初中数学知识公式规律总结(最全)
- 格式:docx
- 大小:21.58 KB
- 文档页数:2
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
巧用顺口溜熟记初中数学公式和规律数学公式和规律在初中阶段是非常重要的,它们是解题的基础和指导,也是理解数学概念和思维的关键。
然而,对于许多学生来说,记住这些公式和规律并不容易。
为了帮助学生更好地掌握数学知识,我整理了一些巧妙的顺口溜,通过这些顺口溜,学生能够轻松地记住一些重要的数学公式和规律。
一、顺口溜记代数公式:1. 一元二次方程求根法,b²-4ac你得掌握。
一大再小两个根,<0无实根,=0一个根。
2. x = (-b ± √(b²-4ac))/(2a)二次方程求解都留下。
3.(a+b)(a-b)=a²-b²平方差公式背下来。
4.a²-b²=(a-b)(a+b)平方差公式很容易。
5.二项式展开好简单,我的名字叫齐考公式。
(a+b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... + C(n,n-1)abⁿ⁻¹ +C(n,n)bⁿ。
二、顺口溜记几何公式:1.长方形底乘高,得到面积的好帮手。
A=l×w,四边都相对。
2.正方形的面积,直接边长相乘。
A=s²,正方形停不住。
3.三角形面积公式,底边高你有。
A=1/2×b×h,底高更容易。
4.圆的面积公式,先半径,再面积。
A=πr²,记住吗?5.圆的弧长、扇形和正圆角,顺口溜心中藏。
L=2πr,S=1/2πr²,360度它很逆。
三、顺口溜记运算规律:1.交换律、结合律勿忘,运算啥都变得容。
a+b=b+a,a+(b+c)=(a+b)+ca×b=b×a,a×(b×c)=(a×b)×c。
2.分配律快记清,a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c,加减乘除好朋友。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧. 二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减 1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律. 三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3,4,5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
初中数学规律类公式初中数学中,有一些重要的规律和公式,以下是一些常见的例子:1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法对加法的分配律:a × (b + c) = a × b + a × c6. 幂的运算性质:a^m × a^n = a^(m+n),(a^m)^n = a^(mn),(ab)^n = a^n × b^n7. 正弦、余弦、正切定理:sin(A + B) = sinAcosB + cosAsinB,cos(A +B) = cosAcosB - sinAsinB,tan(A + B) = (tanA + tanB) / (1 - tanA × tanB)8. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2 +b^2 = c^29. 平方差公式:(a - b)^2 = a^2 - 2ab + b^210. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^211. 立方和、立方差公式:a^3 ± b^3 = (a ± b)(a^2 - ab + b^2)12. 分数加法交换律和结合律:同分母分数相加时,分母不变,分子相加;异分母分数相加时,先通分再相加。
13. 平行线的性质:两直线平行时,同位角相等、内错角相等、同旁内角互补。
14. 角的平分线性质:角的平分线上的点到角的两边的距离相等。
15. 余弦定理:cosA = (b^2 + c^2 - a^2) / (2bc),cosB = (a^2 + c^2 - b^2) / (2ac),cosC = (a^2 + b^2 - c^2) / (2ab)以上是一些初中数学中常见的规律和公式,掌握这些公式和规律对于解决数学问题非常重要。
初中数学各种规律公式初中数学中有许多规律和公式,它们是数学知识的基础,也是我们解题的重要工具。
下面就让我们一起来探索一下其中的一些规律和公式吧!1.等差数列的通项公式:等差数列是指数列中相邻两项之间的差值恒定的一种数列。
它的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
这个公式能够帮助我们快速计算等差数列中任意一项的值。
2.等差数列的前n项和公式:等差数列的前n项和公式为:Sn = (a1 + an)n/2,其中Sn表示前n项和。
这个公式可以帮助我们快速计算等差数列前n项的和。
3.等比数列的通项公式:等比数列是指数列中相邻两项之间的比值恒定的一种数列。
它的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
这个公式能够帮助我们快速计算等比数列中任意一项的值。
