当前位置:文档之家› 正渗透

正渗透

正渗透
正渗透

正渗透膜分离关键技术及其应用进展

摘要:正渗透是一种新型的膜分离技术,具有能耗低、膜污染小及回收率高等优点,近年来在国际上得到了广泛的关注.本文介绍正渗透膜分离技术的基本原理;综述正渗透膜分离关键技术驱动液与膜材料的最新进展;简述正渗透膜分离技术的最新应用;展望正渗透膜分离技术的重点研究方向.

关键词:正渗透;渗透压;膜材料;驱动液;醋酸纤维素(CA)膜材料

1.引言

随着现代经济的快速发展、世界人口的迅猛递增,全球淡水资源日渐短缺.目前,全球至少有12亿人喝不到安全洁净的水,大约有26亿人生活在淡水资源匮乏的地区,水资源短缺已经成为21世纪困扰人类最大的问题.在众多水处理方法中,反渗透(RO)是目前应用最成熟、最广泛的技术.然而,RO需要较高的水压抵消渗透压差,是能量密集型技术,同时,RO过程还存在回收率低、浓水排放、浓差极化和膜污染严重等问题.正渗透(forwardosmosis,FO)是近年来发展起来的一种用于污水处理和咸水淡化的新型膜分离技术.与压力驱动膜分离过程相比较,FO过程无需外加压力,而仅仅依靠渗透压驱动.因此FO运行过程中的能耗小,膜污染情况也会相对较少,可以长时间的运行而不需要频繁清洗.另外,FO技术在脱盐过程中回收率高,浓缩的盐水可通过结晶分离,没有浓盐水的排放,是环境友好型技术.因此,人们对发展FO技术的兴趣极大,对其应用研究的领域不仅仅停留在水处理、发电等方面,甚至拓展到了生命科学,如药物蛋白浓缩、药物释放和食品工程等领域.

2原理与特点

2.1基本原理

Lee 等(1981)较早地概况总结了反渗透(RO)、正渗透(FO)和减压渗透((Pressure Retarded Osmosis,PRO)过程的工作原理,如图 1 所示。

在RO 过程中,水在外加压力作用下从低化学势侧通过渗透膜扩散至高化学势侧溶液中( Δπ<ΔP),达到脱盐目的。正渗透过程刚好相反,水在渗透压作用下从化学势高的一侧自发扩散到化学势低的一侧溶液。而减压渗透可认为是反渗透和正渗透的中间过程,水压作用于渗透压梯度的反方向,水的净通量仍然是向浓缩液方向。这三个过程可以用下式来描述:Jw=A (σΔπ-ΔP );式中Jw—水通量;A—膜的水渗透性常数;σ—反扩散系数;Δπ—膜两侧的渗透压差;ΔP—膜两侧的压力差

2.2 浓差极化

大量的研究和实践表明,采用渗透压差为驱动力计算的正渗透的实际水通量要远远小于理论水通量,这是由于FO 过程中产生的浓差极化(CP)现象造成的。深入研究浓差极化现象,对于提高膜的水通量是非常重要的。

2.2.1 外浓差极化(External CP,ECP)

当用致密对称膜进行渗透分离时,原料侧由于水透过膜的传递使溶质被膜截留而造成膜表面浓度升高,导致浓缩的外浓差极化(concentrative ECP),这类似于压力驱动膜技术中的浓差极化。同时,汲取液侧的溶液在膜表面被渗透水稀释,导致稀释的外浓差极化(dilutive ECP)。假设原料液在膜表面的浓度与主体浓度之比等于相应渗透压之比,浓缩ECP可用式(1)表示。

(1)

式中,Jw表示实验渗透水通量;πF,m和πF,b分别表示原料液在膜表面和主体溶液中产生的渗透压;k 表示质量传递系数。稀释ECP 与浓缩ECP 相似,也可以用类似(1)的形式表示。这时,汲取液在膜表面浓度低于主体溶液中的浓度,假设汲取液在膜表面的浓度与主体溶液之比等于相应渗透压之比,稀释ECP 可用式(2)表示。

式中,πD,m和πD,b分别是汲取液在膜表面和主体溶液中产生的渗透压。

当存在浓缩ECP 和稀释ECP 时,膜的水通量可用式(3)表示。

(3)

式中,A 表示纯水渗透系数。减小ECP 对渗透驱动膜技术的有害影响可以通过增加流

速和强化膜表面湍流度或降低水通量来实现。但由于正渗透水通量还不高,通过降低水通量来减小ECP 是有限的。目前,致密对称膜已不再应用于渗透技术,因此式(3)的应用受到限制。

McCutcheon 等[6]发现内浓差极化为FO 膜水通量远远低于预期水通量的主要原因,ECP 所发挥的作用较小。

2.2.2 内浓差极化(Internal CP,ICP)

当FO 膜的多孔支撑层朝向原料液侧时(PRO模式),溶质会在支撑层孔内部得到积累,导致浓缩的内浓差极化(concentrative ICP)。当多孔支撑层朝向汲取液时(FO 模式),多孔底层结构内的汲取液被稀释,导致稀释的内浓差极化(dilutive ICP)。在PRO 模式中,假设盐完全通过多孔层,在多孔层外表面不发生ECP,则浓缩ICP 可用式(4)表示。

(4)

式中,πF,i表示多孔支撑层内活性层内侧原料液产生的渗透压;K 表示多孔支撑层内溶质扩散阻力。当存在浓缩ICP 和稀释ECP 时,并忽略盐的渗透,则膜的水通量可以用式(5)表示。

(5)

在FO 模式中,假设盐完全通过多孔层,在多孔层外表面不发生ECP,则稀释ICP 可用式(6)表示。

(6)

式中,πD,i表示多孔支撑层内活性层内侧的汲取液产生的渗透压。当存在稀释ICP 和浓缩ECP 时,并忽略盐的渗透,则膜的水通量可以用式(7)表示。

(7)

从以上各式可以看出,ECP 和ICP 对总的驱动力会产生负面影响,并且随着水通量增大,这种负面作用变大。以上有关ECP和ICP的讨论可用图1来进行直观表示。图1(a)中,当原料液流至膜表面时,水通过致密层,溶质被拦截,原料液溶质在致密层表面积累,发生浓缩ECP。原料液产生的渗透压由πF,b升为πF,m。水通过致密层后,汲取液被稀释,发生稀释ECP,汲取液产生的渗透压由πD,b降为πD,m。由此可见,驱动力由浓差极化前的πD,b–πF,b降为发生浓差极化后的?π(即πD,m–πF,m),有效渗透压降低了。图1(b)中,原料液溶质在支撑层孔内部得到积累,发生浓缩ICP,原料液产生的渗透压由πF,b升为πF,i。水通过活性层后,汲取液被稀释,发生稀释ECP,汲取液产生的渗透压由πD,b降为πD,m。由此可见,驱动力由浓差极化前的πD,b–πF,b降为浓差极化后的?π(即πD,m–πF,i),有效渗透压大大降低了。图1(c)中,原料液溶质在活性层表面浓缩,发生浓缩ECP,原料液产生的渗透压由πF,b升为πF,m。同时,多孔层内的汲取液被稀释,发生稀释ICP,汲取液产生的渗透压由πD,b降为πD,i。由此可见,驱动力由浓差极化前的(πD,b–πF,b)降为浓差极化后的?π(即πD,i–πF,m),有效渗透

