图形其实是两个斜边相等的直角三角形通过图形的运动使它们的斜边互相重合得到的。
2、在图形运动中那些量始终不变?那些量之间始终保持相等的关系?3、连接DC后,你还可以得到什么结论?通过操作演示证明学生的观点。
(二)、观察两个直角在斜边的同侧:把Rt△ABC沿着AB翻折得到现在的图形。
1、ED=EC?为什么?2、连接CD后,你还能得到什么结论?3、作CD的中点N,连接EN,线段EN与CD是怎样的位置关系?4、过点E作EN⊥DC,垂足为N,N为DC的中点吗?5、延长BD、AC两线交与一点,这样的图形与前面的图形的解题思路是一样的。
28.2 解直角三角形及其应用28. 解直角三角形01 教学目标1.掌握解直角三角形的根据.2.能由条件解直角三角形.02 预习反应阅读教材P72~73,自学“探究〞、“例1〞与“例2〞,完成以下内容.(1)在直角三角形中,由直角三角形中的元素,求出其余未知元素的过程叫做解直角三角形.(2)如图,在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么除直角外的五个元素之间有如下关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°; 边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b.(3)在Rt △ABC 中,∠C =90°,∠A 与斜边c ,用关系式 ∠A +∠B =90° 求出∠B ,用关系式sinA =ac 求出a.03 名讲坛类型1 两边,解直角三角形例1 (教材例1变式)根据以下条件解直角三角形:(1)在Rt △ABC 中,∠C =90°,BC =3,AB =32; (2)在Rt △ABC 中,∠C =90°,BC =6,AC =2 3. 【解答】 (1)在Rt △ABC 中,∵∠C =90°,BC =3,AB =32, ∴sinA =BC AB =22.∴∠A =45°.∴∠B =90°-∠A =45°. ∴AC =BC =3.(2)在Rt △ABC 中,∵∠C =90°,BC =6,AC =23, ∴tanA =BCAC =3,AB =BC 2+AC 2=4 3.∴∠A =60°. ∴∠B =90°-∠A =30°.【点拨】【跟踪训练1】 如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是45.类型2 一边和一锐角,解直角三角形例2 (教材例2变式)在△ABC 中,∠C =90°,AB =10,∠A =45°,解这个直角三角形. 【解答】 在Rt △ABC 中,∠C =90°,∠A =45°, ∴∠B =90°-∠A =45°. 又∵sinA =BCAB,∠A =45°,AB =10,∴BC =5 2.∴AC =BC =5 2.例3 (教材例2变式)在△ABC 中,∠C =90°,AC =10,∠A =30°,解这个直角三角形. 【解答】 ∵∠C =90°,∠A =30°, ∴∠B =90°-30°=60°. ∵cosA =AC AB ,∴AB =AC cosA =1032=2033. 又∵tanA =BCAC,∴BC =AC·tanA =10×tan30°=10×33=1033.【跟踪训练2】 如图,在△ABC 中,∠B =45°,cosC =35,AC =5a ,则△ABC 的面积用含a 的式子表示是14a 2.04 稳固训练1.如图,Rt △ABC 中,∠C =90°,AC =4,tanA =12,则BC 的长是(A)A.2B.8C.2 5D.4 52.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于(B)A.m·sin α米B.m·tan α米C.m·cos α米D.mtan α米3.如图,在Rt △ABC 中,斜边BC 上的高AD =3,cos B =45,则AC =154.4.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA =35,BE =4,则DE 的值是8.5.如图,在△ABC 中,AC =8,∠CAB =30°,∠CBA =45°,求AB 的长.解:过点C 作CD ⊥AB ,在Rt △ACD 中,CD =AC·sin ∠CAD =8×12=4,AD =AC·cos ∠CAD =8×cos 30°=8×32=4 3. 在Rt △BDC 中,DB =CD·tan ∠BCD =4×1=4, ∴AB =BD +DA =43+4.05 课堂小结本节学习的数学知识:解直角三角形.。
九年级数学解直角三角形教案
第一课时 解直角三角形
教学目标
使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互
余),边与边(勾股定理)、边与角关系解直角三角形。
教学过程
一、引入新课
如图所示,一棵大树在一次强烈的台风中于地面
10米处折断倒下,树顶落在离数根24米处。问大树在
折断之前高多少米?
