焦炉气制甲醇工艺
- 格式:docx
- 大小:98.75 KB
- 文档页数:10
年产50万吨焦炉气制甲醇一、概述甲醇是一种应用广泛的基础化工原料和优良的清洁燃料,在世界基础有机化工原料中,甲醇消耗仅次于乙烯,丙烯和苯。
主要用于生产甲醛、醋酸、甲基叔丁醚(MTBE),甲酸甲酯、氯甲烷、甲胺、硫酸二甲酯、丙烯酸甲酯和二甲醚等有机化工产品。
这些产品是农药、医药、纤维、树脂的原料。
甲醇本身还是一种新的洁净能源,它的延伸产品二甲醚也做为优良的洁净燃料被广泛使用。
随着石油产品的紧张,为适应环境保护的要求,国家实施以煤代油的新能源政策出台,甲醇做为燃料的应用前景更是前途无限。
目前甲醇做为燃料的途径有以下几个方面:(1)汽油掺烧甲醇:(2)甲醇燃料(3)甲醇裂解(4)甲醇燃料的间接应用——二甲醚燃料和MTBE的应用近年来甲醇在其它领域也有广阔的应用前景;甲醇燃料电池将商业化;甲醇在变压吸附制氢做裂解原料;甲醇制微生物蛋白(SCP)国外已工业化;甲醇制低碳烯烃(MTO)技术已有较大突破。
甲醇作为碳一化学的基本有机原料,不仅市场消费量很大,而且新途径、新领域、高经济潜力产品方面消费潜力也是很大的。
目前世界各国都在竟相开发以甲醇为基点,逐步向基本有机原料产品、能源产品及精细化工产品延伸的甲醇化产业。
二、市场分析①国内外市场情况国际市场情况:国外市场的产量大于消费量,因受天然气来源,价格影响,2005年世界甲醇生产能力约为3982.2万吨/年,市场需求量将达3190.4万吨,也基本保持供需平衡。
据最新统计2007-2010年世界以伊朗、卡塔尔、阿曼、澳大利亚、埃及、尼日利亚、沙特等天然气丰富地区国家在建的17个项目,甲醇总规模将达到2978万吨/年(大多在2008年前投产)。
国内市场:据石化协会统计,2007年我国共有甲醇生产企业177家,产能合计1639.4万吨/年,而同期我国甲醇表观消费量为1104.6万吨,2007年全国甲醇实际产量为1076.4万吨 ,平均开工率为65.7%.目前我国新建、拟建甲醇项目34个(不包括二甲醚、甲醇制烯烃企业自身配套的甲醇装置),预计到“十一五”末期,我国甲醇产能将达到2600---3060万吨/年,而同期甲醇需求量的增长则存在不确定性。
图片简介:一种用焦炉煤气制甲醇的生产方法,该方法使用的装置包括一套焦炉气精制装置、一套变压吸附提氢装置、一套变压吸附提甲烷装置、一套湿法脱碳装置、一套氢气和二氧化碳混合气压缩装置、一套甲醇合成和精馏装置。
其方法步骤:提取氢气、提取甲烷、提取甲烷后的尾气去焦炉和化产作燃料、尾气在焦炉燃烧后的燃烧气,经过湿法脱碳装置提取CO2,CO2与H2混和,经压缩机加压去甲醇合成与精馏装置生产甲醇。
该方法充分利用焦炉煤气中不同组分的特点,组建了焦炉气生产甲醇的新的生产流程,该流程科学、简捷、合理,不但满足焦炉和化产的热量需要,而且尾气的单位热值比原来用的焦炉煤气作燃料要高出30%,使焦炉的操作条件比现有技术更好。
技术要求1.一种用焦炉煤气制甲醇的方法,其特征在于,所述方法的生产过程使用的装置包括一套焦炉气精制装置、一套变压吸附提氢装置、一套变压吸附提甲烷装置、一套湿法脱碳装置、一套氢气和二氧化碳混合气压缩装置、一套甲醇合成和精馏装置;其方法步骤包括:a.焦炉所产的焦炉气,送入焦炉气精制装置经过精制后全部送入变压吸附提氢装置提取氢气;b.提氢后的尾气,经过变压吸附提甲烷装置,提取出10800Nm3/h的甲烷作为天然气销售;c.提取甲烷后的尾气去焦炉和化产作燃料;d.尾气在焦炉燃烧后的燃烧气,经过湿法脱碳装置提取CO2,CO2与H2按氢碳比大于3:1的比例混和,混合后经压缩机加压到5-8 MPa(g)后去甲醇合成与精馏装置生产甲醇。
2.根据权利要求1所述的用焦炉煤气制甲醇的方法,其特征在于,将焦化及化产所产的全部焦炉气经加压至0.8-2.5Mpa(g)后全部送去精制装置进行精制。
3.根据权利要求1所述的用焦炉煤气制甲醇的生产方法,其特征在于,所述的焦炉煤气的组分为:H2 58%;CO 6.2%;CO2 2.2%;CH4 26%;CnHm2.5%;N24.5%;H2S 50mg/Nm3;有机硫400 mg/Nm3。