压大大降低了。

(假定盐没有被多孔层截留,多孔支撑层不发生ECP;盐的渗透可忽略)。(a)对称致密膜,发生浓缩ECP 和稀释ECP;(b)非对称膜,其活性层朝向汲取液(PRO 模式),表示浓缩ICP 和稀释ECP;(c)非对称膜,其多孔支撑层朝向汲取液(FO 模式),表示稀释ICP 和浓缩ECP πD,b—汲取液在主体溶液中产生的渗透压;πD,m—汲取液在膜表面产生的渗透压;πF,b—原料液在主体溶液中产生的渗透压;πF,m—原料液在膜表面产生的渗透液;πD,i—FO 模式中汲取液的有效渗透压;πF,i—PRO 模式中原料液的有效渗透压;?π—有效渗透驱动力

2.3解决办法

稀释ICP 对驱动力的影响非常大。除原料液浓度和(或)渗透水通量相对高的情况之外,原料液侧的浓缩ICP 对驱动力的影响很小。溶质扩散阻力较小时,由于ICP 情况较轻,渗透产生的水通量较大。

多孔支撑层内溶质扩散阻力K 可用式(8)表示。

(8)

式中,D 表示溶质扩散系数;t、τ、ε分别表示支撑层的厚度、曲折度和孔隙率。K 可以用来表征溶质通过扩散作用进出支撑层的难易程度,因此可以用来度量ICP 的严重程度。研究发现,PRO 模式和FO 模式的tτ/ε平均值不同[21]。这可能是因为在多孔支撑层内NaCl浓度不同而导致扩散系数不同,也可能是由于多孔支撑层的不对称性引起的。该模型假设支撑层结构均一,然而实际不对称的膜结构则由于水和溶解离子的传递方向不同而可能导致不同的扩散行为。研究表明,在FO 模式中唯一有效减少ICP 的方法是减小溶质扩散阻力K[20],通过提高温度和改变汲取液溶质可以减小K。另外,优化膜材料,包括改善支撑层结构,使膜变得更薄或具有更多的孔,也可以减小K 值,从而可以提高膜的渗透性能和原料液回收率。

3醋酸纤维素正渗透膜的制备

FO过程的主要挑战就是选择合适的渗透试剂来制备汲取液以及制备可以提供高水通量、高截盐率的膜。醋酸纤维素因其较好的亲水性、化学稳定性及良好的成膜性,已经成功地用于制备NF和RO膜。

以醋酸纤维素(CA)为成膜材料,以聚酯筛网为支撑材料来制备正渗透膜,研究了聚合物浓度、环境湿度、凝胶浴温度、热处理温度对正渗透膜性能及形态结构的影响,以达到优化制膜条件制备性能优良的正渗透膜的目的

3.1药品

醋酸纤维素,MW=100000;三醋酸纤维素;1,4-二氧六环,分析纯;丙酮,分析纯;甲醇,分析纯;乳酸,分析纯;氯化钠,分析纯;葡萄糖,分析纯。

3.2正渗透膜的制备

将烘干的CA加入到一定体积比的1,4-二氧六环、丙酮、甲醇及乳酸的混合液中,在室温下搅拌溶解、静置24h以上使其完全脱泡。用刮刀在支撑材料上手工刮制成一定厚度的膜,在一定温度和湿度下,让溶剂挥发30s后,浸入到不同温度的去离子水中使其凝胶,得到非对称膜,凝胶2h以上,再在不同温度水浴中热处理10min,用去离子水充分清洗后放入1%亚硫酸氢钠溶液中保存备用。

3.3膜性能测试

正渗透膜性能评价装置如图1所示,

膜的有效面积为62.64cm,原料液为0.1mol/LNaCl,汲取液为4mol/L葡萄糖,分离层朝向原料液。调节原料液和汲取液的流速均为45L/h。

3.4结果与讨论

在膜材料确定的前提下,膜的性能取决于膜的结构,而膜的结构又受制备条件(工艺参数)的影响。本文采用相转化法制备了厚度约为110μm的醋酸纤维素正渗透膜,从聚合物浓度、环境湿度、凝胶浴温度、热处理温度等方面考察了其对膜结构和性能的影响。

(1)以醋酸纤维素(CA)作为成膜材料,聚酯筛网作为支撑材料,利用相转化法制备了正渗透膜。从SEM图中可以清楚看到膜表面致密光滑以及聚酯筛网的轮廓,从断面中可以看到该膜由很薄的皮层和多孔的支撑层构成,而聚酯筛网正好嵌入其中。

(2)聚合物浓度越高,膜水通量越小,而截盐率越高。为保证正渗透膜具有良好的

渗透性和选择性,

聚合物浓度宜选择10.4%~13.9%(体积分数)。

(3)环境湿度会影响溶剂挥发速度,从而影响膜的结构和性能。湿度由40%升高到85%,水通量呈现先升高后降低的趋势,在大约70%湿度下所制的膜性

能最佳。

(4)凝胶浴温度的提高会使膜通量有一定的降低,在0℃下凝胶,所制备正渗透膜

的水通量最高。

(5)热处理会在一定程度上使膜孔收缩,通量降低,截盐升高,在50~60℃

热处理所得到正渗透膜的性能较好。

.

4汲取液

正渗透膜过程的推动力是汲取液与原料液的渗透压差。所以汲取液的选取及其浓缩回用工艺也是正渗透膜过程的重要环节,尤其是汲取液的浓缩成本是是整个正渗透过程主要的能耗是正渗透技术发展的最大挑战。

汲取液应满足以下特点

( 1 )在水中溶解度大以便得到高渗透压。

( 2 )汲取液无毒性以确保用水安全。

( 3 )汲取液的物理化学腐蚀性尽可能的弱,以减少对膜的腐蚀;

(4) 汲取液应易分离且能耗低圈汲取液回收产生的能耗是整个正渗透过程主要的能耗.

目前研究使用较多的汲取液有无机盐溶液,可溶性气体溶液、蔗糖及果糖溶液等.

在处理垃圾渗滤液、印染废水等过程中,研究者一般采取无机盐水溶液作为汲取液,尤

其是NaC I溶液(海水、盐湖水、死海等)NaC I 溶液在低浓度下具有很高的渗透压,且无毒,分离回收采用常规的脱盐技术,如反渗透、蒸馏等而对于正渗透脱盐过程,因为不易回收、渗漏及污染等问题,这类小分子溶液汲取液实用价值较低;早期汲取液的研究主要集中在果糖、蔗糖、葡萄糖〕等大分子溶液此类汲取液在回收时可采用纳滤等手段,能耗较高,采用沉淀性盐(如硫酸铝)为汲取液溶质,再通过pH调节沉降硫酸铝而获取纯水哪此类体系在调节p H 中需要大量的化学试剂,需对分离出的淡水进一步处理,才能达到饮用水的标准成本很高.近几年来,在正渗透海水淡化等脱盐过程研究中多以挥发性气体水溶液如SO2,N H3一C O2水溶液为汲取液该过程只需少量的热能就能回收N H3、CO2 及SO2.如N H3一CO2体系,加热到5 8℃时,N H3和C O2便能从水中挥发从而实现分离,该体系特别适用于有余热供给的地方其能量消耗只需传统方式的十分之一耶鲁大学便采用N H3一CO2水溶液为汲取液,成功开发了正渗透海水淡化中试装置〕.不过N H3的残留是这个体系最大的障碍.另外,高水溶性磁性纳米粒子,如永磁铁蛋白也是一种潜在天然无毒汲取剂,通过无需额外能量施加磁场便可实现回收.但是,纳米粒子会出现凝聚现象,利用超声处理凝聚粒子后会减弱磁性,进而影响再生效果.最近,超亲水性纳米粒子也被用于汲取液的制备,利用超滤便可分离回收,反复5次未见凝聚现象,总之,汲取液的选取及回收关系到淡化水卫生安全及能耗,是正渗透膜过程的关键.