显然,我们可以利用勾股定理求出折断倒下的部分
的长度为102+242=26 26+10=36所以,大树在折断之前的高为36米。
二、新课
1.解直角三角形的定义。
任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已
知有一个角是直角,我们把利用已知的元素求出末知元素的过程,叫做解直
角三角形。像上述的就是由两条直角边这两个元素,利用勾股定理求出斜边
的长度,我们还可以利用直角三角形的边角关系求出两个锐角,像这样的过
程,就是解直角三角形。
2.解直角三角形的所需的工具。
(1)两锐角互余∠A+∠B=90°
(2)三边满足勾股定理a2+b2=c2
(3)边与角关系sinA=cosB=ac ,cosA=sinB=bc ,tanA=cotB=ab ,cotA
=tanB=ba。
3.例题讲解。
例1.如图,东西两炮台A、B相距2000米,同时
发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°
的方向,炮台B测得敌舰C在它的正南方,试求敌舰与
两炮台的距离(精确到l米)。
分析:本题中,已知条件是什么?(AB=2000米,∠CAB=90°- ∠CAD
=50°),那么求AC的长是用“弦”还是用“切”呢?求BC的长呢?显然,
AC是直角三角形的斜边,应该用余弦函数,而求BC的长可以用正切函数,
也可以用余切函数。
讲解后让学生思考以下问题:
(1)在求出后,能否用勾股定理求得BC;
(2)在这题中,是否可用正弦函数求AC,是否可以用余切函数求得BC。
通过这道例题的分析和挖掘,使学生明确在求解直角三角形时可以根据
题目的具体条件选择不同的“工具”以达到目的。
4.从上面的两道题可以看出,若知道两条边利用勾股定理就可以求出第
三边,进而求出两个锐角,若知道一条边和一个锐角,可以。利用边角关系
求出其他的边与角。所以,解直角三角形无非以下两种情况:
(1)已知两条边,求其他边和角。
(2)已知一条边和一个锐角,求其他边角。
三、小结
本节课我们利用直角三角形的边与边、角与角、边与角的关系,由已知
元素求出未知元素,在做题目时,学生们应根据题目的具体条件,正确选择
上述的“工具”,求出题目中所要求的边与角。
四、作业
课本P95 T1 T2
第二课时 解直角三角形(二)
教学目标
使学生进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形
的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学
问题的能力。
教学过程
一、给出仰角、俯角的定义
在本章的开头,我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连
线)与水平线的夹角,那么把这个角称为什么角呢?
如右图,从下往上看,视线与水平线的夹角叫仰
角,从上往下看,视线与水平线的夹角叫做俯角。右
图中的∠1就是仰角, ∠2就是俯角。
二、例题讲解
例1.如图,为了测量电线杆的高度AB,在离电
线杆22.7米的C处,用1.20米的测角仪CD测得电线
杆顶端B的仰角a=22°,求电线杆AB的高度。
分析:因为AB=AE+BE,AE=CD=1.20米,所以只要求出BE的长
度,问题就得到解决,在△BDE中,已知DE=CA=22.7米,∠BDE=22°,
那么用哪个三角函数可解决这个问题呢?显然正切或余切都能解决这个问题。
例2.如图,A、B是两幢地平高度相等、隔岸相望的
建筑物,B楼不能到达,由于建筑物密集,在A楼的周围没
有开阔地带,为测量B楼的高度,只能充分利用A楼的空
间,A楼的各层都可到达且能看见B楼,现仅有测量工具为
皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的
夹角)。
(1)你设计一个测量B楼高度的方法,要求写出测量步骤和必需的测量数
据 (用字母表示),并画出测量图形。
(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式。
分析:如右图,由于楼的各层都能到达,所以A楼
的高度可以测量,我们不妨站在A楼的顶层测B楼的
顶端的仰角,再测B楼的底端的俯角,这样在Rt△
ABD中就可以求出BD的长度,因为AE=BD,而后
Rt
△ACE中求得CE的长度,这样CD的长度就可以求出.
请同学们想一想,是否还能用其他的方法测量出B楼的高度。
三、小结
本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些
问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转
化而来的数学问题选用适当的数学知识加以解决。
四、作业
课本P96 T1 T2
第三课时 解直角三角形(三)
教学目标
使学生知道测量中坡度、坡角的概念,掌握坡度与坡角的关系,能利用
解直角三角形的知识,解决与坡度有关的实际问题,进一步培养学生把实际
问题转化为数学问题的能力。
教学过程
一、引入新课
如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度
比较大?显然,斜坡A1Bl的倾斜程度比较大,说明∠A1>
∠A。从图形可以看出,B1C1A1C1>BCAC,即tanAl>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明
斜坡的倾斜程度。
二、新课
1.坡度的概念,坡度与坡角的关系。
如右图,这是一张水库拦水坝的横断面
的设计图,坡面的铅垂高度与水平宽度的比
叫做坡度(或坡比),记作i,即i=ACBC,坡度
通常用l:m的形式,例如上图中的1:2的形式。坡面与水平面的夹角叫做
坡角。从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡
度越大,坡角越大,坡面就越陡。
2.例题讲解。
例1.如图,一段路基的横断面是梯形,高为
4.2米,上底的宽是12.51米,路基的坡面与地面
的倾角分别是32°和28°,求路基下底的宽。(精确到 0.1米)
分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底
的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB
=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF
可以在直角三角形BFC中求得,问题得到解决。
例2.如图,一段河坝的断面为梯形ABCD,试根
据图中数据,求出坡角。和坝底宽AD。(i=CE:ED,单位
米,结果保留根号)
三、小结
会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡
角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把
梯形问题转化为直角三角形来解决。
四、作业
P98 练习