4.根据权利要求1所述的用焦炉煤气制甲醇的方法,其特征在于,所述的焦炉及化产所需燃料由后工序的尾气提供。
焦炉煤气制甲醇的技术分析进行甲醇制作是焦炉煤气应用的重要方式之一。
本文在阐述焦炉煤气制甲醇工艺流程的基础上,对其具体的工艺内容进行分析,并针对性的指出技术应用把控要点。
以期有利于焦炉煤气制甲醇技术的提升,推动企业经济效益和社会环保效益的获得。
标签:焦炉煤气;制甲醇;工艺应用;技术要点随着工业化建设的不断深入,我国的焦炭消耗了持续增加。
焦炭产业的发展虽然带来了较为明显的经济效益,然而其在能源消耗和环境保护方面缺陷明显。
新经济形态下,清洁化绿色生产的理念要求炼焦产业在进行节能生产的同时,必须合理控制焦炭副产物对环境的污染。
基于此,利用焦炉煤气制备甲醇得以迅速发展,本文由此展开分析。
1 焦炉煤气制备甲醇的工艺流程焦炉煤气产生于工业制焦的实践过程,其包含了H2、CO和CO2等基本成分,同时甲烷、焦油、苯、萘、氨和硫等都是其重要的结构组成。
在甲醇制备过程中,人们会将焦炉煤气输送进储气罐中,然后对其进行压缩和净化,进而确保焦油、苯、萘、氨和硫这些对制备甲醇有害的物质得以有效清除。
一旦前期净化完成,制备人员应在剩余气体中加入催化剂,使得以甲烷和烃类为代表的气体逐步转化为H2和CO。
同时在获得较大比例容量H2和CO的基础上,对其进行碳元素的加入和比例调整,并通过气体压缩的方式使其形成粗制甲醇。
最后通过精馏技术的应用是进行粗制甲醇的提纯,实现精甲醇的制备获得。
具体流程如下图1。
2 焦炉煤气制备甲醇工艺的具体应用2.1 焦炉煤气净化脱除硫化物是焦炉煤气制备甲醇的重要工艺,其也是净化技术应用的难点所在[1]。
甲醇制备过程中,进行焦炉煤气总的硫化物脱除至关重要。
一般情况下,在加湿法去除大量H2S之后,对剩余气体中的有机硫进行加氢处理,确保其转化为H2S之后,在通过固体脱硫剂进行去除。
在焦炉煤气净化之前,其剩余气体中硫化物的含量会急剧减少,使其保持在0.1×10-6之下,从而满足工业生产的实际需要。
2.2 净化气体转化焦炉煤气制备甲醇中的净化气体转化主要指甲烷的转换。
探讨焦炉气制甲醇非催化工艺摘要:本文对焦炉气制甲醇非催化工艺的流程进行了简要介绍,而后以焦炉气技术特征作为切入点,经由蒸汽催化转化、纯氧加压非催化部分氧化转化工艺、非催化部分氧化转化等工艺对比了非催化转化工艺与催化转化工艺在各方面的差异,并探讨了焦炉气制甲醇非催化工艺所具有的优势,旨在为同行提供参考与借鉴价值。
关键词:焦炉气甲醇非催化工艺转化技术前言焦炉气,又可称为焦炉煤气,指炼焦用煤经过炼焦炉的高温干馏后所产出的一种可燃性气体[1]。
作为目前最为先进的深加工开发技术之一,焦炉气制甲醇不但能获得较好的经济效益,同时还能提高资源利用率,降低污染排放,减少对周边生态环境造成的影响[2]。
通过引入甲醇工艺,既实现了甲醇工业的可持续化发展,也为企业转型为化学工业生产打下良好的基础,给日益萎缩的焦化工业开辟了一条开阔的前景道路。
接下来,即就焦炉气制甲醇非催化工艺的优势展开探讨。
1.工艺流程概述加热炉首先会对压缩工段的焦炉气进行预热,待氧气在氧气加热器内加热完成后,二者经由转化炉喷嘴混合为一体,而后于转化炉内发生不完全燃烧反应,并释放出巨大热量,在甲烷发生转化反应的同时,气体温度也将在此期间急剧升高。
转化完成后,甲烷含量已低于0.4%的转化气将经由转化炉出口进入中压废热锅炉,并产生4.0兆帕斯卡的蒸汽。
转化气温度降低后,即进入锅炉给水加热器或蒸汽过热器,对甲醇合成过程产生的2.5兆帕斯卡饱和蒸汽与锅炉给水进行过热,再由脱盐水加热器对转化气实行降温操作,而后转化气进入水洗塔,在经进一步降温措施后送至聚乙二醇二甲醚脱硫工段。
此时,水洗塔将降温过程中分离至塔底的冷凝液输送至污水处理系统。
脱盐水站采取脱盐措施,在经脱盐水加热器实行加热处理后再送至锅炉房内。
氧气加热器将该工段4.0兆帕斯卡的饱和蒸汽加热到相当温度。