.

5正渗透膜分离技术的应用进展

在实际应用过程中,正渗透技术通常需要与其它膜分离技术如反渗透、纳滤、超滤及膜蒸馏技术等联用获得纯水及回收驱动液.目前,与FO技术联用的混合系统在海水淡化、污水处理、食品浓缩、制药工程及新能源等方面的应用都已有研究.下面分别简述FO技术在这几个方面的最新应用研究进展.

5.1海水淡化

FO用于海水淡化是其应用研究最为广泛的领域之一.在早期的研究中,人们便提出了便携水净化设备(“水袋”),将浓缩的果糖溶液作为驱动液盛于膜袋中,海水中的水分渗透到果糖驱动液中,稀释后的果糖液可作为富含营养物质的饮水.

美国耶鲁大学MenachemElimelech课题组利用HTI公司的FO膜,以碳酸氢铵/氨水混合溶液作为驱动液,开发了一套新型的正渗透海水淡化工艺,其工艺流程如图3所示.海水经FO处理后,水分进入驱动液中,稀释后的碳酸氢铵/氨水混合溶

液通过较低的温度加热(约60℃)下分解成

氨和二氧化碳气体,可以循环利用最近,MenachemElimelech课题组采用FO/RO联用系统,对用于生产灌溉用水的海水淡化工艺进行了研究,结果显示此工艺在改善产水水质的同时也降低了系统能耗,具有非常高的应用价值.Kim等]对正渗透、结晶及反渗透三个过程相结合的海水淡化工艺进行理论分析.通过这三个过程的匹配,制备纯水的能耗可以降低2.15kW·h/m.FO工艺在海水淡化过程中具有良好应用前景,但同时也存在较大的技术难点,如如何研制出适用于FO工艺的膜材料,以减小浓差极化带来的影响,提高膜通量;另一方面,高溶解度、易浓缩分离的驱动液的开发也是技术难点之一.

5.2污水处理

与海水相比较,污水的特性通常是渗透压较低但污染性严重.因此在污水处理方面,正渗透技术因其低污染的特性也具有较好的应用前景.Cath等提出用FO/RO联用技术,采用海水作为正渗透过程驱动液对污水进行处理,稀释的海水经过反渗透进行浓缩并制备出纯水;反渗透产生的浓水继续作为驱动液通过二次FO过程对浓缩的污水进行再次浓缩.通过这个系统的处理,同时达到了污水处理和海水淡化的目的,所制备的纯水经过多层屏障的保护,纯度也相对较高.另外采用FO膜取代传统超滤/微滤膜应用于膜生物反应器(MBR)中,组成了渗透膜生物反应器(osmoticmembranebioreactor,OM-BR,如图4).OMBR在污水处理过程中的膜污染情况相对于传统MBR大大减轻,并且能耗也大大降低需要指出的是,FO在废水处理中的应用,大多是起着浓缩污染物的作用,它虽然不是终端水处理

过程,但却是一个高效率、低能耗的前处理过程.

6 正渗透膜分离技术展望

作为一种新兴的膜分离技术,正渗透已在发电、海水淡化、污水处理、食品工程及制药工业等诸多领域中都表现出极大的应用潜力.然而,FO技术也面临着许多问题,如缺乏高效的驱动液及其再回收的方法,缺少商业化的正渗透膜材料等,阻碍了其工业化进程.因此,未来对正渗透膜分离技术的研究应重点放在驱动液和膜材料研究方面.

1)驱动液是正渗透过程的动力源,制备高渗透压、性能稳定、回收分离方便及价格适中的驱动液是正渗透技术研究的关键点,也是目前正渗透工业化应用所面临的技术瓶颈.2)对于膜材料研发,提高其在正渗透过程中的膜通量是最大的难点.正渗透过程中严重的浓差极化是导致水通量大大偏低的主要原因,因此通过改变制备工艺、改善材料结构,开发低浓差极化的正渗透膜是其研究的重要方向.尽管目前FO技术工业化应用研究还刚刚起步,但随着对正渗透膜分离关键材料研究的不断深入,我们相信在不久的将来,FO

技术将会更广泛地应用于各个领域。

正渗透膜分离技术

正渗透膜分离技术 研究背景 随着世界人口数量的迅速增长和矿物燃料的急剧消耗,水资源和能源已成为地球上两种至关重要的资源。水资源匮乏和能源危机困扰着全球许多不同的团体。据报导,世界上至少十二亿的人缺乏洁净安全的饮用水,有二十六亿的人缺少足够多的环境卫生设备。 膜技术是近几十年迅速发展起来的高效分离技术,因其节能、高效、经济、简单方便、无二次污染等一系列优点,在水处理中已被广泛地用于苦咸水淡化、海水淡化、工业给水处理、纯水及超纯水制备、废水处理、污水回用等。作为一种低能耗、低污染的绿色技术,新型的膜分离技术,正渗透(Forward osmosis,FO),在供水和产能方面拥有着巨大的潜能,甚至在食品加工行业、医药行业也有很好的应用前景,正逐渐成为人们关注和研究的热点。 膜分离技术 作为一种广泛应用的分离技术,膜处理的分离原理主要是在常温下使溶质和溶剂通过半渗透膜,达到分离、浓缩和纯化的目的,在这个过程中,驱动力一般为压力驱动或电位驱动。该技术的特点有以下几个方面: (1)膜分离过程在常温下进行分离。 (2)膜分离过程无相变化。 (3)膜分离技术的适用范围较广。 (4)膜分离效率高,分离效果好。 (5)膜分离技术采用装置简单,操作方便。 通常来说,膜分离技术,能够对不同的微粒、分子、离子进行有效的分离,膜材料亦丰富为醋酸纤维素(CA)、聚丙烯腈(PAN)、聚酰胺(PA)、聚砜(PS)、聚丙烯(PP)、聚偏氟乙烯(PVDF)、陶瓷膜等。 常见水处理膜分离技术主要有以下几类: (1)微滤(MF):由0.01~0.2 MPa的外加压力作为驱动力。膜的微孔直径处于微米范围,可截留粒径为0.1~10μm的悬浮物颗粒、纤维等。 (2)超滤(UF):超滤以0.1~1.0 MPa左右的压力差为推动力。分离膜的孔径在 0.0015~0.02μm之间。 (3)反渗透(RO):以1~70MPa左右的压力差为推动力。 (4)纳滤(NF):由0.5~1.5MPa的外加压力作为驱动力。 正渗透 在正渗透中,用于分离的驱动力主要为FO膜两侧的汲取液和原料液之间的渗透压差,使水从原料液(较低渗透压)一侧自发传递到汲取液(较高渗透压)。不同于传统的靠压力驱动的膜分离技术,比如微滤、超滤、纳滤与反渗透等,正渗透由于运行的原理不同,因此有着独有的优势,例如施加较低或不施加压力,导致更低的能耗,降低运行成本;正渗透的分离能力强,对污染物有着较高的截留率;正渗透污染几乎为可逆污染,因而清洗效率高;正渗透的膜装置组成简单,操作容易等。在众多领域内,正渗透近几十年来均有着广泛的应用,特别的,在一些重要领域如海

