1998年诺贝尔生理学或医学奖 ——发现端粒和端粒酶如何保护染色体

  • 格式:doc
  • 大小:36.00 KB
  • 文档页数:5

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1998年诺贝尔生理学或医学奖

——发现端粒和端粒酶如何保护染色体

诺贝尔获奖者——伊丽莎白·布莱克本(美国)

卡萝尔·格雷德(美国)

杰克·绍斯塔克(美国)

诺贝尔奖项:

2009 年10 月5 日,瑞典皇家科学院诺贝尔奖委员会宣布将2009 年度诺贝尔生理学或医学奖(The Nobel Prize in Physiology or Medicine)授予3位美国科学家伊丽莎白·布莱克本(Elizabeth H.Blackburn),卡萝尔·格雷德(Carol W. Greider)和杰克·绍斯塔克(Jack W. Szostak),以表彰他们“发现端粒和端粒酶如何保护染色体”。Blackburn 和Szostak 发现端粒的一段特殊DNA 序列能使染色体不被降解,而Greider 和Blackburn 则找到了帮助端粒合成的分子——端粒酶。最初端粒和端粒酶的研究只是为了解决染色体复制的难题,但随着研究的深入人们发现了端粒和端粒酶的其他作用——细胞随着端粒的变短而衰老,而当端粒酶的活性足以维护端粒的长度时,细胞将会延迟衰老;在癌细胞得到永生性这一过程中,端粒酶的激活起了非常重要的作用。

1 端粒和端粒酶的发现

最早观察染色体末端的科学家始于19世纪末期,Rabl在1885年注意到染色体上所有的末端都处于细胞核的一侧。20世纪30年代,两个著名的遗传学家McClintock B 和Muller HJ 发现了染色体的末端可维持染色体的稳定性和完整性。Muller将它定义为“telomere”。James Watson最早就明确指出了这个“末端隐缩问题”,并猜想染色体也许可以通过在复制前联体(染色体末端跟末端连起来)的方式来解决末端复制的问题。30多年前,Hayflick首次提出将体外培养的正常人成纤维细胞的“有限复制力”作为细胞衰老的表征。在此过程中,细胞群中的大部分细胞经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活性,只是在基因表达方式上有一定的改变。于是Hayflick猜测细胞内有一个限制细胞分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟”在细胞核的染色体末端——端粒。Blackburn和Gall 于1978年首次阐明了四膜虫rDNA

分子的末端结构,他们发现这种rDNA每条链的末端均含有大量的重复片段,并且这些大量重复的片段多是由富含G、C的脱氧核苷酸形成的简单序列串联而成。在1985年,CW.Greider和EH.Blackburn发现将一段单链的末端寡聚核苷酸加至四膜虫的提取物中后,端粒的长度延长了,这就说明了确实有这样的一种酶存在,并将它命名为“端粒酶”(telomerase)。之后,耶鲁大学Morin于1989年在人宫颈癌细胞中也发现了人端粒酶。

2 端粒和端粒酶的结构与功能

端粒是存在于真核生物线性染色体末端,由串联重复的短的dsDNA 序列及其相关的蛋白所组成的DNA 蛋白复合体。dsDNA中的一条为富G 链,以5'→3' 指向染色体末端,比另一条互补链长8~12个碱基。端粒既有高度的保守性,又有种属特异性。如四膜虫重复序列为GGGGTT,草履虫为TTGGGG,人为TTAGGG。端粒具有两种相关蛋白,一为端粒结合蛋白(telomere binding proteins,TBP)是一类特异结合在端粒DNA 上的蛋白质,如发酵母中的蛋白质RAPI,哺乳类动物细胞中的蛋白质TRFI。二为端粒相关蛋白(telomere associated proteins TAP),是一类与TBP 结合的蛋白质,如酿酒酵母中的SIR3/SIR4 和RIFI。它们与端粒结合蛋白质结合,分别发挥建立端粒静止效应和调节端粒长度的作用。