其中,由中压废热锅炉产生的4.0兆帕斯卡饱和蒸汽将有一部分为氧气加热器加热所使用,而另一部分则会经由加热炉(燃料主要为甲醇精馏不凝气、甲醇合成非渗透气以及甲醇合成闪蒸气)将温度加热至450℃后输送至管网。
焦炉气制甲醇与天然气的比较探讨摘要:焦炉气制甲烷与天然气两种工艺技术具有一定的对比性,各有各自的优势与特点,本文将从二者的工艺流程、能量利用率、消耗定额、产品方案以及项目投资等方面加以对比分析,从而体现出焦炉气制天然气的独特优势。
关键词:焦炉气天然气对比甲醇由于世界石油价格不断上涨,对我国一些对石油资源依赖性较大的产业带来较大的困难,严重影响到社会经济的发展和进步,在此形势下,必须要对当前的能源结构加以调整,不断开发相应的可替代性能源,降低对石油资源的依赖,才能保障经济的健康、快速运行。
一、工艺流程对比(一)焦炉气制甲醇工艺流程焦炉气制甲醇工艺流程图:焦炉气从焦化厂输送到气柜之后,使用压缩机将其压力提升至 2.5Mpa,然后通过一级加氢转化催化剂、氧化铁脱硫剂、预脱硫剂、二级加氢转化催化剂、氧化锌脱硫剂等对其加以作用,使其内部无机硫和有机硫降至0.1PPM以下。
采用催化部分氧化转化工艺技术,对其中的甲烷加以转化,将其制成甲醇的主要其他成分H2和CO,再将其输送到合成系统内,对其进行提压,使其压力控制到5.5Mpa左右。
在甲醇合成塔内添加氢,使之发生反应得到粗甲醇,再通过三塔精馏转化为精甲醇。
配套的空分系统需提供转化反应所需的氧气,焦炉气用于生产甲醇过程中氢气过剩。
(二)焦炉气制天然气工艺流程使用粗脱硫剂对原料焦炉气加以吸附,吸附环境控制为40℃以下、24KPa,其中的大多无机硫会在粗脱硫塔中被消除掉。
再使用预处理吸附剂对其加以选择性吸附,将其中的萘、苯等杂质脱除掉,采用中温水解催化剂,转化环境控制为175℃和2.4Mpa,将预处理后焦炉气中含有的有机硫转化为无机硫。
用精脱硫剂对酸性气体进行选择性吸附,吸附环境为40℃以下、2.3Mpa,使酸性气体中含有的汞和硫在脱汞塔与脱硫塔中被清除掉,并施以等压干燥的方式,在吸附净化塔内将焦炉气中干燥后的杂质脱除掉。
检查焦炉气净化后是否合格,符合标准后再将其送至PRISM?膜分离器中环境条件为40℃、2.0Mpa,在膜两侧气体组组分分压差的作用下,焦炉气中的氢气会部分渗入纤维内部,并出现富氢物质,压力为0.2Mpa,对富甲烷气加以精馏和液化,从而制成符合标准的天然气产品。
焦炉气制甲醇工艺介绍作者:陈晨曦来源:《科技资讯》 2011年第25期陈晨曦(新疆中泰化学(集团)股份有限公司乌鲁木齐 830009)摘要:焦炉煤气制甲醇是资源合理利用的变废为宝项目,具有广阔的前景,本文重点分析了焦炉气制甲醇工艺中的关键技术。
关键词:焦炉煤气净化脱硫催化转化催化剂氢碳比中图分类号:TQ53 文献标识码:A 文章编号:1672-3791(2011)09(a)-0119-011 焦炉煤气1.1 焦炉煤气的组成与杂质含量一般焦炉煤气的主要成份为H2、CO、CH4、CO2等,各成份所占比例如表1所示。
同时也含有一些杂质如表2所示。
1.2 焦炉煤气的利用焦炉煤气是极好的气体燃料,同时又是宝贵的化工原料气,焦炉煤气被净化后可以作为城市燃气来使用,从其成份上来看也是制造甲醇、合成氨、提取氢气的很好的原料。
2 焦炉煤气制甲醇的基本工艺流程如图1所示,为焦炉煤气制造甲醇最基本的工艺流程,净化与转化在整个焦炉煤气制甲醇流程中的关键技术。
3 焦炉煤气的净化工艺焦炉气的净化总的来说有三大步骤:(1)焦炉气经过捕捉、洗涤、脱酸蒸氨等化工过程,将有害的物质脱除到甲醇合成催化剂所要求的精度,进入焦炉气柜;(2)脱硫,分无机硫的脱除和有机硫的脱除,具体的方法根据系统选择工艺方案而改变;(3)焦炉煤气的深度净化,在精脱硫后再深度脱除氯离子和羰基金属,防止其对甲醇合成催化剂的毒害。
脱硫工艺技术方案:(1)几乎全部的无机硫和极少部分的有机硫能够在焦化厂化产湿法脱硫时脱掉;(2)绝大部分的有机硫的脱除采用的是干法脱除,具体的有分为4种:吸收法、水解法、热解法和加氢转化法,其中水解法和加氢转化法在国内外化工工艺上用的最为普遍。