在数学教学中渗透基本的数学思想

美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在小学数学教育中有意识地向学生渗透一些基本数学思想方法是能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,能把知识的学习与培养能力、发展智力有机地统一起来,且它本身也蕴涵了情感素养的熏染,这也正是新课程标准充分强调的。《九年制义务教育全日制小学数学课程标准》以下简称《数学课程标准》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”因此,在小学数学教学阶段有意识地向学生渗透一些基本数学思想方法可以加深学生对数学概念、公式、定理、定律的理解,是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学教学进行素质教育的真正内涵之所在。 我是如何渗透数学思想方法: 一、改变应试教育观念,创新数学思想方法。数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。 其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。 二、课堂教学中及时渗透数学思想方法。为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼”这一课时,在解决问题的过程

中水处理技术

中水处理技术 ? 适用范围 广泛适用于宾馆、写字楼、饭店等公用场所。 主要技术内容 一、基本原理 YES中水处理,系采用生化处理法。其工艺流程如下: 洗浴废水格栅调节池(予曝气)毛发过滤器污水泵生物接触氧化池沉淀过滤(活性碳过滤备用)中水贮存池中水泵用水点 二、技术关健 采用水下曝气技术 主要技术指标及条件 一、技术指标 BOD<5㎎/l 污染程度的一个重要指标。其定义是:在有氧条件下,好氧微生物氧化分解单位体积水中有机物所消耗的游离氧的数量,表示单位为氧的毫克/升(O2,mg/l)。 一般有机物在微生物的新陈代谢作用下,其降解过程可分为两个阶段,第一阶段是有机物转化为CO2、NH3、和H2O的过程。第二阶段则是NH3进一步在亚硝化菌和硝化菌的作用下,转化为亚硝酸盐和硝酸盐,即所谓硝化过程。NH3已是无机物,污水的生化需氧量一般只指有机物在第一阶段生化反应所需要的氧量。微生物对有机物的降解与温度有关,一般最适宜的温度是15~30℃,所以在测定生化需氧量时一般以20℃作为测定的标准温度。20℃时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成在第一阶段的氧化分解过程(完成过程的99%)。就是说,测定第一阶段的生化需氧量,需要20天,这在

实际工作中是难以做到的。为此又规定一个标准时间,一般以5日作为测定BOD的标准时间,因而称之为五日生化需氧量,以BOD5表示之。BOD5约为BOD20的70%左右。 COD<7㎎/l 是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种、、、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性氧化法与氧化法。高锰酸钾(K2MnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中无法除去,故常通过补给水带入锅炉,使炉水值降低。有时有机物还可能带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀。在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。在循环冷却水系统中COD(DmnO4法)>5mg/L 时,水质已开始变差。 SS l㎎/l PH 8.0 二、条件要求 主要设备及运行管理 一、主要设备 毛发过滤器、水下曝气机、污水提升泵、机械过滤器、活性碳过滤柱、自动控制系统、过滤水泵、反冲洗水泵、中水泵、投药设备。 二、运行管理

正渗透的应用和技术优势---窦蒙蒙.

正渗透的应用和技术优势 姓名:班级:学号: 16121229 指导教师:于海琴 正渗透的应用和技术优势 摘要:作为一种新型膜处理技术,正渗透技术自20世纪50年代建立以来,在环保、能源、海水淡化等领域受到越来越广泛的关注;其经历了从实验室研究,中试实验,到少量的商业化应用,技术日臻完善。正渗透技术是利用自然渗透压差为驱动力的一种净水技术,为水资源和环境问题提供了低能耗、高效率的解决方法。该文介绍了正渗透的技术优势,以及正渗透在海水淡化、废水处理、污水回用、能源开发以及食品加工等领域的应用。 关键词:正渗透、技术优势、海水淡化、废水处理 I 1.引言

正渗透(Forward osmosis, FO)是近年来发展起来的一种浓度驱动的新型膜分离技术,它是依靠选择性渗透膜两侧的渗透压差为驱动力自发实现水传递的膜分离过程,是目前世界膜分离领域研究的热点之一。 1.1正渗透技术的原理和技术特点 1.1.1正渗透技术的原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高的水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)一侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(feed solution,FS),另一种为具有较高渗透压的汲取液(draw solution,DS)。正渗透正是依靠正渗透膜两侧的汲取液(draw solution,DS)和原料液(feed solution,FS)间的自然渗透压差,使水分子自发地从低渗透压侧(FS侧)传输到高渗透压侧(DS侧)而污染物被截留的膜分离过程,具体如图1所示。 图1.正渗透过程示意图 不同于传统膜分离过程,正渗透利用低水化学势的DS从高水化学势的FS吸取纯水,无需投入额外的驱动压力,因而其能耗低[1]。 1.1.2正渗透技术的技术特点 正渗透不同于压力驱动膜分离过程,它不需要额外的水力压力作为驱动力,而依靠汲取液与原料液的渗透压差自发实现膜分离。这一过程的实现需要几个必要条件:(1)可允许水通过而截留其他溶质分子或离子的选择性渗透膜及膜组件;(2)提供驱动力的汲取液;(3)对稀释后的汲取液再浓缩途径[2]。 早期关于正渗透过程研究均采用反渗透复合膜,发现膜通量普遍较低,主要原因是复合膜材料的多孔支撑层产生了内浓差极化现象,大大降低了渗透过程的效率。20 世纪90 年代,Osmotek 公司(Hydration Technologies Inc.(HTI)公司前身)开发了一种支撑型高强度正渗透膜,已被应用于多种领域,是目前最好的商

水处理技术方案

水处理技术方案 一、方案简介: 重要提示请仔细阅读此部分: 获得较好的冷却水处理结果,三分靠药剂,七分靠管理。冷却水每时每分都在蒸发浓缩,水中钙镁离子不断聚集。当钙镁离子浓度达到药剂处理最高临界点时,需要通过排出一部分浓缩的冷却水,补充新水来平衡冷却水系统内的钙镁离子浓度,以达到缓蚀阻垢、节约用水的目的。 要想精确控制平衡冷却水系统内钙镁离子浓度,通过人工加药排污或时钟控制加药、时钟控制排污是无法做到的。因为不知道何时系统内钙镁离子达到药剂处理临界点。定时排污时,有可能已经超过了药剂处理最高临界点,造成结垢风险。也有可能没到药剂处理最高临界点就排污,造成浪费水资源和药剂。 中央空调循环冷却水在线监测管理系统能够达到精确控制加药与排污。它是通过插入水中的电导率探头,时时监测水质变化,当达到药剂处理最高临界点时打开排污电磁阀开始排污、当达到排污预定下线时自动关闭排污电磁阀。 如何判定药剂最高处理临界点,每个药剂厂家数据都不相同。我单位是化验冷却水当时钙硬度和总碱度之和是否达到国标要求最上限 1100mg/L时的电导率来设定排污上线的。因为每个地区的补充水质不同,最高处理临界点时的电导率有可能是1500us/m2,有可能是1800us/m2、也有可能是2000us/m2、部分地区补水水质较好也有可能达到2300us/m2甚 至达到3800us/m2。根据贵司提供招标文件规定电导率必须达到 1800us/m2。我单位根据贵司补充水数据设计出冷却水加药量为100ml/T 即100毫升/吨的加药方案。 二、服务内容 ☆每二周现场提取循环冷却水水样进行化验; ☆根据化验结果提供排污方案;(如选旁流去离子水设备不用排污) ☆每二周提供一次化验结果报告; ☆培训甲方人员加药、排污等技术及方法;

