2017年诺贝尔生理学或医学奖
- 格式:ppt
- 大小:493.50 KB
- 文档页数:14
2017年诺贝尔生理学或医学奖相关生物学试题分析2017年10月2日卡罗琳斯卡研究所的诺贝尔大会决定将“2017年诺贝尔生理学或医学奖”颁给Jeffrey C. Hall、Michael Rosbash和Michael W. Young,以表彰三人发现了控制昼夜节律的分子机制。
他们在果蝇体内分离出一个控制日常生物节律的基因,该基因编码一种夜间积聚在细胞中的蛋白质(PER 蛋白),然后在白天降解,随后,他们发现了这个机制能影响其他蛋白质组分。
生物钟就是靠着这种机制影响着其他多细胞生物(包括人类)。
一、什么是“昼夜节律”?“昼夜节律”,即是指生命活动以24小时左右为周期的变动。
人体的各种生理机能随之建立了有规律的昼夜周期,睡眠和醒觉节律就是一例。
人体的一些生理活动昼夜之间有周期性变化。
人的体温早晨稍低,白天逐渐上升,到黄昏又高一些。
新陈代谢活动,白天分解过程旺盛,晚间则同化过程增强。
白天交感神经活动占优势,夜晚副交感神经活动占优势。
人体的肾上腺素含量在白天某一时刻达到一定水平,然后逐渐下降,12小时后再度上升。
这些生理变化,一天之中的波动范围是恒定的,周期和时钟相似,又称生物钟。
二、发现昼夜节律机制的简要过程1984年,洛克菲勒大学迈克尔?杨以及布兰戴斯大学的杰弗理?霍尔和迈克尔?罗斯巴殊团队先后独立地成功克隆了per基因。
自此,科学家们开始逐步揭开昼夜节律的神秘面纱。
霍尔和罗斯巴殊的团队随后发现per基因的表达产物是一种转录抑制因子,通过抑制自身的表达而产生周期约24小时的表达节律。
而杨的实验室则对7000多个果蝇突变株进行分析,在1994年发现了另一个核心生物钟基因Timeless(tim)。
这个基因的表达产物TIM蛋白,与PER蛋白之间有着重要的相互作用。
后来,霍尔、罗斯巴殊与杨进行合作,获得了更多关于生物钟分子调节机制的关键信息。
他们以果蝇为模式生物,分离出控制生物钟的基因。
三、昼夜节律的机制在转录因子激活下,per与tim基因不断表达。
历届诺贝尔生理学或医学奖获得者名录作者:小乜老师简介1895年11月27日,瑞典化学家阿尔弗雷德·诺贝尔签署了他的遗嘱,将他的大部分财产用于奖励表彰在物理、化学、生理学或医学、文学与和平领域做出杰出贡献的人,这就是大家熟知的诺贝尔奖。
诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。
迄今最年轻的诺贝尔生理学或医学奖得主是加拿大生理学家、外科医师弗雷德里克·班廷。
他与C.H.贝斯特等人一同从动物胰腺中提得可供临床应用的胰岛素,为临床治疗糖尿病做出巨大贡献,在32岁时荣膺1923年诺贝尔生理学或医学奖,所谓“有志不在年高”是也。
迄今最年长的诺贝尔生理学或医学奖获奖者是美国生物学家裴顿·劳斯。
他因发现了病毒在某些癌症中所扮演的角色,以96岁高龄荣膺1966年诺贝尔生理学或医学奖。
真可谓“老骥伏枥,志在千里”!每名诺贝尔奖得主将得到三样东西:一份诺贝尔奖获奖证书、一枚诺贝尔奖奖章和一份奖金证书。
每一份诺贝尔奖证书都是由瑞典和挪威最为卓越的艺术家和书法家创作的独一无二的艺术品。
诺贝尔生理学或医学奖奖章背面的图案是古希腊神话中的健康女神正从岩石中收集泉水,为生病的少女解渴。
奖章上刻有一句拉丁文,大致翻译为:新发现使生命更美好。
名录近三年获奖情况:2017年诺贝尔生理学或医学奖颁发给美国三位科学家杰弗理·霍尔Jeffrey C Hall、迈克尔·罗斯巴希Michael Rosbash和迈克尔·杨Michael W Young,以表彰他们在“发现控制昼夜节律的分子机制”方面的研究。
2018年诺贝尔生理学或医学奖颁发给美国科学家詹姆斯·艾利森James P. Allison和日本科学家本庶佑T asuku Honjo,以表彰他们在抑制免疫负调节机制领域的杰出贡献——发现癌症免疫治疗方法。
2019年诺贝尔生理学或医学奖颁发给美国科学家威廉·凯林William G. Kaelin和格雷格·塞门扎Gregg L. Semenza,以及英国科学家彼得·拉特克利夫Peter J. Ratcliffe,以表彰他们在理解细胞感知和适应氧气变化机制中的贡献。
2017年诺贝尔奖揭晓获得者名单公布
生理学或医学奖
瑞典卡罗琳医学院2日宣布,将2017年诺贝尔生理学或医学奖授予三名美国科学家杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·扬,以表彰他们在研究生物钟运行的分子机制方面的成就。