4.等比数列的前n项和公式:等比数列的前n项和公式为:Sn = a1 * (1 - r^n)/(1 - r),其中Sn表示前n项和。
这个公式可以帮助我们快速计算等比数列前n项的和。
5.平方差公式:平方差公式是用来计算两个数的平方差的一种公式。
它的表达式为:(a-b)(a+b) = a^2 - b^2。
这个公式在解题中经常用到,特别是在因式分解和方程求解中。
6.勾股定理:勾股定理是平面几何中的重要定理,用于计算直角三角形的边长。
它的表达式为:c^2 = a^2 + b^2,其中c表示斜边的长度,a和b 表示两个直角边的长度。
勾股定理在解决直角三角形相关问题时非常有用。
7.平行四边形面积公式:平行四边形是一种特殊的四边形,它的对边平行且长度相等。
平行四边形的面积可以通过底边长乘以高得到,即S = a * h。
这个公式可以帮助我们快速计算平行四边形的面积。
8.正方形面积公式:正方形是一种特殊的四边形,它的四条边相等且相互垂直。
正方形的面积可以通过边长的平方得到,即S = a^2。
初中数学常用公式总结数学是一门充满逻辑和规律的学科,在初中阶段,我们学习了许多重要的数学公式,这些公式是解决数学问题的有力工具。
下面,我将为大家总结一下初中数学中常用的公式。
一、代数部分1、整数的运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:a ×(b + c) = a × b + a × c2、幂的运算同底数幂相乘:a^m × a^n = a^(m + n)同底数幂相除:a^m ÷ a^n = a^(m n) (a ≠ 0)幂的乘方:(a^m)^n = a^(mn)积的乘方:(ab)^n = a^n × b^n3、一元一次方程一般形式:ax + b = 0 (a ≠ 0)解为:x = b / a4、二元一次方程组一般形式:{a₁x + b₁y = c₁{a₂x + b₂y = c₂解为:x =(b₂c₁ b₁c₂) /(a₁b₂ a₂b₁)y =(a₁c₂ a₂c₁) /(a₁b₂ a₂b₁) (当 a₁b₂ a₂b₁ ≠ 0 时)5、一元二次方程一般形式:ax²+ bx + c = 0 (a ≠ 0)求根公式:x =b ± √(b² 4ac) /(2a)当 b² 4ac > 0 时,方程有两个不相等的实数根;当 b² 4ac = 0 时,方程有两个相等的实数根;当 b² 4ac < 0 时,方程没有实数根。
6、完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²7、平方差公式(a + b)(a b) = a² b²二、几何部分1、三角形(1)三角形内角和定理:三角形内角和为 180°。
初中数学公式大全 a4纸打印一、引言数学作为一门重要的学科,是我们学习生活中不可或缺的一部分。
而数学公式,则是数学知识的核心和精华所在,它们在数学题目中起着至关重要的作用。
为了方便学生的学习和复习,我们编排了初中数学公式大全,并提供了a4纸打印版,以便学生随时查阅和使用。
二、初中数学公式大全1. 代数部分1.1 一次函数的标准方程:y = kx + b1.2 一次函数的斜率公式:k = (y2 - y1) / (x2 - x1)1.3 一元二次方程的一般形式:ax^2 + bx + c = 01.4 一元二次方程的求根公式:x = (-b ± √(b^2 - 4ac)) / 2a1.5 二次函数的顶点坐标公式:(h, k)1.6 四则运算法则:加法、减法、乘法、除法1.7 分式的乘除法:a/b × c/d = ac/bd , a/b ÷ c/d = ad/bc1.8 指数的运算法则:a^m × a^n = a^(m+n) , a^m ÷ a^n = a^(m-n)2. 几何部分2.1 直角三角形的勾股定理:a^2 + b^2 = c^22.2 正弦定理:a/sinA = b/sinB = c/sinC2.3 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA2.4 同位角对顶角相等定理:∠A = ∠C , ∠B = ∠D2.5 三角形内角和公式:∠A + ∠B + ∠C = 180°2.6 平行线性质:对顶角相等、内错角相等、同旁内角相等3. 统计部分3.1 平均数的计算公式:平均数 = 总和 / 样本数3.2 中位数的计算公式:中位数 = (n+1)/2 的观测值3.3 众数的判断方法:出现频次最多的数3.4 方差的计算公式:方差 = (∑(x - x̄)^2) / n4. 概率部分4.1 事件的互斥与对立:P(A∪B) = P(A) + P(B)4.2 条件概率的计算:P(A|B) = P(A∩B) / P(B)4.3 事件的独立性判断:P(A∩B) = P(A) × P(B)三、a4纸打印版下载信息您可以点击以下信息下载初中数学公式大全a4纸打印版:四、结语初中数学公式大全为学生提供了一个方便、快捷的数学参考手册,希望广大学生能够充分利用这份资料,提高自己的数学学习成绩。
初中数学各种规律公式初中数学中有很多规律和公式,它们是数学知识的基础,也是解决问题的重要工具。
下面我将介绍一些常见的初中数学规律和公式。
一、等差数列的规律公式等差数列是指一个数列中,任意两个相邻的项之间的差值都是相等的。
等差数列的规律可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
二、等比数列的规律公式等比数列是指一个数列中,任意两个相邻的项之间的比值都是相等的。