渗透作用

第一节细胞的吸水和失水 【课标要求】观察植物细胞的质壁分离和复原。 【考向瞭望】细胞质壁分离和复原的探究过程和实验结果分析。 【教学目标】 1、知识与技能 (1)理解细胞吸水和失水的原理。 (2)初步学会设计实验的能力。 (3)学会观察植物细胞质壁分离现象。 2、过程与方法 (1)能通过图示和实验来归纳问题、总结规律; (2)能运用细胞吸水和失水的原理来解释生活和生产实践中的有关现象。 3、情感态度与价值观 体验并树立生物体结构和功能相适应、局部与整体相协调的科学世界观。 【重点与难点】 1、重点 细胞吸水和失水的原理。 2、难点 细胞吸水和失水的原理、质壁分离实验的设计。 【学习过程】 导入:生活中常见一些现象:白菜剁馅常放一些盐稍等一会就可见到有水渗出;农作物施肥过多会造成“烧苗”现象。这是细胞失水的现象。 体验制备细胞膜的试验中,我们采用哺乳动物成熟的红细胞进行实验,发现红细胞放在清水中,细胞会破裂。这是细胞吸水的现象。那细胞吸水失水是什么原理呢?什么情况会失水,什么情况会吸水?红细胞会吸水但会失水吗?植物细胞会吸水吗? 渗透作用 一、概念:是指水分子(或其他溶剂分子)通过半透膜的扩散过程。 二、常见渗透装置: 渗透装置是演示渗透现象的一个实验装置,这个渗透装置是由球形漏斗、烧杯、半透膜和内外不同溶液组成的,如图所示。 三、发生渗透作用的条件: ⑴漏斗内外溶液要有浓度差,漏斗内的液体(图中2)浓度要高于漏斗外的液体(图中1)浓度; ⑵封闭漏斗口的膜要是半透膜(图中3)。 符合这两个条件的渗透装置中漏斗内的液面才会上升。当然,这个装置高度差如果要保持,还需要一个隐含条件,漏斗内溶液的溶质分子要较大,不能透过半透膜。 四、渗透原理的分析

正渗透技术

正渗透技术—水处理领域投资新热点 时间:2011-08-09 来源:科学时报作者:郭勉愈 新投资热点 中国工程院院士、国家海洋局杭州水处理技术开发中心膜与膜过程实验室主任高从堦告诉记者,正渗透技术为水资源和环境问题提供了低能耗、高效率的解决方法,是一种实用性很强的环境友好型技术。其应用范围已经包括海水淡化、水净化、废水处理、食品、医药、能源等领域。 在医药领域,利用正向渗透技术制造的渗透泵能够实现药物剂量的精确释放、靶向输送和剂量控制。食品加工应用正渗透保存食品(水果、肉类等)已很普遍,正向渗透浓缩饮料和流质食物很好地保留了食品本来的色、香、味和营养价值,深受人们喜爱。 高从堦表示,正渗透技术在能源领域也有巨大的市场潜力,它可以利用河流入海口地区海水与河水之间的渗透压差来发电,欧洲国家已经把目光瞄准了这个市场。 在这一领域处于国际领先地位的是挪威。2008年,挪威国家能源集团在布斯克吕德郡建设了世界首个海洋渗透压发电厂,工程中使用了2000平方米的正渗透膜。预计到2015年,发电厂将成熟到可以将其电力正常入网的状态。 高从堦告诉记者,对于像我国这样能源紧张的国家来说,渗透压发电是理想的选择。挪威的经验可以作为我国将来发展渗透压发电的借鉴。 国际大型的水处理公司也纷纷致力于正渗透技术的商业化应用。 目前最好的商业化正渗透膜是美国水化技术创新公司的支撑型高强度膜,该公司成立于1987年,是公认的正渗透技术的先行者。水化技术创新公司在2004年推出一款基于正渗透原理的便携式水过滤器。在这种过滤器里,正渗透膜被封入小型密封塑料包,包中还含有由糖、香料、饮料粉末等组成的可食用汲取液。把这种膜包浸入脏水,水在渗透压作用下扩散

正渗透技术处理水和废水

正渗透技术处理水和废水 1 引言 膜分离技术由于出水水质高、设备简单易操作、能耗相对较低、适应性强等特点,在水处理领域获得越来越多的关注.目前应用于水处理领域的几种膜分离技术.其中微滤(microfiltration,MF)、超滤(ultrafiltration,UF)、纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)由机械压力驱动传质过程,是水和废水处理的常规技术.其他膜技术,如温度差驱动的膜蒸馏技术(membrane distillation,MD),电场驱动的电渗析技术(electro-dialysis,ED),一些由化学反应驱动的膜吸收技术(membrane absorption,MA)等也成为水处理领域的新型技术.正渗透(forward osmosis,FO)是一种由渗透压(浓度差)驱动的新型膜技术.可用于海水脱盐、废水处理等方面. FO膜是一种渗透膜.名义孔径在1 nm以下,用于截留溶解性离子和盐类等物质,与RO 相当.但与RO相比,FO无需外加机械压力,具有低压操作、低膜污染、高截留的优点,近年来在水处理领域受到较多关注. 2 FO原理(Basic principle of FO) FO膜是一种选择性渗透膜,膜的一侧是低渗透压的待处理水,另一侧是高渗透压的汲取液,水分子透过FO膜从低渗透压侧扩散到高渗透压侧,从而实现水与杂质的分离(图 1).该过程的驱动力是膜两侧溶液的渗透压差,不需外界提供压力. 图 1 FO工艺的原理示意图 2.1 FO应用与运行效果 2.1.1 海水(浓盐水)脱盐 FO已被用于含盐废水、含盐地下水、盐湖水和海水的脱盐.大多数为实验室规模的小试研究,汲取液采用难挥发性(NaCl,Na2SO4,MgSO4等)或挥发性(NH3/CO2和NH4HCO3)盐溶液.其中Zhao等进行的盐湖水脱盐,回收率达到70%.McGinnis等采用中试规模的FO处理高盐水(TDS>70,000 ppm),回收率达到60%,与蒸发浓缩技术相当,出水水质达标(美国宾州