物理学奖
瑞典皇家科学院3日宣布,将2017年诺贝尔物理学奖授予美国科学家雷纳·韦斯、巴里·巴里什和基普·索恩,以表彰他们为发现引力波作出的贡献。
化学奖
瑞典皇家科学院4日宣布,将2017年诺贝尔化学奖授予瑞士科学家雅克·杜博歇、美国科学家约阿希姆·弗兰克以及英国科学家理查德·亨德森,以表彰他们在冷冻显微术领域的贡献。
文学奖
瑞典文学院5日宣布,将2017年诺贝尔文学奖授予日裔英国作家石黑一雄。
石黑一雄1954年出生于日本,5岁时随家人移居英国。
他曾在肯特大学学习英语和哲学,后来到东安格利亚大学学习创作。
和平奖
挪威诺贝尔委员会6日宣布,将2017年诺贝尔和平奖授予国际非政府组织“国际废除核武器运动”,以表彰该组织致力于普及核武器给人类带来巨大灾难的相关知识以及争取彻底消除核武器的努力。
经济学奖
2017年度诺贝尔经济学奖9日揭晓,美国经济学家理查德·塞勒凭借在行为经济学领域的卓越贡献而摘取这一奖项。
瑞典皇家科学院在一份声明里说:“通过探索有限理性、社会偏好以及缺乏自制的后果,他展示了这些人性特征如何系统性地影响个体决策以及市场结果。
”。
诺贝尔生理学或医学奖历年获奖者(1901-2018) 年份得主国家得奖原因1901年埃米尔·阿道夫·冯·贝林德国“对血清疗法的研究,特别是在治疗白喉应用上的贡献,由此开辟了医学领域研究的新途径,也因此使得医生手中有了对抗疾病和死亡的有力武器”1902年罗纳德·罗斯英国“在疟疾研究上的工作,由此显示了疟疾如何进入生物体,也因此为成功地研究这一疾病以及对抗这一疾病的方法奠定了基础”1903年尼尔斯·吕贝里·芬森丹麦“在用集中的光辐射治疗疾病,特别是寻常狼疮方面的贡献,由此开辟了医学研究的新途径”1904年伊万·巴甫洛夫俄罗斯“在消化的生理学研究上的工作,这一主题的重要方面的知识由此被转化和扩增”1905年罗伯特·科赫德国“对结核病的相关研究和发现”1906年卡米洛·高尔基意大利“在神经系统结构研究上的工作”圣地亚哥·拉蒙-卡哈尔西班牙1907年夏尔·路易·阿方斯·拉韦朗法国“对原生动物在致病中的作用的研究”1908年伊拉·伊里奇·梅契尼科夫俄罗斯“在免疫性研究上的工作”保罗·埃尔利希德国1909年埃米尔·特奥多尔·科赫尔瑞士“对甲状腺的生理学、病理学以及外科学上的研究”1910年阿尔布雷希特·科塞尔德国“通过对包括细胞核物质在内的蛋白质的研究,为了解细胞化学做出的贡献”1911年阿尔瓦·古尔斯特兰德瑞典“在眼睛屈光学研究上的工作”1912年亚历克西·卡雷尔法国“在血管结构以及血管和器官移植研究上的工作”1913年夏尔·罗贝尔·里歇法国“在过敏反应研究上的工作”1914年罗伯特·巴拉尼奥地利“在前庭器官的生理学与病理学研究上的工作”1919年朱尔·博尔代比利时“免疫性方面的发现”1920年奥古斯特·克罗丹麦“发现毛细血管运动的调节机理”1922年阿奇博尔德·希尔英国“在肌肉产生热量上的发现”奥托·迈尔霍夫德国“发现肌肉中氧的消耗和乳酸代谢之间的固定关系”1923年弗雷德里克·格兰特·班廷加拿大“发现胰岛素”约翰·麦克劳德加拿大1924年威廉·埃因托芬荷兰“发明心电图装置”1926年约翰尼斯·菲比格丹麦“发现鼠癌”1927年朱利叶斯·瓦格纳-尧雷格奥地利“发现在治疗麻痹性痴呆过程中疟疾接种疗法的治疗价值”1928年查尔斯·尼柯尔法国“在斑疹伤寒研究上的工作”1929年克里斯蒂安·艾克曼荷兰“发现抗神经炎的维生素”弗雷德里克·霍普金斯爵士英国“发现刺激生长的维生素”1930年卡尔·兰德施泰纳奥地利“发现人类的血型”1931年奥托·海因里希·瓦尔堡德国“发现呼吸酶的性质和作用方式”1932年查尔斯·斯科特·谢灵顿爵士英国“发现神经元的相关功能”埃德加·阿德里安英国1933年托马斯·亨特·摩尔根美国“发现遗传中染色体所起的作用”1934年乔治·惠普尔美国“发现贫血的肝脏治疗法”乔治·迈诺特美国威廉·莫菲美国1935年汉斯·斯佩曼德国“发现胚胎发育中的组织者(胚胎发育中起中心作用的胚胎区域)效应”1936年亨利·哈利特·戴尔爵士英国“神经冲动的化学传递的相关发现”奥托·勒维奥地利1937年圣捷尔吉·阿尔伯特匈牙利“与生物燃烧过程有关的发现,特别是关于维生素C和延胡索酸的催化作用”1938年海门斯比利时“发现窦和主动脉机制在呼吸调节中所起的作用”1939年格哈德·多马克德国“发现百浪多息(一种磺胺类药物)的抗菌效果”1943年亨利克·达