连续系统最优控制
- 格式:pdf
- 大小:347.73 KB
- 文档页数:60
最优控制公式
最优控制是指在给定系统模型和性能指标的情况下,通过优化算法寻找系统输入的最优策略。
最优控制的数学描述可以使用最优控制公式来表示。
在最优控制中,通常使用动态系统的状态变量来描述系统的演化,并通过控制输入来影响系统的行为。
最优控制公式可以分为两类:动态规划和最优控制问题。
1.动态规划公式:动态规划是一种通过将问题划分为连续的子问题来求解最优控制策略的方法。
基于动态规划的最优控制公式为贝尔曼方程,它描述了最优值函数的递归关系。
贝尔曼方程通常写作:
$$V(x)=\min_u[g(x,u)+\int_{t_0}^{t_1}L(x,u)dt+V'(x )f(x,u)]$$
其中,$V(x)$是最优值函数,$x$是系统状态,$u$是控制输入,$g(x,u)$是即时收益函数,$L(x,u)$是运行损失函数,$f(x,u)$是系统动态的微分方程。
动态规划方法基于最优子结构的原理,通过递归地求解子问题来求得全局最优解。
2.最优控制问题的公式:最优控制问题可以用最小化一个性能指标的函数来描述,通常称为性能指标函数或者代价函数。
$$J(u)=\int_{t_0}^{t_1}L(x,u)dt$$
其中,$J(u)$是性能指标函数,$L(x,u)$是运行损失函数,$x$是系统状态,$u$是控制输入。
最优控制问题的目标是找到合适的控制输入$u$,使得性能指标函数$J(u)$最小化。
求解最优控制问题的方法包括动态规划、最优化方法、解析解等。
综上所述,最优控制公式是通过数学描述来求解最优控制策略的公式。
根据具体问题的不同,可以使用动态规划公式或者最优控制问题的公式来描述最优控制问题。
控制系统的最优控制理论与方法在控制系统中,最优控制理论与方法是一种重要的技术手段,旨在通过优化控制策略,使系统性能达到最佳状态。
本文将介绍最优控制理论的基本概念、主要方法以及在实际应用中的一些案例。
一、最优控制理论的基本概念最优控制理论是一种应用数学理论,研究如何确定控制系统中的最优控制策略,以使系统性能指标达到最佳。
最优控制理论的核心是优化问题的解决方法,通过最小化或最大化某种性能指标,如系统响应时间、稳定性、能耗等,来获取最优控制策略。
在最优控制理论中,有两个基本概念需要了解:动态系统和性能指标。
动态系统是指由一组动态方程描述的系统,其中包含控制变量和状态变量。
性能指标是衡量系统性能的指标,根据不同的要求可以选择不同的性能指标,如最小化过程中的能耗、最大化系统的稳定性等。
二、最优控制方法最优控制方法主要包括动态规划、最优化方法和参数整定等。
下面将详细介绍这三种方法。
1. 动态规划动态规划是最优控制理论中最基本的方法之一。
它通过将控制问题划分为若干子问题,并逐步求解每个子问题的最优解,最终得到整体的最优控制策略。
动态规划方法适用于动态系统模型已知、状态空间离散化的情况。
2. 最优化方法最优化方法是一种通过优化目标函数求解最优解的方法。
其中,目标函数可以是系统的性能指标,通过最小化或最大化目标函数来确定最优控制策略。
最优化方法适用于动态系统模型复杂、状态空间连续的情况。
3. 参数整定参数整定是指根据系统的数学模型和性能指标,确定控制器的参数值,以实现最优控制。
参数整定方法可以根据系统的特性和要求选择不同的方法,例如经验公式、频域分析、优化算法等。
参数整定在工程实践中具有重要的应用价值,可以使系统在不同工况下都能达到最佳性能。
三、最优控制理论与方法的应用案例最优控制理论与方法在各个领域都有广泛的应用,以下列举几个案例来说明。
1. 自动驾驶汽车自动驾驶汽车是近年来亟待解决的重要问题之一。
最优控制理论与方法可以应用于自动驾驶汽车的路径规划和控制中,通过优化控制方法确定最佳行驶路径和速度,从而提高驾驶安全性和行驶效率。
线性系统理论论文论文题目:线性系统理论综述—连续系统线性二次最优控制学院:年级:专业:姓名:学号:指导教师:目录摘要 (3)前言 (3)第一章线性系统理论概述 (3)1.1线性系统理论的研究对象 (4)1.2 线性系统理论的主要任务 (4)1.3 线性系统的主要学派 (5)1.4 现代线性系统的主要特点 (5)1.5 线性系统的发展 (6)第二章连续系统线性二次最优控制 (6)2.1最优控制问题 (6)2.2最优控制的性能指标 (7)2.3 最优控制问题的求解方法 (8)2.4 线性二次型最优控制 (9)2.5 连续系统线性二次型最优控制实例 (10)2.6 小结 (13)总结 (13)参考文献 (13)摘要线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。
本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。
线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。