正渗透技术处理电镀废水

正渗透技术处理电镀废水 一、引言 近年来,我国电子、机械、汽车等行业发展迅速,对镀件的大量需求带动了电镀产业的迅猛发展。国内大约有2万多家从事电镀生产的企业,它们每年排放大量的污染物,其中包括约4亿t含重金属的废水、5万t固体废物、3000亿m3酸性废气。电镀废水的危害巨大,特别是对水体和环境会造成严重破坏。随着搁置时间的延长,电镀废水毒性也会增强,进一步对生态环境带来更大的破坏。与其他污染相比,电镀废水的危害程度远远超出其他污染。因此,采取科学合理的处理方法处置电镀废水是非常重要的。 目前,对电镀废水的处理方法多种多样:陈俊峰等运用化学法处理含铬、镍、氰的电镀废水,即氧化还原、酸碱中和、化学沉淀、固液分离方法,这种方法最传统,也最简单可靠,目前全球80%的电镀废水处理技术用的都是化学法。但用这种方法产生的污泥量大,处理水的质量也不够高,生物处理技术常用于去除有机物、氮磷、悬浮物等污染物质。由于电镀废水中重金属离子和某些有机化合物会抑制或扼杀微生物,目前尚无稳定有效的微生物菌种可以直接处理电镀废水,通常需经过物理、化学法等预处理后再进入生物处理系统,高丽娟等运用离子交换法处理电镀废水,这种方法使用的离子交换树脂易被废水中有机物污染,使得树脂重复使用率不高。因此,开发运用一种高效、节能的处理方法迫在眉睫。正渗透(FO)是一种无需外界驱动力的新型膜处理工艺,相比纳滤和反渗透技术,其截留效果显著、能耗较低,因此受到广泛关注,并且被用于海水淡化、废水处理等领域。本研究采用聚酰胺正渗透膜(TFC膜)和筛网内嵌式三醋酸纤维素正渗透膜(CTA膜)浓缩电镀废水,实时监测水通量变化,通过SEM、EDS、AFM、XRD、XPS等表征手段,分析两种膜表面污染产生的具体原因,为今后运用正渗透技术处理电镀废水提供参考。 二、实验部分 2.1.实验材料与仪器 在该研究中,使用聚酰胺正渗透膜(TFC膜)和筛网内嵌式三醋酸纤维素正渗透膜(CTA 膜)。CTA膜由三乙酸纤维素层和嵌入的编织支撑网组成。TFC膜由多孔聚砜支撑层顶部的薄选择性聚酰胺活性层制成。氯化钾(KCl)购于国药集团,电镀废水取至无锡某汽车零部件有限公司,此废水经过初步物化处理,废水基本信息见表1。 2.2.FO装置的运行 将FO装置放于温度恒定(25℃±1℃)的室内环境。膜反应元件由两块亚克力板组成,膜材料被夹在亚克力板之间。膜两侧放置支撑网格以缓解水流的冲击作用,原料液和汲取液通

小学数学基本思想方法的渗透之我见

小学数学基本思想方法的渗透之我见 问题是数学的心脏,方法是数学的行为,思想是数学的灵魂,未来的数学课程体系是“数学思想方法与数学知识”的合理组合。美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在一个人的一生中,最有用的不但是数学知识,更重要的是数学的思想和数学的意识。所以在小学数学的教学中要不失时机地对学生实行数学思想方法的渗透。要在小学阶段渗透数学基本思想方法能够从以下几个方面入手:(一)在确定教学目标、实施教学过程、落实教学效果中,有意识地体现数学思想方法,在掌握重点、 突破难点中,有意识地使用数学思想方法。 (二)在回顾整理中,有意识地画龙点睛,突出数学思想方法,适时地对某种数学思想方法实行揭示概括和强化,对它的名称、内容、规律、使用等有意识地点拨,不但能够使学生从数学思想方法的高度把握知识的本质和内在的规律,而且可使学生逐步体会数学思想方法的精神实质。 (三)使用一些渗透数学思想方法的题目有意识地从教学目标的确定、教学过程的实施,教学效果的落实等各个方面来体现,使每节课的教学目标获得和谐的统一。 数学的基本思想方法对于小学数学教材中培养学生的创新精神、科学精神和实践水平都有极其重要的 意义 古往今来,数学思想方法很多,每一种数学思想方法都闪烁着人类智慧的火花。根据小学生的年龄特点,结合自己的教学,下面介绍几种小学数学中常用的思想方法: (一)化归思想。 化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。理应指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的 单向性。 例1 :狐狸和黄鼠狼实行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另 一个跳了多少米? 这是一个实际问题,但通过度析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过度析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学水平的表现之 一。 (二)类比思想。 数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不但使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而能够激发起学生的创造力,正如数学家波利亚所说:“我们应该讨论一般化和特殊化和类比的这些过程本身,它们是获得发现的伟大源泉。” 如由加法交换律a+b=b+a的学习迁移到乘法分配律a×b=b×a的学习。 (三)分类思想 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如三角形能够按边分,也能够按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的准确、合理的分类取决于分类标准的准确、合理性,数学知识的分类有助于学生对知识的梳理和建 构。

[水处理技术]十种常用水处理方法

[水处理技术]十种常用水处理方法 沉淀物过滤法 沉淀物过滤法的目的是将水源内之悬浮颗粒物质或胶体物 质清除干净。这些颗粒物质如果没有清除,会对透析用水其它精密的过滤膜造成破坏或甚至水路的阻塞。这是最古老且最简单的净水法,所以这个步骤常用在水纯化的初步处理,或有必要时,在管路中也会多加入几个滤器(filter)以清除体积较大的杂质。滤过悬浮的颗粒物质所使用的滤器种类很多,例如网状滤器,沙状滤器(如石英沙等)或膜状滤器等。只要颗粒大小大于这些孔洞之大小,就会被阻挡下来。对于溶解于水中的离子,就无法阻拦下来。如果滤器太久没有更换或清洗,堆积在滤器上的颗粒物质会愈来愈多,则水流量及水压会逐渐减少。人们就是利用入水压与出水压差来判断滤器被阻塞的程度。因此滤器要定时逆冲以排除堆积其上的杂质,同时也要在固定时间内更换滤器。沉淀物过滤法还有一个问题值得注意,因为颗粒物质不断被阻拦而堆积下来,这些物质面或许有细菌在此繁殖,并释放毒性物质通过滤器,造成热原反应,所以要经常更换滤器,原则上进水与出水的压力落差升高达到原先的五倍时,就需要换掉滤器。2硬水软化法 硬水的软化需使用离子交换法,它的目的是利用阳离子交换

树脂以钠离子来交换硬水中的钙与镁离子,以此来降低水源内之钙镁离子的浓度。其软化的反应式如下: Ca2++2Na-EX→Ca-EX2+2Na+1Mg2++2Na-EX→Mg-EX2+ 2Na+1式中的EX表示离子交换树脂,这些离子交换树脂结合了Ca2+及Mg2+之後,将原本含在其内的Na+离子释放出来。树脂基质(resin matrix)内藏氯化钠,在硬水软化的过程中,钠离子会逐渐被使用耗尽,则交换树脂的软化效果也会逐渐降低,这时需要作还原(regeneration)的工作,也就是每隔固定时间加入特定浓度的盐水,一般是10%,其反应方式如下:Ca-EX2+2Na+ (浓盐水)→ 2Na-EX+Ca2+Mg-EX2+2Na+ (浓盐水)→ 2Na-EX+Mg2+如果水处理的过程中没有阳离子的软化,不只是逆渗透膜上会有钙镁体的沉积以致降低功效甚至破坏逆渗透膜,长期饮用也容易得到硬水症候群。硬水软化器也会引起细菌繁殖的问题,所以设备上需要有逆冲的功能,一段时间後就要逆冲一次以防止太多杂质吸附其上。全自动钠离子交换器采用离子交换原理,去除水中的钙、镁等结垢离子。当含有硬度离子的原水通过交换器内树脂层时,水中的钙、镁离子便与树脂吸附的钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交换器内流出的水就是去掉了硬度的软化水。 3去离子法