姆丹麦“发现维生素K”爱德华·阿德尔伯特·多伊西美国“发现维生素K的化学性质”1944年约瑟夫·厄尔兰格美国“发现单神经纤维的高度分化功能”赫伯特·斯潘塞·加塞美国1945年亚历山大·弗莱明爵士英国“发现青霉素及其对各种传染病的疗效”恩斯特·伯利斯·柴恩英国霍华德·弗洛里爵士澳大利亚1946年赫尔曼·约瑟夫·马勒美国“发现用X射线辐射的方法能够产生突变”1947年卡尔·斐迪南·科里美国“发现糖原的催化转化原因”格蒂·特蕾莎·科里美国贝尔纳多·奥赛阿根廷“发现垂体前叶激素在糖代谢中的作用”1948年保罗·赫尔曼·穆勒瑞士“发现DDT是一种高效杀死多类节肢动物的接触性毒药”1949年瓦尔特·鲁道夫·赫斯瑞士“发现间脑的功能性组织对内脏活动的调节功能”安东尼奥·埃加斯·莫尼斯葡萄牙“发现前脑叶白质切除术对特定重性精神病患者的治疗效果”1950年菲利普·肖瓦特·亨奇美国“发现肾上腺皮质激素及其结构和生物效应”爱德华·卡尔文·肯德尔美国塔德乌什·赖希施泰因瑞士1951年马克斯·泰累尔南非“黄热病及其治疗方法上的发现”1952年赛尔曼·A·瓦克斯曼美国“发现链霉素,第一个有效对抗结核病的抗生素”1953年汉斯·阿道夫·克雷布斯英国“发现柠檬酸循环”弗里茨·阿尔贝特·李普曼美国“发现辅酶A及其对中间代谢的重要性”1954年约翰·富兰克林·恩德斯美国“发现脊髓灰质炎病毒在各种组织培养基中的生长能力”弗雷德里克·查普曼·罗宾斯美国托马斯·哈克尔·韦勒美国1955年阿克塞尔·胡戈·特奥多尔·特奥雷尔瑞典“发现氧化酶的性质和作用方式”1956年安德烈·弗雷德里克·考南德美国“心脏导管术及其在循环系统的病理变化方面的发现”沃纳·福斯曼德国迪金森·伍德拉夫·理查兹美国1957年达尼埃尔·博韦意大利“发现抑制某些机体物质作用的合成化合物,特别是对血管系统和骨骼肌的作用”1958年乔治·韦尔斯·比德尔美国“发现基因功能受到特定化学过程的调控”爱德华·劳里·塔特姆美国乔舒亚·莱德伯格美国“发现细菌遗传物质的基因重组和组织”1959年阿瑟·科恩伯格美国“发现核糖核酸和脱氧核糖核酸的生物合成机制”塞韦罗·奥乔亚美国1960年弗兰克·麦克法兰·伯内特爵士澳大利亚“发现获得性免疫耐受”彼得·梅达沃英国1961年盖欧尔格·冯·贝凯希美国“发现耳蜗内刺激的物理机理”1962年佛朗西斯·克里克英国“发现核酸的分子结构及其对生物中信息传递的重要性”詹姆斯·杜威·沃森美国莫里斯·威尔金斯英国1963年约翰·卡鲁·埃克尔斯爵士澳大利亚“发现在神经细胞膜的外围和中心部位与神经兴奋和抑制有关的离子机理”艾伦·劳埃德·霍奇金英国安德鲁·赫胥黎英国1964年康拉德·布洛赫美国“发现胆固醇和脂肪酸的代谢机理和调控作用”费奥多尔·吕嫩德国1965年方斯华·贾克柏法国“在酶和病毒合成的遗传控制中的发现”安德列·利沃夫法国贾克·莫诺法国1966年裴顿·劳斯美国“发现诱导肿瘤的病毒”查尔斯·布兰顿·哈金斯美国“发现前列腺癌的激素疗法”1967年拉格纳·格拉尼特瑞典“发现眼睛的初级生理及化学视觉过程”霍尔登·凯弗·哈特兰美国乔治·沃尔德美国1968年罗伯特·W·霍利美国“破解遗传密码并阐释其在蛋白质合成中的作用”哈尔·葛宾·科拉纳美国马歇尔·沃伦·尼伦伯格美国1969年马克斯·德尔布吕克美国“发现病毒的复制机理和遗传结构”阿弗雷德·赫希美国萨尔瓦多·卢瑞亚美国1970年朱利叶斯·阿克塞尔罗德美国“发现神经末梢中的体液性传递物质及其贮存、释放和抑制机理”乌尔夫·冯·奥伊勒瑞典伯纳德·卡茨爵士英国1971年埃鲁·威尔布尔·苏德兰美国“发现激素的作用机理”1972年杰拉尔德·埃德尔曼美国“发现抗体的化学结构”罗德尼·罗伯特·波特英国1973年卡尔·冯·弗利德国“发现个体与社会性行为模式的组织和引发”康拉德·洛伦兹奥地利尼可拉斯·庭伯根英国1974年阿尔伯特·克劳德比利时“细胞的结构和功能组织方面的发现”克里斯汀·德·迪夫比利时乔治·埃米尔·帕拉德美国1975年戴维·巴尔的摩美国“发现肿瘤病毒和细胞的遗传物质之间的相互作用”罗纳托·杜尔贝科美国霍华德·马丁·特明美国1976年巴鲁克·塞缪尔·布隆伯格美国“发现传染病产生和传播的新机理”丹尼尔·卡尔顿·盖杜谢克美国1977年罗歇·吉耶曼美国“发现大脑分泌的肽类激素”安德鲁·沙利美国罗莎琳·萨斯曼·耶洛美国“开发肽类激素的放射免疫分析法”1978年沃纳·亚伯瑞士“发现限制性内切酶及其在分子遗传学方面的应用”丹尼尔·那森斯美国汉弥尔顿·史密斯美国1979年阿兰·麦克莱德·科马克美国“开发计算机辅助的断层扫