4 焦炉煤气的烷烃转化技术目前具体的方法有:蒸汽转化工艺、纯氧非催化部分氧化转化工艺、纯氧催化部分氧化转化工艺。
4.1 蒸汽转化工艺其原理类似于天然气制甲醇两段转化中的一段炉转化机理,不过考虑到焦炉煤气的甲烷含量只有天然气的1/4,所以在焦炉煤气制造甲烷的实际工艺选择中,该方法一般不被采用。
科技论坛1概述甲醇俗称木醇、木精,英文名为methanol ,分子式CH 3OH 。
是一种无色、透明、易燃、有毒、易挥发的液体,略带酒精味。
甲醇是重要有机化工原料和优质燃料,广泛应用于精细化工,塑料,医药,林产品加工等领域。
甲醇主要用于生产甲醛,消耗量要占到甲醇总产量的一半,甲醛则是生产各种合成树脂不可少的原料。
甲醇还是一种很有前景的清洁能源,甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一;另外燃料级甲醇用于供热和发电,也可达到环保要求。
2工艺背景近年来,随着钢铁工业对焦炭的巨大需求而高速发展起来的炼焦产业,在焦炭产能无序扩张、产量大幅度增长的同时,副产的大量焦炉煤气导致了焦炭产区的环境急剧恶化,不少单一炼焦的独立焦化企业“只焦不化”,对大量炼焦剩余的焦炉煤气采取点天灯方式燃烧排空,既严重污染环境,又造成资源浪费。
作为贫油、缺气的能源需求大国,充分、合理利用大量点天灯外排的焦炉煤气以及钢铁企业外排燃气,对建设资源节源型社会,实现经济可持续发展具有重要意义。
黑龙江建龙化工以焦化装置副产的焦炉气中提取氢气与炼钢装置副产的转炉气中的一氧化碳和二氧化碳为原料,生产最终产品为精甲醇。
焦炉气和转炉气中均含有CO 、CO 2、H 2等组份,两种气体均可用做生产甲醇的原料,拥有较大的焦炭生产装置和炼钢装置,从这一实际情况出发,将焦炭和炼钢生产与碳一化工紧密结合起来,把放散的焦炉气和转炉气加工成为用途广泛的甲醇产品,将资源优势转化为经济优势行之有效的途径。
同时亦能为我国实现焦炉气和转炉气生产甲醇体系能源化工产业新方向做出示范。
焦炉气主要含CO 、CO 2、H 2、CH 4等组份,焦炉气组成为表1。
转炉气主要含CO 、CO 2等组份,转炉气组成为表2。
2.1焦炉气气柜系统。
本装置采用10000m 3湿式气柜1台,正常气柜容积可满足0.5h 生产用气。
工作压力为3kPa ,工作温度约35℃。
目录绪论:第一章工艺流程综述一、焦炉气生产流程二、甲醇生产工艺流程1、空分工艺流程2、精脱硫工艺流程3、转化工艺流程4、合成工艺流程5、甲醇精馏工艺流程第二章基本理论及操作原理1、空分部分2、精脱硫部分3、转化部分4、合成部分5、甲醇精馏部分6、离心式压缩机7、往复式压缩机8、泵类第三章岗位操作法(依据建滔甲醇工艺流程)1、空分岗位2、净化岗位3、合成岗位4、精馏岗位5、空气压缩机6、氧气压缩机7、焦炉气压缩机8、氮气压缩机9、合成气压缩机用焦炉气作原料生产甲醇操作培训教材绪论:焦炭生产过程中,必然伴生出大量荒煤气,荒煤气的主要成分为:H2、CH4、CnHm、CO、CO2,以及少量的N2、O2.焦油、苯,萘、硫化物……。
过去,荒煤气经脱焦油、苯、萘,和粗脱硫后,一部分作为炼焦燃料;其余大部分或做城市燃气,或用做发电厂燃料。
有些地方干脆白白放空燃烧掉了,给周围环境造成严重污染。
我国最重要的煤炭及炼焦生产省份——山西省,目前就处在处处“狼烟”,城乡环境不堪重负的状况。
为使宝贵的煤炭资源得到充分合理的利用,改变我国中西部地区的落后面貌,扭转炼焦企业污染环境的局面,变废为宝,利用焦炉气做化工原料是最佳选择。
根据焦炉煤气的成分,用焦炉煤气生产甲醇、合成氨,应该是成熟的工艺。
他们与用煤、油气,用天然气转化生产甲醇、合成氨,在气体成分比例上有差别,但基本组成上并无差异。
由化工部的二设计院设计,建滔(河北)焦化厂使用的百万吨、/年甲醇装置已为焦炉气综合利用探索出了成功经验。
必将在全国各地兴建起一大批更为先进的企业,结出更加丰硕的成果。