专题13 渗透作用的原理及应用 考点知识点大全

专题13 渗透作用的原理及应用 高考频度:★★★☆☆难易程度:★★★☆☆ 1.渗透作用原理 (1)发生渗透作用的条件 ①具有半透膜。 ②膜两侧溶液具有浓度差。 (2)渗透作用的实质:单位时间内由清水进入蔗糖溶液中的水分子数多于由蔗糖溶液进入清水中的水分子数,导致蔗糖溶液液面上升。 2.动植物细胞的渗透吸水和失水 (1) (2)成熟植物细胞的吸水和失水 ①当外界溶液浓度>细胞液浓度时,细胞失水,发生质壁分离现象。 ②当外界溶液浓度<细胞液浓度时,细胞吸水,失水的细胞发生质壁分离复原现象。 3.观察植物细胞的质壁分离和复原 (1)实验原理 ①成熟的植物细胞的原生质层相当于一层半透膜。 ②细胞液具有一定的浓度,能渗透吸水和失水。 ③原生质层比细胞壁的伸缩性大得多。 (2)实验步骤

考向一渗透作用的发生 1.某同学设计了如图所示的渗透作用实验装置,实验开始时长颈漏斗内外液面平齐,记为零液面。实验开始后,长颈漏斗内部液面的变化趋势为 【参考答案】B 易错警示

走出渗透作用发生的“4”个误区 (1)水分子的移动方向是双向移动,但最终结果是由低浓度溶液流向高浓度溶液的水分子数多。 (2)实验中观察指标为漏斗内液面变化,但不能用烧杯液面变化作描述指标,因为现象不明显。 (3)渗透系统的溶液浓度指物质的量浓度而非质量浓度,实质是指渗透压。 (4)如果溶质分子不能透过半透膜,在达到渗透平衡时,一般两侧溶液的浓度并不相等,因为液面高的一侧形成的静水压,会阻止溶剂由低浓度一侧向高浓度一侧扩散。 2.下图为研究渗透作用的实验装置,漏斗内溶液(S1)和漏斗外溶液(S2)为两种不同浓度的蔗糖溶液,水分子可以透过半透膜,而蔗糖分子则不能。当渗透达到平衡时,液面差为m。下列叙述正确的是 A.渗透平衡时,溶液S1的浓度等于溶液S2的浓度 B.若向漏斗中加入蔗糖分子,则平衡时m变小 C.达到渗透平衡时,仍有水分子通过半透膜进出 D.若吸出漏斗中高出烧杯液面的溶液,再次平衡时m将增大 【答案】C 项正确;吸出漏斗中高出烧杯液面的溶液,再次平衡时m将减小,D项错误。 考向二细胞吸水与失水的实验结果分析 3.如图曲线表示完全相同的两个植物细胞分别放置在A、B溶液中,细胞失水量的变化情况。相关叙述不

正渗透技术

正渗透技术:海水淡化的新发展 日期:2010-11-2 联合国日前一份报告预测,到2025年,全球三分之二的人口都将面临饮水危机。人口增长以及降雨模式的变化将使许多国家把海洋作为饮用水的潜在来源。但由于海水淡化过程中能源需求庞大,目前的技术尚无法解决人们迫在眉睫的问题。而据《新科学家》报道,相对于传统的反渗透技术,研究人员找到了 能效相对较高的替代性选择——正渗透技术。 现代反渗透海水淡化工厂的能耗效虽然比几十年前有所提高,但一座年生产1.5亿立方米淡水的海水淡化厂也会消耗90兆瓦电力,相当于20台海上风力涡轮机的峰值输出。反渗透是一个内在的能源密集型过程,自然过程中水流由淡变咸,而反渗透过程正好相反。如果在海水中注入高浓度的“汲取液”,淡水就可以轻而易举地被提取出来,这就是一些已经开始出现的试验性“正渗透”工厂背后的原理。 美国水化技术创新公司(Hydration Technology Innovations)2004年就推出了一种基于正渗透原理的便携式水过滤器。正渗透膜被封入小型密封塑料包,包中还含有糖和香料充当汲取液来源。但是该过滤器生产清洁饮用水的成本较高,只能用于紧急情况,因此无法应对世界性水源危机。 同样是2004年,美国耶鲁大学由梅纳赫姆·伊利米勒(Menachem Elimelech)、杰弗里·麦卡琴(Jeffrey McCutcheon)、罗伯特·麦金尼斯(Robert McGinnis)组成的研究小组将正渗透理念进一步推进。该小组使用了一种基于碳酸氢铵的汲取液,铵离子和碳酸氢盐离子可以吸引水分子通过薄膜,然后加热溶液至40摄氏度,氨气和二氧化碳便会排出,留下纯净的淡水,而排出的气体可捕获后重新使用。研究小组称,如果能利用发电厂的余热蒸发气体,该方法的能耗仅是目前海水淡化工厂的20%,但这种技术对工 厂的选址要求较高。 正渗透技术面临的另一个挑战是找到合适的薄膜,只让水分通过,排除盐分在外。《海水淡化报导》的编辑汤姆·潘克拉茨(Tom Pankratz)表示:“这是正渗透产业面临的主要障碍。”正渗透膜不仅需要厚度尽量薄,以便让海水接近吸引溶液,保持高渗透压;同时也需要足够强韧,可抵抗渗透产生的水流。 水化技术创新公司开发了一种纤维素薄膜,但该膜却无法抵抗碳酸氢铵溶液的碱性。为了抵挡反渗透过程的高压,反渗透膜需要“支撑层”来强化其韧性,但如果用于正渗透,这层膜就显得过厚了。 耶鲁大学研究小组认识到,如果将支撑层出去,就可以获得合适的正渗透膜。通过试验不同的聚合物溶液,该小组找到了一种利用替代支撑层制造薄膜的方法。新薄膜除了又薄又韧外,渗透性也很好。试验中,新正渗透膜的膜通量是传统反渗透膜的9倍,能够过滤97%的盐分。伊利米勒表示,试验采用的是“手工实验室版”新薄膜,如果新膜能以工业规模生产,其性能会更好。 南洋理工大学的新加坡膜技术中心副主任王蓉(Wang Rong)最近研发出一种由微管状纤维构成的薄膜,可以使用碳酸氢铵作为汲取液。王蓉表示,这种薄膜有望使海水淡化工厂的能耗降低至少30%。中心主任托尼·费恩(Tony Fane)说,该膜的生产过程非常简单,大型海水淡化设施可按需进行组装。 英国现代之水公司(Modern Water)称已经解决了正渗透膜问题,并成功部署了正渗透装置来淡化海水,工厂能耗比传统海水淡化低30%。公司没有使用碳酸氢铵,而是利用了一种专用盐类。该公司称,新技术已经用于一座示范工厂和另一座完整规模的工厂。 尽管正渗透技术潜力巨大,但它仍存在许多障碍需要克服。美国科罗拉多矿业大学水净化专家泰西·卡斯(Tzahi Cath)认为,耶鲁大学研究小组的想法很完善,但他不认为蒸发碳酸氢铵气体的废热能够便宜到让该过程具有经济性。伊利诺斯大学海水淡化材料专家马克·香农(Mark Shannon)表示, 正渗透膜的成本过高,需求量也很大。 而两位专家都认为,正渗透技术在回收废水方面潜力巨大。香农说,由于咸度比海水低,渗透压较高,废水的膜通量更高。正渗透技术同理还可用于处理深层地下水、河口水等苦咸水。深层地下水的储量非常丰富。香农表示,几乎每个大陆下面都存在大量的苦咸水,正渗透技术有望取得了不起的成就。正渗透技术面临的另一个挑战是找到合适的薄膜,只让水分通过,排除盐分在外。《海水淡化报导》的编辑汤姆·潘克拉茨(TomPankratz)表示:“这是正渗透产业面临的主要障碍。”正渗透膜不仅需要厚