描技术”高弗雷·豪斯费尔德英国1980年巴茹·贝纳塞拉夫美国“发现调节免疫反应的细胞表面受体的遗传结构”让·多塞法国乔治·斯内尔美国1981年罗杰·斯佩里美国“发现大脑半球的功能性分工”大卫·休伯尔美国“发现视觉系统的信息加工”托斯坦·维厄瑟尔瑞典1982年苏恩·伯格斯特龙瑞典“发现前列腺素及其相关的生物活性物质”本格特·萨米尔松瑞典约翰·范恩英国1983年巴巴拉·麦克林托克美国“发现可移动的遗传元素”1984年尼尔斯·杰尼丹麦“关于免疫系统的发育和控制特异性的理论,以及发现单克隆抗体产生的原理”乔治斯·克勒德国色萨·米尔斯坦英国1985年麦可·布朗美国“在胆固醇代谢的调控方面的发现”约瑟夫·里欧纳德·戈尔茨坦美国1986年斯坦利·科恩美国“发现生长因子”丽塔·列维-蒙塔尔奇尼美国1987年利根川进日本“发现抗体多样性产生的遗传学原理”1988年詹姆士·W·布拉克爵士英国“发现药物治疗的重要原理”格特鲁德·B·埃利恩美国乔治·希青斯美国1989年迈克尔·毕晓普美国“发现逆转录病毒致癌基因的细胞来源”哈罗德·瓦慕斯美国1990年约瑟夫·默里美国“发明应用于人类疾病治疗的器官和细胞移植术”唐纳尔·托马斯美国1991年厄温·内尔德国“发现细胞中单离子通道的功能”伯特·萨克曼德国1992年埃德蒙·费希尔美国“发现的可逆的蛋白质磷酸化作用是一种生物调节机制”埃德温·克雷布斯美国1993年理察·罗伯茨英国“发现断裂基因”菲利普·夏普美国1994年艾尔佛列·古曼·吉尔曼美国“发现G蛋白及其在细胞中的信号转导作用”马丁·罗德贝尔美国1995年爱德华·路易斯美国“发现早期胚胎发育中的遗传调控机理”克里斯汀·纽斯林-沃尔哈德德国艾瑞克·威斯乔斯美国1996年彼得·杜赫提澳大利亚“发现细胞介导的免疫防御特性”罗夫·辛克纳吉瑞士1997年史坦利·布鲁希纳美国“发现朊病毒——传染的一种新的生物学原理”1998年罗伯·佛契哥特美国“发现在心血管系统中起信号分子作用的一氧化氮”路易斯·路伊格纳洛美国费瑞·慕拉德美国1999年古特·布洛伯尔美国“发现蛋白质具有内在信号以控制其在细胞内的传递和定位”2000年阿尔维德·卡尔森瑞典“发现神经系统中的信号传导”保罗·格林加德美国艾瑞克·坎德尔美国2001年利兰·哈特韦尔美国“发现细胞周期的关键调节因子”蒂姆·亨特英国保罗·纳斯爵士英国2002年悉尼·布伦纳英国“发现器官发育和细胞程序性死亡的遗传调控机理”H·罗伯特·霍维茨美国约翰·E·苏尔斯顿美国2003年保罗·劳特伯美国“在核磁共振成像方面的发现”彼得·曼斯菲尔德爵士英国2004年理查德·阿克塞尔美国“发现嗅觉受体和嗅觉系统的组织方式”琳达·巴克美国2005年巴里·马歇尔澳大利亚“发现幽门螺杆菌及其在胃炎和胃溃疡中所起的作用”罗宾·沃伦澳大利亚2006年安德鲁·法厄美国“发现了RNA干扰——双链RNA引发的沉默现象”克雷格·梅洛美国2007年马里奥·卡佩奇美国“在利用胚胎干细胞引入特异性基因修饰的原理上的发现”马丁·埃文斯爵士英国奥利弗·史密斯美国2008年哈拉尔德·楚尔·豪森德国“发现了导致子宫颈癌的人乳头状瘤病毒”弗朗索瓦丝·巴尔-西诺西法国“发现人类免疫缺陷病毒(即艾滋病病毒)”吕克·蒙塔尼法国2009年伊丽莎白·布莱克本澳大利亚“发现端粒和端粒酶如何保护染色体”卡罗尔·格雷德美国杰克·绍斯塔克英国2010年罗伯特·杰弗里·爱德华兹英国“因为在试管婴儿方面的研究获奖”2011年布鲁斯·巴特勒美国“对于先天免疫机制激活的发现”朱尔斯·霍尔曼法国拉尔夫·斯坦曼美国“发现树突状细胞和其在后天免疫中的作用”2012年约翰·格登爵士英国“发现成熟细胞可被重写成多功能细胞”[2] 山中伸弥日本2013年詹姆斯·E·罗斯曼美国“细胞囊泡交通的运行与调节机制”兰迪-W.谢克曼托马斯-C.苏德霍夫德国2014年John O'Keefe(约翰-欧基夫)美国“发现了大脑中形成定位系统的细胞”May Britt Moser(梅-布莱特-莫索尔)挪威Edvand Moser(爱德华-莫索尔)挪威2015年威廉·C·坎贝尔爱尔兰“发现治疗蛔虫寄生虫新疗法”聪大村日本屠呦呦(浙江宁波人)中国“创制新型抗疟药——青蒿素和双氢青蒿素”2016年大隅良典日本“发现细胞自噬机制”2017年杰弗里 C ·霍尔(Jeffrey C. Hall )美国“发现控制昼夜节律的分子机制”迈克尔·罗斯巴什(Michael Rosbash)迈克尔W·扬(MichaelW. Young)2018年詹姆斯·艾利森美国“发现了抑制负面免疫调节的癌症疗法”本庶佑日本。