为适应迅速发展的焦炉气生产甲醇操作需要,培养系统综合性的人才,我们把工艺基本原理知识和操作经验教训相结合,汇编成下面的培训教材,并期待在今后的生产实践中不断补充完善。
第一章工艺流程综述一、焦炉气生产流程焦炉气生产流程是指焦炉气的生产、收集、再经过气液分离、洗涤,电捕除焦油,脱硫,除氨,洗脱笨等工序生产出合格焦炉气的工艺过程。
焦炉煤气制甲醇工艺的概述摘要:本文介绍了利用焦炉副产品——焦炉煤气生产15万吨/年甲醇工艺及特点,并对此工艺进行了评价,提出了建议。
关键词:焦炉煤气;纯氧催化;制甲醇在未投建焦炉煤气制甲醇之前河北华丰能源科技发展有限公司焦炭的年综合生产能力已达到336万吨,此外还有3MW、6MW、2×15MW中温中压发电机组、30MW高温高压发电机组发电厂各一座。
为了抓住市场机遇,增加经济效益,充分利用丰富的焦炉煤气,河北华丰煤化电力有限公司总投资38475万元实施年产15万吨焦炉气制甲醇工程项目,以焦炉煤气为原料生产甲醇。
作一概述:1、生产规模和工艺路线本工程是利用每小时产35000标立米的焦炉煤气生产甲醇设计的,按年作业时间8000小时算,可年产甲醇15万吨,产品的质量指标达到GB338---92标准。
我公司生产的焦炉气甲烷含量达24%~28%,根据煤气组成采用纯氧催化部分转化工艺将甲烷及少量多碳烃转化为合成甲醇的有用成分一CO和H,以满足生产甲醇的基本要求。
工艺流程示意图2、工艺流程概述2.1预处理工序从焦化装置送来的焦炉气中还含有部分焦油、萘、粉尘等易凝或易结晶的物质,在常温常压下,这些物质也许不会凝结或结晶,但经加压后,由于其分压上升,造成其中部分物质凝结为液滴或固体颗粒,这些物质如不除去,将对后工序造成危害。
本工艺采用对焦炉气中焦油和萘具有极强吸附能力的焦炭颗粒做吸附剂,吸附焦油和萘后的焦炭颗粒进行相关处理。
该工艺的特点是:吸附剂廉价易得、吸附选择性好、吸附容量大、对焦油和萘的脱除率高(脱油率≥90%,脱萘率≥80%)且吸附条件温和(常温常压下即可实现)。
2.2气柜工序焦炉气的产生量是波动的,而甲醇装置的生产用气要求相对稳定,因此,在焦炉气供应系统设计中必须采取有效的稳压措施。
本装置采用外导架直升式湿式气柜,对原料焦炉气起着稳定供气的缓冲作用,可以有效地协调气源与后续工序用气之间的动态平衡。
甲醇合成三种工艺比较一、工艺比较三种工艺中煤制甲醇投资最大,焦炉煤气比天然气制甲醇要多煤气预处理工序,10万吨甲醇项目焦炉煤气投资要大2000万左右。
煤制甲醇工艺中,粗煤气的制备工艺选择非常重要是决定整个项目成本消耗的关键;焦炉煤气和天然气制甲醇工艺中合成气的制备也就是转化工序工艺选择是关键,直接决定合成气的组成及原料气的有效利用。
当然三套工艺中共同都有的催化合成也是一个重点。
二、成本分析1、煤制甲醇成本根据2007年1-6月份全国部分煤制甲醇企业数据统计,生产1吨甲醇需要消耗1.4-1.55吨标煤。
2、天然气与焦炉煤气制甲醇成本比较天然气制甲醇是目前国内外应用装置最多的甲醇合成方式,但我国考虑到能源的有效利用,国家发改委于2007年8月30日正式颁布实施《天然气利用政策》,该政策明确规定,禁止以天然气为原料生产甲醇,要确保国家批准建设的化肥项目用气的长期稳定供应。
而推广焦炉煤气制甲醇项目,可以有效利用现有资源节能减排。
但焦炉煤气制甲醇要与现有的天然气制甲醇企业竞争,还要清楚各自的成本消耗情况。
(附:天然气及焦炉煤气制甲醇消耗定额及单位成本表)从成本表中可以看出,焦炉煤气和天然气制甲醇的主要成本均为原料气的消耗。
因此,在天然气价格为1.2元时,天然气与焦炉煤气制甲醇成本相当,如果天然气价格提高,焦炉煤气制甲醇不仅在政策、环保上,而且在成本上也会有相当的优势。
三、原料成分的影响理想的甲醇合成气组成为:合成气中(H2-CO2)/(CO+CO2)=2.05~2.1,CO2含量3~5%,惰性气体含量应尽量低。
表二:三种工艺原料气组成比较煤的影响:煤的热值直接影响到甲醇生产的消耗,全国大多数煤制甲醇企业吨甲醇消耗1.45吨标准煤。