最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。
本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。
关键字:线性系统;线性二次最优控制;控制系统;连续系统前言线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。
以状态空间法为主要工具研究多变量线性系统的理论[1]。
随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。
与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。
随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。
最优控制问题的LQR方法比较最优控制问题一直是控制理论与应用领域中的重要课题。
最优控制方法的目标是找到一个控制器,使得系统在满足一定性能指标的同时,能够以最小的代价实现系统的稳定性和可控性。
在最优控制方法中,LQR(线性二次型调节)方法是一种常用的优化工具,用于求解连续时间线性时不变系统的最优控制问题。
LQR方法是基于状态反馈的最优控制方法,其主要思想是通过设计一个反馈控制器,使得系统状态能够按照期望轨迹进行调节,并且使得系统的性能指标最小化。
LQR方法中,通过构造一个二次型性能指标,将最优控制问题转化为一个线性二次型优化问题。
通过求解这个优化问题可以得到最优的反馈控制器。
LQR方法具有简单、直观、计算方便等优点,在工程应用中得到了广泛使用。
与其他最优控制方法相比,LQR方法具有以下几个特点:1. 线性性质:LQR方法适用于线性时不变系统,在实际应用中可以近似处理非线性系统。
这使得LQR方法在许多应用中具有广泛的适用性。
2. 反馈控制:LQR方法采用状态反馈控制策略,根据系统当前状态来实时调整控制器输出。
这使得系统能够对不确定性和扰动做出实时响应,提高了系统的稳定性和鲁棒性。
3. 优化指标:LQR方法通过最小化二次型性能指标来设计控制器,使得系统的性能最佳。
这个性能指标可以根据具体应用的需求进行灵活设定,如最小化能量消耗、最小化误差等。
4. 计算简单:LQR方法的计算过程相对简单,能够通过求解代数Riccati方程来得到最优解。
这使得LQR方法在实际应用中具有较高的计算效率。
虽然LQR方法具有许多优点,但也存在一些限制和局限性。
1. 线性系统假设:LQR方法是针对线性时不变系统设计的,对于非线性系统需要进行线性化处理才能应用。
这在某些非线性系统或高度变化的系统中可能引入不可忽视的误差。
2.系统模型需求:LQR方法需要系统的数学模型,包括状态方程和输出方程。
系统模型的准确性直接影响到LQR方法的性能和适用性。
最优控制的应用概述1.引言最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。
这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。
这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。
最优控制理论的实现离不开最优化技术。
控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。
最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。
2.最优控制问题所谓最优控制问题,就是指在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。
也就是说最优控制就是要寻找容许的控制作用(规律)使动态系统(受控系统)从初始状态转移到某种要求的终端状态,且保证所规定的性能指标(目标函数)图1 最优控制问题示意图达到最大(小)值。
最优控制理论本词条由“科普中国”百科科学词条编写与应用工作项目提供专业内容并参与编辑最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。
它是现代控制理论的重要组成部分。
1简介这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。
这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。
1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。
2研究内容最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
3主要方法为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。