以高中生物学知识为背景解读#3!4年诺贝尔生理学或医学奖吴劲松!!江苏省高淳高级中学!南京!&$'###"摘!要!对&#$(年诺贝尔生理学或医学奖-发现控制昼夜节律的分子机制.的研究进行解读)阐述该研究对人类健康的重要意义)并联系高中生物学知识为高中教学与命题提供参考&关键字!生物钟!诺贝尔奖!高中生物学!!&#$(年诺贝尔生理学或医学奖颁发给美国三位科学家R6]]:6.8C511!杰弗理,霍尔"%J3@0561L2D H5D0!迈克尔,罗斯巴希"和J3@0561Y_2G9N!迈克尔,杨")以表彰他们在-发现控制昼夜节律的分子机制.方面的研究&生物钟是生物体内周而复始的节律)如植物的春华秋实%动物的昼行夜伏55常见的近&*0昼夜节律是典型的生物钟之一&!"生物钟的研究$,$!开启生物钟研究的大门!$)($年)K6.A2G:769d6:和L29514S292/b5利用果蝇突变体研究生物钟'$()他们首先建立检测表型的方法#用致变剂诱导果蝇的基因发生突变)并检测果蝇活动的变化)发现确实有昼夜规律)但工作量比较大&后来)S292/b5用果蝇一生一次的羽化这一特征作为筛选方法)发现筛选到的突变果蝇的运动昼夜节律异常&三种品系的突变果蝇在表型上不相同#一种没有节律)一种节律周期加快到$)0)一种节律变慢到&%0&然后将该突变种与已有的其他突变种交配)确立三种突变在染色体图谱的大概位置)结果发现很近&通过进一步把三种突变相互交配)进行顺反检测)根据得到的结果推测三种突变可能是同一个基因的不同突变&于是)把这个基因命名为,#)&26!,#)"&,#)基因很可能是生物钟的关键基因之一&但是)&#世纪(#年代重组O M?技术刚发明)由于技术的缺乏很难得到,#)基因的O M?序列& $,&!生物钟关键基因的克隆!$)%*年)J3@0561_2G9N%R6]]:6.C511与J3@0561L2D H5D0三个研究果蝇的团队几乎同时发表论文#克隆出9#)基因附近的基因组O M?'&)'(&这段O M?可以产生*,"bH和#,)bH两种A L M?)并编码相应的蛋白质=F L)其水平存在&*0的周期性起伏)与昼夜节律相一致&将编码*,"bHA L M?的基因组O M?转入果蝇)可以使,#)突变种果蝇的昼夜节律恢复正常&进一步发现)改变导入的,#)基因表达的相位可改变果蝇昼夜节律的相位&之后)75.136D还确定了S292/b5实验中,#)基因在最初三种突变株的O M?变化#,#)#%,#)-和,#)%)分别表示提前终止%两个不同部位的碱基变化'*(&$,'!反馈调节的生物钟机制!$))#年)J3@0561 L2D H5D0和R6]]:6.C511实验室的博士后=5G1C5:439终于在果蝇的头部以每个小时为单位检测得到,#)的A L M?)发现其含量呈昼夜变化$在,#)-中)其A L M?昼夜周期也缩短'"(&他们提出简单的模型#,#)基因转录A L M?%翻译产生=F L蛋白的过程存在负反馈),#)的A L M?或蛋白质产生后)可以影响,#)基因自身的转录&之后)实验组制造出=F L蛋白的抗体)抗体可以识别=F L蛋白以此确定其在细胞内的位置&实验结果表明#=F L蛋白既可以存在于细胞核%也可以存在于细胞质'>(&随后)J3@0561_2G9N实验室的K6N051等人通过筛选(###多个突变种找到影响果蝇生物钟的新基因<3A616D D!?&+")很快克隆出该基因并猜测-I J蛋白是一种转录因子'((&$))>年)L2D H5D0实验室发现-I J蛋白影响=F L蛋白出入细胞核)-I J与=F L两个蛋白质可以形成复合物抑制,#)基因的转录)且该复合物的存在与消失呈昼夜节律)其原因是光可以调节-I J蛋白的稳定性)从而提供了光对生物钟的调节的分子机理!图$"'%(&图$!昼夜节律生物钟的分子机理图$,*!哺乳动物的生物钟基因!$))*年)R2D6/0K -5b505D03实验室研究了'#*只小鼠)他们从突变体!第&"只小鼠"发现了影响小鼠生物钟的基因)将其命名为-$%2$G.'%(&正常小鼠生物钟的周期是&',(0)$%2$G杂合的突变鼠昼夜节律为&*,%0&变化可谓微妙)需要可靠的检测才能发现&从杂合体检测出微小但可靠的变化后)R2D6/0实验室通过小鼠交配而获得$%2$G 基因突变的纯合体)其表型很强)完全丧失节律')(&经过几十年的研究)科学家现在对动物中以&*0为周期的生物钟的构成和机理已经有了基本了解&动物生物钟的循环基本上是一个基因表达的负反馈环路)即迄今为止被公认的-转录2翻译负反馈环.!