等比数列的规律可以表示为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
三、平方差公式平方差公式是指两个数的平方之差可以表示为两个数之和乘以两个数之差。
平方差公式可以表示为:a^2 - b^2 = (a + b)(a - b),其中a和b为任意实数。
四、勾股定理勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。
勾股定理可以表示为:a^2 + b^2 = c^2,其中a和b为直角边的长度,c为斜边的长度。
五、平方根的性质平方根的性质是指任意一个非负实数的平方根都是非负的。
平方根的性质可以表示为:对于任意一个非负实数a,如果b是a的平方根,则b≥0。
六、两角和差的三角函数公式两角和差的三角函数公式是指两个角的和或差的正弦、余弦、正切的关系式。
两角和差的三角函数公式可以表示为:sin(a±b) = sinacosb±cosasinb,cos(a±b) = cosacosb∓sinasinb,tan(a±b) = (tana±tanb)/(1∓tana*tanb)。
七、二次函数的顶点坐标公式二次函数的顶点坐标公式是指二次函数的顶点坐标可以通过二次函数的标准式来确定。
二次函数的顶点坐标公式可以表示为:(h, k),其中h = -b/(2a),k = f(h) = -Δ/(4a)。
八、圆的面积和周长公式圆的面积和周长公式是指圆的面积和周长可以通过圆的半径来计算。
初中数学知识、规律总结
最简根式的条件:
最简根式三条件,
号内不把分母含,
幂指(数)根指(数)要互质,
幂指比根指小一点。
特殊点的坐标特征:
坐标平面点(x,y),
横在前来纵在后;
(+,+),(一,+),
四个象限分前后;
x轴上y为0,x为0在y轴。
象限角的平分线:
象限角的平分线,
坐标特征有特点,
一、三横纵都相等,
二、四横纵确相反。
平行某轴的直线:
平行某轴的直线,
点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点的坐标:
对称点坐标要记牢,
相反数位置莫混淆,
x轴对称y相反,
y轴对称,x前面添负号;
原点对称最好记,
横纵坐标变符号。
自变量的取值范围:
分式分母不为零,
偶次根下负不行;
零次幂底数不为零,
整式、奇次根全能行。
函数图象的移动规律:
若把一次函数解析式写成:y=k(x+0)+b
二次函数的解析式写成:y=a(x+h)2+k的形式,则可用下面的口诀,
左右平移在括号,
上下平移在末稍,
左正右负须牢记,
上正下负错不了。
一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见,
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线,
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,
横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数的图象与性质的口诀:
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,
k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边。
巧记三角函数定义:
初中所学的三角函数有正弦、余弦、正切、余切,
它们实际是直角三角形的边的比值,
可以把两个字用/隔开,再用下面的。
一句话记定义:
一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
平行四边形的判定:
要证平行四边形,
两个条件才能行,
一证对边都相等,
或证对边都平行,
一组对边也可以,
必须相等且平行。
对角线,是个宝,
互相平分“跑不了”,
对角相等也有用,
“两组对角”才能成。
圆的证明:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连;
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆,
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦。
添加辅助线歌:
辅助线,怎么添?找出规律是关键,
题中若有角平分线,可向两边作垂线;
线段垂直平分线,引向两端把线连,
三角形两边中点,连接则成中位线;
三角形中有中线,延长中线翻一番。
圆中比例线段:
遇等积,改等比,横找竖找定相似;
不相似,别生气,等线等比来代替,
遇等比,改等积,引用射影和圆幂;
平行线,转比例,两端各自找关系。
正多边形口诀:
份相等分割圆,N值必须大于三,
依次连接各分点,内接正N边形在眼前。
经过分点做切线,切线相交N个点。
N个交点做顶点,外切正N边形便出现。
正N边形很美观,它有内接、外切圆,
内接、外切都唯一,两圆还是同心圆,
它的图形轴对称,N条对称轴都过圆心点,如果N轴为偶数,中心对称很方便。
正N边形做计算,边心距、半径是关键,
内切、外接圆半径,边心距、半径分别换,分成直角三角形2N个整,依次计算便简单。
函数学习口诀:
正比例函数是直线,图像一定过原点,
K的正负是关键,决定直线的象限,
负K经过二四限,X增大Y在减,
上下平移K不变,由引得到一次线,
向上加b向下减,图像经过三个限,
两点决定一条线,选定系数是关键。