根据宜宾提供的数据单耗煤2.7吨,哈气化有两套共14万吨Lurgi炉固定层煤制甲醇装置,由于煤灰分过高,单耗煤在3.4吨煤。
甲醇合成三种工艺比较一、工艺比较三种工艺中煤制甲醇投资最大,焦炉煤气比天然气制甲醇要多煤气预处理工序,10万吨甲醇项目焦炉煤气投资要大2000万左右。
煤制甲醇工艺中,粗煤气的制备工艺选择非常重要是决定整个项目成本消耗的关键;焦炉煤气和天然气制甲醇工艺中合成气的制备也就是转化工序工艺选择是关键,直接决定合成气的组成及原料气的有效利用。
当然三套工艺中共同都有的催化合成也是一个重点。
二、成本分析1、煤制甲醇成本根据2007年1-6月份全国部分煤制甲醇企业数据统计,生产1吨甲醇需要消耗1.4-1.55吨标煤。
2、天然气与焦炉煤气制甲醇成本比较天然气制甲醇是目前国内外应用装置最多的甲醇合成方式,但我国考虑到能源的有效利用,国家发改委于2007年8月30日正式颁布实施《天然气利用政策》,该政策明确规定,禁止以天然气为原料生产甲醇,要确保国家批准建设的化肥项目用气的长期稳定供应。
而推广焦炉煤气制甲醇项目,可以有效利用现有资源节能减排。
但焦炉煤气制甲醇要与现有的天然气制甲醇企业竞争,还要清楚各自的成本消耗情况。
(附:天然气及焦炉煤气制甲醇消耗定额及单位成本表)从成本表中可以看出,焦炉煤气和天然气制甲醇的主要成本均为原料气的消耗。
因此,在天然气价格为1.2元时,天然气与焦炉煤气制甲醇成本相当,如果天然气价格提高,焦炉煤气制甲醇不仅在政策、环保上,而且在成本上也会有相当的优势。
三、原料成分的影响理想的甲醇合成气组成为:合成气中(H2-CO2)/(CO+CO2)=2.05~2.1,CO2含量3~5%,惰性气体含量应尽量低。
表二:三种工艺原料气组成比较煤的影响:煤的热值直接影响到甲醇生产的消耗,全国大多数煤制甲醇企业吨甲醇消耗1.45吨标准煤。
根据宜宾提供的数据单耗煤2.7吨,哈气化有两套共14万吨Lurgi炉固定层煤制甲醇装置,由于煤灰分过高,单耗煤在3.4吨煤。
焦炉气制甲醇工艺集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。
第1章焦炉气成分分析1.1典型焦炉气的组成焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。
焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。
1.2焦炉气的回收利用焦炉气是良好的合成氨、合成甲醇及制氢的原料。
根据焦炉气组成特点,除H2、CO、CO2为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。
如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。
又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。
另一部分为对甲醇合成无用的物质(对甲醇合成而言为惰性组分),如CH4、N2等。
惰性气体含量过高,不仅对甲醇合成无益,而且会增加合成气体的功耗,从而降低有效成分的利用率。
第2章焦炉气的精制2.1硫的脱除及加氢净化焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害的物质脱除到甲醇合成催化剂所要求的精度。
这是因为甲醇合成催化剂对硫化物的要求要高于转化催化剂。
甲醇合成催化剂要求总硫<0.1×10-6,转化催化剂要求总硫<0.×10-6。
第二就是要减少惰性组分的含量。
脱除“毒物”的方法,根据系统选择工艺方案的不同而有所差别。
而降低惰性气体的组分含量主要是采用将烃类部分氧化催化,同时达到降低合成气中惰性组分的转化的方法,使其转化为甲醇合成有用的CO和H2目的。
2.1.1无机硫的脱除焦炉气中硫质量浓度高达6g/m3,氰化物质量浓度约为1.5g/m3。