<:59D @:3/<329c <:59D 15<329]664H5@b 122/)--U E "&#"人体生物钟与健康所有的生物性状都是自然对生物适应环境的变化而选择的结果&有利于生存和繁殖的性状就在生物演化的过程中被自然选择保留了下来&生物钟让一个生物个体预见到食物的定时出现而提前准备并及时到场)生物钟也使生物预见不利于生理活动的事件)如对高温和寒冷的定时出现而提前规避&能掌握环境变化规律并预见环境变化的物种显然有生存和繁殖的优势)因此被自然所选择&生物钟的元件和机理就这样在长期的生物演化过程中被自然选择保留了下来)成了普遍的生物现象&人的生物钟就是人体内随时间作周期变化的生理生化过程)以及形态结构和行为变化等现象&人体的各种生理指标)如脉搏%体温%血压%体力%情绪%智力等)都会随着昼夜交替产生周期性变化&例如)体温早上*时最低)下午>时最高)相差约$i &科学家经过多年的研究)已经对人体许多生理生化活动的昼夜节律现象有了比较清楚的了解!图&"&#+$&点$&+&*点图&!&*0人体部分生理活动的昼夜节律生物钟的正常工作对人体健康起着重要作用&生物钟失调会导致失眠%体乏%抑郁%免疫功能低下)甚至产生包括肿瘤在内的各种疾病&根据人体生理生化活动的周期性变化)可以合理安排一天的活动)从而使工作和休息效率达到最高)也使得人的身心健康状态达到最佳&$"生物钟与高中生物学教学的联系',$!基因的表达!高中生物学必修&-遗传与进化.模块中)基因的表达一章是重点内容)描述的是具有遗传效应的O M ?片段!基因"如何携带遗传信息传递到细胞质)然后转化为相对应的蛋白质发挥功能&教师在-遗传信息的转录.新授课中)可以引导学生回忆并思考果蝇在遗传学上的经典实验)并结合图$中,#)基因指导合成蛋白质=F L 的示意图提出问题串#!什么是基因/基因位于哪里/"基因能直接合成蛋白质吗/为什么/#A L M ?是什么/如何形成/通过结合图形循序渐进让学生了解并掌握转录的过程&',&!反馈调节!高中生物学必修'-稳态与环境.模块中)对反馈调节的描述为#在一个系统中)系统本身的工作效果)反过来又作为信息调节该系统的工作)这种调节方式叫做!负"反馈调节&本概念抽象%理解难度较大&教师在授课时往往采用举例!如冰箱制冷"的形式来让学生理解概念)但是效果甚微&建议授课老师可以展示出生物钟的分子调节模式图)结合必修&的-转录.与-翻译.知识点)让学生自己尝试说出,#)基因如何周期性控制蛋白=F L 的合成&最后)教师结合图解解释-负反馈.的概念)这样可能事半功倍&','!试题命制!各省历年高考生物学试题均会与当年的最新科研或诺贝尔奖有关研究相联系&例如)&#$>年江苏卷第$%题考查8L I K=L e 85D )基因编辑技术)第'#题考查青蒿素对疟疾患者群体基因型的影响)&#$(年江苏卷第&%题考察葡萄糖转运载体!T E Q -"与糖尿病的关系分析等&这要求教师在平时教学之外)应该去关注生物学最新的科学前沿研究)把握最新的科学动态&以科研成果为背景命题)不仅考查学生对高中生物学基础知识的把握)还能提高学生对生物学科的学习兴趣&主要参考文献'$(S P M P =S ?L R )7F M a F LK,$)($,812@b A G<59<D 2]:)2-2,<&%"A 61592N 5D <6:,=:2@66439N D2]<06M 5<32951?@546A .2]K@369@6Q K?)>%!)"#&$$&+&$$>'&(7?L T I F E E P -?)_P Q M T J Y,$)%*,J 216@G15:N 696<3@D 2]5H3212N 3@51@12@b 39:)2-2,<&%",=:2@66439N D 2]<06M 5<32951?@546A .2]K@369@6Q K?)%$!("#&$*&+&$*>''(L F O O _=)a F C L I M T Y ?)Y C F F E F L O ?)6<51,$)%*,J 216@G15:5951.D 3D 2]<06/6:32412@GD 39:)2-2,<&%"A 61592N 5D <6:遗传物质的发现过程及其启示王!颖!!人民教育出版社生物室!北京!$###%$"摘!要!格里菲思的肺炎链球菌体内转化实验%艾弗里及其合作者的肺炎链球菌体外转化实验以及赫尔希蔡斯的噬菌体侵染实验是人们认识-O M?是遗传物质.过程中的三个经典实验&揭示遗传物质本质的过程反映科学之路充满了观点的碰撞和论争)科学方法和理性思维在科学发现中具有重要作用)也展现出科学家质疑%求真%实证等科学精神&关键词!