端粒DNA 主要功能有:第一,保护染色体末端免于被化学修饰或被核酶降解;第二,防止染色体相互融合;第三,为端粒酶提供底物,解决DNA复制的末端隐缩,保证染色体的完全复制。众所周知,真核DNA是线性DNA,复制时由于模板DNA 起始端为RNA 引物先占据,新生链随之延伸;引物RNA 脱落后,其空缺处的模板DNA 无法再度复制成双链。因此,每复制一次,末端DNA 就缩短若干个端粒重复序列,即出现真核细胞分裂中的“末端复制问题”。当端粒缩短到一定程度时即引起细胞衰老,故端粒又称“细胞分裂计时器”。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。同时,端粒又是基因调控的特殊位点,常可抑制位于端粒附近基因的转录活性(称为端粒的位置效应,TPE)。

端粒酶又称端粒末端转移酶(Telomerase),是一种逆转录酶,相对分子质量在200~500 ku,是由蛋白质和RNA 构成的核糖核蛋白体。端粒酶由端粒酶成份(hTR),催化亚单位(hTRT/hEST2)和端粒酶相关蛋白1(TEP1)3个亚单位组成,可

调控端粒的复制,其中hTR充当模板,hTRT/hEST2是决定端粒酶活性的限速决定子。TEP1可能是介导端粒酶与其他分子相互作用的调节亚单位。

端粒酶具有对端粒的延伸作用,在没有端粒酶的细胞中,端粒会逐渐缩短直至损害基因;有端粒酶存在的细胞,则该酶会不断补充新的端粒,使之处于一种不断伸缩的动态平衡中。正是端粒酶的存在维持了大多数组织的端粒长度,从而抵消了因细胞分裂而导致的端粒DNA 的消耗。端粒酶的另一个功能是修复断裂的染色体末端。当断裂的染色体末端有富G、T DNA存在时,即使没有完整的端粒重复序列存在,它也能被端粒酶作为引物DNA并为之延伸端粒序列。因修复断端免遭外切酶对染色体DNA的更多切割,端粒酶在某种意义上讲也维护了基因组的稳定性。此外,在端粒合成中端粒酶还具有去除错配碱基的纠错作用,不仅可以除去错配碱基,还可除去延伸超过模板范围的碱基。

3 端粒、端粒酶与衰老

衰老是生物在生命过程中整个机体形态、结构和功能逐渐衰退的综合现象。关于衰老的学说有多种,其中端粒学说由Olovnikov于1973年提出,认为在细胞分裂的过程中,端粒起缓冲作用,但是当端粒缩短到一定程度就会失去缓冲作用,从而导致细胞衰老。Harley等提出了较为完备的端粒——端粒酶假说,认为正常细胞的端粒缩短到一定程度时会启动终止细胞分裂的信号,使细胞进入第一危机期M1(crisis M1)并退出细胞周期而老化。

人体成纤维细胞染色体在复制过程中的极限现象(即Hayflick细胞分裂极限,一般低于50~60次)和染色体端粒不断地缩短的现象,染色体DNA 每复制一次,端粒就缩短一截,人体成纤维细胞端粒每年会缩短十几个碱基。说明染色体末端重复序列TITFAGGG(端粒)在细胞衰老过程中特异地依赖DNA 复制而丢失。当染色体端粒短到一定长度时,细胞的繁殖就不能再继续进行,细胞分裂次数便达到了极限进而导致细胞和整个生物体的死亡。

端粒及端粒酶涉及衰老最有力的证据是Bodnar等证实的。如果细胞试图要维持其正常分裂,那么就必须阻止端粒的进一步丢失,并且激活端粒酶。Davis T 等研究发现,Werner 综合征患者的端粒长度与他们的衰老程度相对应,端粒越短,患者的衰老程度越严重。如果增强Werner 综合征患者成纤维细胞的端粒酶活性,就可以延长细胞寿命,控制衰老的进程。