煤层气水力压裂技术简介
- 格式:ppt
- 大小:1.02 MB
- 文档页数:24
煤层气藏特点及煤层气井压裂技术压裂酸化程技术中压裂酸化工程技术中心主要内容一、煤层气藏特点及压裂改造难点二、煤层气压裂工艺技术介绍三、煤层压裂施工分析及认识(以沁南区块为例)四、煤层压裂新思路一、煤层气藏特点及压裂改造难点分析煤层储气特点割理:主要的渗流通道,同时也是水的储集空间。
主要的煤层吸附气储集空间基岩微孔:主要的煤层吸附气储集空间。
一、煤层气藏特点及压裂改造难点分析煤层的解吸渗流特点降压解吸扩散渗流一、煤层气藏特点及压裂改造难点分析煤层开采特点¾煤层既是煤层气的生气源岩又是其储集层。
¾煤层气开采过程中存在一个临界解吸压力,当煤层压力高于解吸压力时,煤层气被吸附在煤层孔隙内表面,而非处于游离状态,这就要求在开采过程中井底气被吸附在煤层孔隙内表面而非处于游离状态这就要求在开采过程中井底流压必须低于其吸附压力。
¾煤层气的产出要经过解吸—扩散—渗流的过程。
煤层气含量越高,煤层气临界解吸压力越高,煤层气开始解吸产出时的地层弹性能量越高,临界解吸压力与原始煤层压力越接近,就越有利于煤层气的高产。
一、煤层气藏特点及压裂改造难点分析煤层具有较强的应力敏感性,压裂中易造成压敏伤害煤层具有较强的应力敏感性压裂中易造成压敏伤害基质岩体的软硬应力敏感性缝面支撑凸体分布岩石中裂缝抵抗闭合的过程,实际上是裂缝上下两面凹凸不平的接触变形过程,煤岩在所有岩体中最软,缝面最平整光滑,因此煤岩最软缝面最平整光滑因此煤岩应力敏感性最强。
一、煤层气藏特点及压裂改造难点分析围压增大后煤层气测渗透率急剧降低,当围压解除,渗透率只能恢复围压增大后煤层气测渗透率急剧降低当围压解除渗透率能恢复到原渗透率的45%左右,因此,压力敏感对煤层的伤害极大。
压裂过程应避免净压力的突然上升和下降,排采过程中应避免排采强度过大、避免流压上下波动,以减小压敏伤害。
一、煤层气藏特点及压裂改造难点分析煤岩具有易碎性,压裂过程中产生煤粉,对储层形成污染。
煤层气压裂技术及应用书煤层气是指埋藏在煤层中的天然气,是一种重要的清洁能源资源。
为了提高煤层气的采收率,保证煤层气井的稳产和有效开发,煤层气压裂技术应运而生。
本文将介绍煤层气压裂技术的原理、方法以及在实际应用中的关键问题。
煤层气压裂技术是指通过注入压裂液体,使其在含煤岩石中断裂,从而创造裂隙,增加天然气的流通面积和渗透率,提高煤层气的开采效果。
煤层气压裂技术主要包括水力压裂和气体压裂两种方法。
水力压裂是指通过注水泵将高压水注入煤层,增加煤层内的压力,使煤层裂开,从而促进煤层气与井筒的连接,提高煤层气的产量。
水力压裂的关键是选择合适的压裂液体,通常采用高浓度的水溶液和添加剂混合物,增加液体的黏度和稠度,提高水力压裂的效果。
水力压裂技术是煤层气开发中最常用的方法之一,广泛应用于大规模煤层气田的开发。
气体压裂是指通过注入压裂气体,利用气体的高压力将煤层断裂,创造裂隙,提高煤层气的渗透能力。
气体压裂主要包括液体氮压裂和临界点压裂两种方法。
液体氮压裂是指将低温液氮注入煤层中,通过氮气蒸发和煤层内部断裂,产生大量的裂隙和缝隙。
临界点压裂是指将临界点气体注入煤层,使煤层内的气体超过临界压力,从而引发煤层断裂,增加煤层气的产量。
气体压裂技术常用于较小规模的煤层气田开发中。
在煤层气压裂技术的应用中,存在一些关键问题需要解决。
首先是选井技术问题,包括选择合适的井位和井筒结构,以及合理布置井网,以提高压裂效果和采收率。
其次是压裂液体选择问题,包括选择适合的水质和添加剂,以及控制压裂液体的黏度和浓度,以提高煤层裂缝的渗透性和扩展性。
再次是压裂设计和施工问题,包括合理选择压裂参数,制定压裂方案,以及确保压裂工序的顺利进行。
最后是压裂后的油气开采问题,包括监测开采效果,调整开采方案,以及保证煤层气井稳定产量和长期运行。
总结起来,煤层气压裂技术是一种重要的煤层气开发方法,可以有效提高煤层气的产量和采收率。
通过水力压裂和气体压裂等方法,在煤层中创造裂隙和缝隙,增加煤层气的流通面积和渗透率。
煤层气井测试压裂解释及应用煤层气井测试压裂解释及应用煤层气是一种新型的能源,其开采与利用是当前我国能源领域的一项重要战略任务。
随着煤层气开采的深入,煤层气井开采压力逐步降低,致使煤层气的开采效率下降,这时需要采用压裂技术来提高采气效率,这就是煤层气井测试压裂技术。
一、煤层气井测试压裂技术概述煤层气井测试压裂技术是一种通过向煤层注入高压液体,使煤层产生裂缝,扩大煤层气通道,从而提高开采效率的技术。
该技术主要包括单硝酸甘油压裂、液压压裂、液体碎岩压裂、沙弹压裂等多种方法,其中以液压压裂最为常用。
液压压裂技术是一种将高压液体注入井内,通过井口充放口向井下送液强行将煤层撑起并裂开,煤层裂缝在拆除撑开压力后能够自行保持半永久性和可使煤层通气性和渗透性增加的技术。