遗传物质!肺炎链球菌!O M?!发现!启示!!肺炎链球菌是一种革兰氏阳性菌)能引起人的肺炎和呼吸系统的其他疾病&$%%$年)美国的乔治,斯滕伯格!T62:N6K<6:9H6:N"和法国的路易斯,巴斯德!E2G3D=5D<6G:"分别分离得到这种细菌)最初它被命名为9.#*+2$2$$*-&$)&#年改称肺炎双球菌!:&,%2$2$$*-,.#*+2.&"#"&因为它与链球菌非常相似)$)(*年被正式命名为肺炎链球菌!7()#,(2$2$$*-,.#*+2.&"#"&这种菌对小鼠也具有极大的杀伤力)会导致小鼠死亡& !"格里菲思实验$)&'年)英国卫生部病理实验室的弗雷德里克,格里菲思!U:646:3@b T:3]]3<0)$%()2$)*$"发现肺炎链球菌的菌落有两种类型#一种是光滑的圆顶形)形态较为规则)这种菌有荚膜)能引起小鼠死亡)被称为光滑型!KA22<0)K型"$另一种菌落为颗粒状%不规则)这种菌无荚膜)是减毒的)不会导致小鼠死亡)被称为粗糙型!L2GN0)L型"&格里菲思发现K型菌!以下简称K菌"经传代培养可以转变为L型菌!以下简称L 菌"&当时已经发现的肺炎链球菌根据荚膜多糖的不同可分为4型%/型和8型等&每种类型的肺炎链球1111111111111111111111 !!!5943469<3]3@5<3292]5<:59D@:3/<39X21X6439H3212N3@51:0.<0A D, 8611)'%!'"#(#$+($#'*(7?_E I F K J S)7?L T I F E E P-?)_P Q M TJ Y,$)%(,8059N6D 395HG9459@62]D<:G@<G:62]<06,#)N696/:24G@<@5951<6: /6:3243@3<.2]<06:)2-2,<&%"@12@b,M5<G:6)'&>!$#"#')#+')& '"(C?L O I M=F)C?E ER8)L P K7?KC J,$))#,U664H5@b2]<06 :)2-2,<&%"/6:324N696/:24G@<29@3:@54359@.@139N2]3<D A6D D69N6:L M?16X61D,M5<G:6)'*'!>&"%"#"'>+"*#'>(K?F aE)_P Q M TJ Y,$)%%,I9D3<G12@513d5<3292]<06,#)@12@b /:2<6394G:39N46X612/A69<2]:)2-2,<&%"A61592N5D<6:,J216@G15: 861173212N.)%!$&"#"'(%+"'%"'((KF C T?E?)=L I8FR E)J?M7)6<51,$))*,E2D D2]@3:@54359 H605X32:51:0.<0A D594,#)L M?2D@3115<329D39<06:)2-2,<&%"A G<59<<3A616D D,K@369@6)&>'!"$"'"#$>#'+$>#>'%(a F M TC)V I?Ma)J_F L K J=)6<51,$))>,?13N0<c69<:539A69< A6@0593D A]2:<06:)2-2,<&%"@3:@54359@12@b,M5<G:6)'%#!>"(#"#$&)+$'"')(B I-?-F L M?J C)S I M T O=)8C?M T?J)6<51,$))*, J G<5N696D3D594A5//39N2]5A2GD6N6965%2$G)6D D69<351]2: @3:@54359H605X32:,K@369@6)&>*!"$")"#($)+(&"#菌都有光滑品系K菌和粗糙品系L菌'$(&格里菲思将不同类型的活的L菌分别与加热致死的K菌同时注入小鼠体内)观察小鼠的存活)并从小鼠体内分离和鉴定肺炎链球菌&在他的一组实验中)将活的4型L菌和加热致死的/型K菌同时注入小鼠体内)几天后小鼠死亡)从小鼠体内分离出活的/型K 菌&这种转化不仅是同型的L菌转化为K菌)还有4型转化为/型'&(&是什么原因导致4型的L菌转化为/型的K菌呢/新产生的/型K菌的荚膜多糖来自哪里/格里菲思于$)&%年发表论文介绍了上述实验并作出解释#死亡的小鼠体内!受体细胞"保留了合成/型K菌荚膜多糖的物质)它能够促使4型L型活细菌转化为/型K型活细菌'&(&格里菲思没有意识到)将L菌转化为K菌的是加热致死的K菌中的活性物质)即后人所说的-转化因子.)