在焦炉气净化工艺中设有脱硫、脱氰、蒸苯、焦油电捕捉等一系列净化装置,除为了减轻硫化氢和氰化物对后续装置的腐蚀,另一方面是减轻焦炉气作燃料气时对大气的污染,或作化工原料时,对催化剂的毒害。
煤气净化装置是将焦炉气经过捕捉、冷却、分离、洗涤等多种化工操作,脱除焦炉气中的焦油、萘、硫化氢、氰化氢、氨、苯等物质,以满足后续装置对气体质量的要求,并回收焦油、硫、氨、苯等。
本系统采用NHD湿法脱硫后,焦炉气中的HS质量浓度在15mg/m3左右,同时可脱2除焦炉气中部分有机硫。
但有机硫含量仍然很高,达95mg/m3左右。
如不经过精脱硫直接送入下工段,将使转化系统催化剂很快因硫中毒而失活,所以必须采用精脱硫工艺对焦炉气进行处理。
2.1.2有机硫的脱除(精脱硫)根据对国内现有焦炉气净化技术的分析和比较,考虑到COS低温水解工艺路线存在的缺陷,对焦炉气的精脱硫采用高温加氢转化技术路线。
这是因为焦炉气中含有的硫化物形态较为复杂,如:硫醇、硫醚、噻酚等硫化物在低温水解环境下很难脱除。
本系统采用铁-钼加氢脱硫转化剂,在高温环境下,将气体中的有机硫转化,生成易于脱除的硫化氢,然后再采用固体铁-锰脱硫剂吸收转化后气体中的硫化氢。
这样可使有机硫加氢转化完全,净化度大为提高,而且配套干法脱硫剂的硫容也高,并且可将不饱和烯烃进行加氢饱和。
氧气加氢燃烧,达到对毒物的脱除,满足转化甲醇合成气对气体“毒物”的净化要求。
本工艺克服了COS低温水解催化剂对氧敏感的弱点,以及二氧化碳含量影响有机硫水解的缺陷,解决了高浓度CO2影响水解反应进行,以及无法脱除复杂硫化物的难题。
现有焦炉气净化工艺的有机硫的加氢转化,一般采用铁-钼加氢催化剂,在350℃-430℃下使有机硫加氢转化为硫化氢,固体脱硫剂使用便宜的但硫容低的铁-锰脱硫剂,最后使用价格较贵但硫容较高的氧化锌把关。
2.1.3关键技术高浓度CO、CO2的焦炉气加氢净化时,遇到的问题:(1)如何避免CO、CO2在加氢催化剂上产生甲烷化反应。
(2)如何避免CO歧化析碳和甲烷的分解析碳。
(3)如何防止铁钼催化剂床层产生的温升。
2.1.4解决方法在加氢过程的主要反应中,含有烯烃、有机硫化物及氧的焦炉气在催化剂上进行的主要反应有:2H2+O2=2H2O+Q (1)C 2H2+2H2→C2H6(2)C 3H6+H2→C3H8(3)COS+H2→CO+H2S (4)COS+H2O→CO2+H2S (5)RSH(硫醇)+H2→RH+H2S (6)R 1SR2(硫醚)+2H2→R1H+R2H+H2S (7)CS2+4H2→2H2S+CH4+Q (8)C 4H4S(噻酚)+4H2→C4H10+H2S (9)可能出现的副反应有:2CO→C+CO2+Q (10)CO+3H2→CH4+H2O (11)CH4→C+2H2+Q (12)反应(1)、(8)、(10)为强放热反应,可能会引起催化剂床层“飞温”。
反应(10)所出现的歧化积碳反应产生的碳会堵塞催化剂孔道,导致催化剂活性位减少,因此应设法避免上述反应。
另外,焦炉气体中的油类(由于焦炉气压缩机气缸采用少油润滑,可能在焦炉气中带有少量的润滑油)、苯和焦油在加氢转化器内,经加氢裂解、饱和,避免了这些微量物质对后续工段的不利影响。
我们在工艺设置上,采用严格的350℃控制,设有冷激副线,及时调整加氢转化器床层温度。
通过监测床层压差变化,及时调整床层温度以及分析槽内积碳程度,达到抑制析碳的目的。
2.2烃类的部分氧化催化转化烃类的转化是将焦炉气中的甲烷转化成合成甲醇所用的有效气体CO和H2。
为使甲醇合成气的氢碳比尽量靠近甲醇合成所需要的最佳氢碳比,本装置焦炉气中烃类的转化选用部分氧化(纯氧+蒸汽)催化转化。
2.2.1部分氧化催化转化原理焦炉气部分氧化催化转化法,是将焦炉气中的烃类(甲烷、乙烷等)进行部分氧化和蒸汽转化反应,在转化炉中首先发生H2、CH4与O2的部分氧化燃烧反应,然后气体进入催化剂层进行甲烷、乙烷等与蒸汽的转化反应,所以这个方法也称为自热转化法。
生产原理可以简单解释为甲烷、蒸汽、氧混合物的复杂的相互作用:第一阶段为部分氧化反应,主要是氢气与氧接触发生燃烧氧化反应,生成H2O。