针对不同的地质情况,液压压裂可分为水力压裂、气体压裂、泡沫压裂和混合压裂等,水力压裂是其中应用最为广泛的一种技术。
在进行煤层气井测试压裂前,需要进行试压并测定井下地质参数,根据实测参数进行压裂方案设计。
设计方案通常包括压裂液种类的选择、注入量、注入压力及持续时间等。
在进行压裂过程中,需要不断监测井下压力、压裂液注入量及煤层气产量等参数,及时进行控制和调整。
二、煤层气井测试压裂技术的应用煤层气井测试压裂技术在煤层气井的开采中具有重要的应用价值。
其应用主要包括以下几个方面:1. 提高煤层气井开采效率通过测试压裂技术可以扩大煤层裂缝,增加煤层渗透性,使煤层气开采效率得到提高。
2. 优化煤层气井的产能分布煤层气井测试压裂可以改善煤层裂缝的分布情况,促进煤层气的集中开采,提高整体产能。
3. 降低生产成本测试压裂技术可以提高开采效率和产能,降低生产成本,提高井产值。
4. 提高井下安全性煤层气井压裂需要对井下地质参数进行测量及压裂过程进行监测和控制,从而提高井下施工的安全性。
5. 推进煤层气井开采技术进步煤层气井测试压裂技术是一种新型的能源开采技术,其应用可以带动煤层气产业链的升级,推进煤层气井开采技术的进步。
水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。
工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。
随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。
技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。
初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。
现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。
技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。
石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。
天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。
非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。
地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。
设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。
井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。
注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。
压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。
煤层水力压裂典型裂缝形态分析与基本尺寸确定煤层水力压裂是一种通过高压水将煤层破裂的方法,常用于煤层气开采。
在水力压裂过程中,裂缝形态及其尺寸的确定对于煤层气开采有着重要的影响。
下面将对煤层水力压裂典型裂缝形态分析与基本尺寸确定进行阐述。
典型裂缝形态分析:1.折曲型裂缝:在煤层水力压裂过程中,若煤层中存在节理或含有岩层,则容易出现折曲型裂缝。
这种裂缝多为弯曲、交叉,长度较短,裂缝宽度较窄。
2.平直型裂缝:若煤层中不含岩层或较少含有节理,则容易形成平直型裂缝。
这种裂缝多为直线状,裂缝宽度较宽,长度较长。
3.网状型裂缝:网状型裂缝是由多个交叉的裂缝组成的,这种裂缝一般出现在煤层中含有多个节理的情况下。
裂缝的宽度和长度不一定相同,形态较复杂。
基本尺寸确定:1.裂缝高度:裂缝高度是指水力压裂后形成的煤层裂缝的高度。
裂缝高度的确定主要受煤层性质和水力压裂参数的影响。
煤层的厚度和裂缝高度的比率应在合理的范围内。
2.裂缝宽度:裂缝宽度是指水力压裂后形成的煤层裂缝的宽度。
裂缝宽度的大小决定了裂缝的通透性,因此选择合适的水力压裂参数是保证裂缝宽度的关键。
3.裂缝长度:裂缝长度是指水力压裂后形成的煤层裂缝的长度。
裂缝长度主要受煤层性质、水力压裂参数和裂缝类型的影响。
选择合适的水力压裂参数以及了解裂缝类型,对裂缝长度的确定十分重要。
总之,在进行煤层水力压裂前,了解煤层的结构性质和地质构造,选择合适的水力压裂参数,以及合理地确定裂缝形态和基本尺寸是非常必要的。
只有经过科学合理的设计,才能通过水力压裂技术更好地实现煤层气开采的目标。