他没有继续探索遗传物质的本质&后来)格里菲思不幸死于$)*$年德国对伦敦发动的一场轰炸中''(&#"艾弗里及其合作者的实验在格里菲思发表论文两年后的$)'#年)美国洛克菲勒研究所奥斯瓦尔德,艾弗里!P D`514?X6:.)$%((2$)"""实验室的亨利,道森!C69:.O5`D29"和理查德,夏!L3@05:4K35"实现了肺炎链球菌的离体转化实验&他们在含有抗L血清和加热致死的K菌的液体培养基中培养L菌)结果产生了活的K菌'*(&后来)艾弗里实验室的詹姆斯,阿洛韦!R5A6D?112`5."将K 菌过滤)除去一些细胞组分)得到一种无细胞的提取液)并用提取液进行体外转化实验获得成功'"(&$)'*年)科林,麦克劳德!82139J5@E624)$)#)2$)(&"加入了艾弗里实验室)他同艾弗里一起用阿洛韦的体外系统进行转化实验&$)*$年)他们已经很有信心地认为转化因子是-胸腺类的核酸.'$(&$)*'年'月)艾弗里首先在洛克菲勒理事会上介绍了他们的实验过程和结果)并于$)**年发表了这个经典的实验&他们将K菌用去氧胆酸盐溶液漂洗数次)用乙醇沉淀)得到黏性的乳白色沉淀&将沉淀溶于盐溶液)然后用氯仿抽提&+'次除去蛋白)再用乙醇沉淀&将沉。
与诺贝尔奖有关的试题(建议用时:30分钟)1.2017年诺贝尔生理学或医学奖授予3位美国科学家,以表彰他们发现了“调控昼夜节律的分子机制”。
右图表示人体生物钟的部分机理,他们发现下丘脑S细胞中基因表达产物per 蛋白的浓度呈周期性变化,在夜晚不断积累,到了白天又会被分解,per蛋白的浓度变化与昼夜节律惊人一致。
下列叙述正确的是( )A.③过程中per蛋白抑制细胞核中per基因表达体现了负反馈调节机制B.①过程的产物运出细胞核与per蛋白运入细胞核体现了核孔可自由运输大分子C.per基因控制人体昼夜节律,其只存在于人体下丘脑S细胞中D.per蛋白的浓度变化与基因调控有关而与环境无关2.(2020·某某某某阶段检测)美国科学家詹姆斯·艾利森和日本科学家本庶佑共同获得2018年诺贝尔生理学或医学奖。
艾利森发现抑制CTLA4分子活性能使T细胞大量增殖而发挥免疫功能。
本庶佑则在T细胞上首次发现了PD1分子,PD1和CTLA4相似,抑制PD1则能够活化T细胞,刺激生物体免疫功能。
研究进一步发现:CTLA4与PD1联合疗法对晚期黑色素瘤效果显著。
可见,治疗人体疾病的有效手段之一是从根本上提高人体的免疫力。
据此分析,以下说法错误的是( )A.T细胞大量增殖会增强机体的体液免疫和细胞免疫功能B.注射特异性结合CTLA4和PD1的抗体可增强人体的免疫功能C.一个人是否会患癌症以及癌症治疗的效果,都与人体免疫力有关D.CTLA4与PD1联合疗法就是通过同时口服CTLA4与PD1来治疗癌症3.2019年诺贝尔生理学或医学奖获得者指出,在富氧环境下,VHL(一种蛋白质)会结合HIF1α(缺氧诱导因子的组成成分之一,其在常氧或富氧时会被降解),使HIF1α被“标记”,从而被相应蛋白酶分解。
2017年诺贝尔生理学或医学奖获得者的故事
2017年诺贝尔生理学或医学奖获得者为Jeffrey C. Hall、Michael Rosbash和Michael W. Young,他们被授予这一殊荣
是因为他们的发现揭示了生物钟的分子机制。
这对于我们理解动植物的生理行为以及人类的健康和疾病非常重要。
三位科学家的故事始于1984年,在那时,他们共同开始研究
果蝇的生物钟。
他们发现,果蝇具有固定的24小时行为轮廓,而这一行为周期实际上是由一组特定基因的激活和抑制来调控的。
通过一系列复杂的实验,他们最终确定了这些基因中的一个,称为"period"基因。
这个基因是生物钟的核心,它会通过编码
一种名为"PER"的蛋白质来调节生物钟的活动。
每天晚上,"PER"蛋白质会在果蝇体内积累,然后在白天逐渐降解。
这个
循环的节奏保证了果蝇的行为周期。
之后,这些科学家还发现了另外几个基因,这些基因相互作用,共同控制生物钟的节奏。
他们的研究结果不仅在果蝇身上成果显著,还能应用于其他生物体,包括人类。
这项研究对于人类的健康非常重要,因为我们的生活方式改变了我们的生物钟。
例如,夜班工作和长时间的时差旅行都可能导致生物钟紊乱,进而影响我们的睡眠和健康。
通过了解生物钟的机制,科学家们可以开发新的疗法和方法来帮助人们调整生物钟,提高生活质量。
Jeffrey C. Hall、Michael Rosbash和Michael W. Young的研究成果为我们认识生物钟的分子机制作出了重要贡献,并为未来的生物医学研究提供了新的方向和希望。