该反应是剧烈的放热反应:2H2+O2=2H2O+Q (13)在这个阶段,焦炉气体中微量的氧与配入的氧完全反应,反应后的气体中氧体积分数仅为0.05%,不会对转化催化剂活性造成影响。
第二阶段为水蒸气和二氧化碳氧化性气体在催化剂的作用下,与CH4进行蒸汽转化反应,该反应是吸热反应:CH4+H2O→CO+3H2-Q (14)CH4+CO2→2CO+2H2-Q (15)上述两阶段的反应可合并成一个总反应式:2CH4+CO2+O2→3CO+3H2+H2O (16)由于第二个阶段反应是吸热反应,当转化温度越高时,甲烷转化反应就越完全,反应后气体中的残余甲烷就越低。
甲烷部分氧化通常加入一定量的蒸汽,目的是避免焦炉气在受热后发生析碳的反应,使甲烷进行蒸汽转化反应,在转化反应的同时,也起到抑制炭黑的生成。
转化反应在镍催化剂作用下,反应速度加快,反应温度降低,反应平衡温距减小到1℃-5℃,在960℃残余CH4<0.4%。
转化后的气体成分见表2.1。
表2.1转化后的气体成分由表2.1可见,焦炉气催化纯氧转化制得甲醇合成气中虽然氢气过剩,但其他组分比例较好,完全能够满足甲醇合成需要。
2.2.2工艺流程焦炉气中烃类部分氧化催化转化工艺流程示于图2.1。
图2.1焦炉气部分氧化催化转化工艺流程示意图2.2.3过程特点转化催化剂的主要活性组分为Ni,对硫化物非常敏感,因此,焦炉气进入转化炉之前,必须将其中大量的硫化物脱除到转化催化剂和甲醇合成催化剂对硫精度的要求。
焦炉气和氧气在进入转化炉之前,与一定比例的蒸汽混合,为防止水蒸气冷凝,焦炉气和氧气需在加热炉中加热,一方面防止蒸汽冷凝,另一方面加热后的焦炉混合气与氧气在进入转化炉后,能迅速发生燃烧反应。
为防止液状或固体颗粒进入高速运转的离心机(合成气压缩机),损坏转子,本装置在焦炉气压缩前,对焦炉气进行洗涤,利用焦炭过滤,采用4台往复活塞式压缩机,提高气体压力至脱硫系统所需压力2.55MPa。
焦炉气中的硫形态比较复杂,转化前采取一系列脱硫,直至总硫<0.1×10-6。
实践证明,转化前未脱除的硫主要是噻吩,经过铁钼加氢转化,在高温环境下,已经全部转化为易于脱除的H2S和C4H10,此时将转化气中总硫脱除到所需精度很容易。
甲醇系统驰放气主要用作转化加热炉燃料,剩余的返回燃料气管网,顶替部分炼焦用燃料焦炉气,把焦炉气送回甲醇生产系统进行脱硫转化,压缩合成。
本装置设置大型加热炉,除加热转化系统物料外,还将转化副产6.4MPa、282℃次高压饱和蒸汽,加热至480℃。
经降温降压至3.82MPa、450℃的过热蒸汽,作为空压和合成气压缩汽轮机透平动力蒸汽。
全系统蒸汽完全自给。
系统副产蒸汽压力等级较多,能够适应不同需要。
本装置主要副产6.4MPa饱和蒸汽(加热后减压3.82MPa,450℃过热蒸汽)。
1.2MPa过热蒸汽由高压汽包直接降压获得,并入1.2MPa管网,与来自甲醇合成的1.2MPa过热蒸汽作为甲醇精馏和溶液再生的热源。
0.3MPa低压蒸汽主要作除氧热源和厂区冬季采暖。
冷凝液的回收利用。
全系统冷凝液可回收利用,增设一气体饱和塔,用系统冷凝液通过加热炉加热,进行饱和增湿。
既可减少系统蒸汽用量,又合理利用了冷凝液,省略了工艺冷凝液的排放和处理,消除了环境的污染因素,这是一项节能环保的技术。
三废治理及环境保护与实际效果。
本装置在设计中严格执行国家有关标准、地方规定,具有完善的“三废”及噪声治理措施。
(1)废气治理在开停车及事故工况下,转化工段和脱硫工段排放的工艺废气(焦炉气和合成气)送本工程火炬系统焚烧后排放。
甲醇合成系统的驰放气和膨胀气,甲醇精馏预塔不凝气作为加热炉燃料全部消耗,不排放到空气中。
浓度达标NHD脱硫系统产生的含硫化氢废气,送入Cluas硫回收装置,尾气中SO2排放。
(2)废水治理甲醇装置的废水量不大,甲醇精馏废水采用汽提预处理回收甲醇,而后送污水处理站进行生化处理。
(3)废渣治理各类废催化剂分类送催化剂制造厂回收,不能回收的并无毒害作用的(如:废锰矿石)用于铺路或填坑,不存在废固堆放现象。