正渗透膜制备的研究进展

龙源期刊网 https://www.doczj.com/doc/b43324067.html, 正渗透膜制备的研究进展 作者:张小月 来源:《中国科技博览》2017年第12期 [摘要]自二十世纪,正渗透便由于其节约能源的优势逐渐走进人们的视野,越来越多的人对正渗透技术进行研究,期望更完善正渗透技术,将其应用于水处理。正渗透处理技术具有节能高效、经济简单[1]、耐污染[2]、高回收率[3]等特点,然而汲取液的选择[4]、浓差极化现象[5]等都会对正渗透膜性能产生影响。基于此,本文综合了国内外的相关文献,总结了近年来 正渗透技术在膜制备方面的研究现状及发展,发现目前研究者们主要是通过改进制膜材料、共混改性、界面聚合、改善膜结构的方法对正渗透膜改性,且每种方法都各有优劣,希望通过本文能够给正渗透膜的发展提供理论依据。 [关键词]正渗透共混改性界面聚合 中图分类号:TM73 文献标识码:A 文章编号:1009-914X(2017)12-0249-02 1、引言 随着社会经济的不断发展,水资源问题也逐渐进入人们的视野;同时,为了实现能源与水资源的合理协调,正渗透技术凭借其节约能源的优势受到了学者的广泛关注。正渗透技术具有能耗低、水回收率高、膜污染小的特点,被广泛应用于海水脱盐[6]、废水再生[7]、纯水及超纯水制备、食品加工及医药行业等。同时,正渗透技术也可用于处理油砂尾矿水[8]、脱除水 中的重金属离子例如钴离子[9]等。在某些水资源短缺、水污染严重的地区,正渗透技术凭借 其低成本、低能耗、低化学药剂使用等特点被广泛使用。但是,正渗透膜本身也有很多限制因素:膜污染、内浓差极化、膜的孔隙率[10]以及机械强度等都会影响正渗透技术的性能。基于此,研究者们不断对正渗透技术改进,对正渗透膜进行改性或改变正渗透技术的使用时用到的汲取液,希望大幅度提高正渗透技术的可应用性。 本文综述了近些年正渗透技术发展过程中所应用到的正渗透膜改性方法,展望了正渗透膜的研究方向和前景,希望能够为以后的正渗透膜改性提供理论依据。 2、正渗透膜改性 正渗透技术比超滤、纳滤、反渗透等过滤方式有很多独有的特点,但是在正渗透膜的商业化应用中,正渗透技术仍然存在许多问题,在其不断发展的过程中,研究者们不断对正渗透技术进行改进。目前,主要的正渗透膜改性技术包括选择不同的铸膜材料、共混改性、界面聚合以及对基膜增加筛网或无纺布。 2.1、不同的铸膜材料

小学数学教学中渗透数学思想方法的策略与途径

小学数学教学中渗透数学思想方法的策略与途径 重视数学“双基”教学,是我国中小学数学教学的传统优势;但毋庸置疑,其本身也存在着诸多局限性。如何继承和发展“双基”教学,是当前数学教育研究的一个重要课题。《上海市中小学数学课程标准》对此明确指出,“应与时俱进地重新审视数学基础”,并提出了新的数学基础观,其中把数学思想方法作为数学基础知识的一项重要内容。中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”与以往教材相比,上海市小学数学新教材更加重视渗透数学思想方法的教学,把基本的数学思想方法作为选择和安排教学内容的重要线索。让学生通过基础知识和基本技能的学习,懂得有条理地思考和简明清晰地表达思考过程,运用数学的思想方法分析和解决问题,以更好地理解和掌握数学内容,形成良好的思维品质,为学生后续学习奠定扎实的基础。面对新课程背景下渗透数学思想方法教学的新要求,作为新教材的实施者,下面就小学数学课堂教学中渗透数学思想方法的策略与途径,谈谈自己的一些认识与实践。 一、小学数学教学中渗透数学思想方法的策略 1、渗透数学思想方法应加强过程性 渗透数学思想方法,并不是将其从外部注入到数学知识的教学之中。因为数学思想方法是与数学知识的发生发展和解决问题的过程联系在一起的内部之物。教学中不直接点明所应用的数学思想方法,而应该引导学生在数学活动过程中潜移默化地体验蕴含其中的数学思想方法,切忌生搬硬套、和盘托出。例如学生写出几个商是2的除法算式,通过观察可以归纳出被除数、除数和商之间的关系,大胆猜想出商不变的规律:可能是被除数和除数同时乘以或除以同一个数(零除外),商不变;也可能是同时加上或减去同一个数,商不变。到底何种猜想为真?学生带着问题运用不完全归纳举例验证自己的猜想,最终得到了“商不变性质”。所以学生获得“商不变性质”的过程,又是归纳、猜想、验证的体验过程,绝不是从外部加上一个归纳猜想验证。学生一旦感悟到这种思想,就会联想到加减法和乘法是否也存在类似的规律,从而把探究过程延续到课外。 2、渗透数学思想方法应强调反复性 小学生对数学思想方法领会和掌握有一个“从具体到抽象,从感性到理性”的认知过程,在反复渗透和应用中才能增进理解。例如学生对极限思想的领会就需要一个较长的反复认识过程。如刚认数时,让学生看到自然数0、1、2、3……是“数不完”的,初步体验到自然数有“无限多个”;学生举例验证乘法分配律,在举不完的情况下用省略号或字母符号表示;教学梯形面积计算公式之后,让梯形的上底无限逼近于0,得到三角形的面积计算公式……让学生多次经历在有限的时空里去领略“无限”的含义,最终达到对极限思想的理解。同时在具体进行教学时,教师应放慢脚步,使学生在充分地列举、不断地体验中,感悟“无限多、无限逼近”思想。如教学“圆的认识”时,学生画了几条对称轴后,我问这样的对称轴画得完吗?有的说画不完,有的说这么小的圆应该画得完吧。于是我让学生继续画,看到学生画得有些不耐烦了,再让他们观察课件演示“不断画”的画面,从而确信了“圆有无数条对称轴”。数学思想方法较数学知识有更大的抽象性和概括性,只有在教学过程中反复、长期地渗透,才能收到较好的效果。 3、渗透数学思想方法应注重系统性 数学思想方法的渗透要由浅入深,对数学思想方法的挖掘、理解和应用的程度,教师应作长远的规划。一般地,每一种数学思想方法总是随着数学知识的逐步加深而表现出一定的递进性,因而渗透时要体现出孕育、形成和发展的层次性。例如在组织学习“两位数加两位数”时,要体现出“化归”思想的孕育期:学生计算“36+17”时,一般有“(30+10)+(6+7)、36+10+7、36+4+13、36+20-3”等方法,从中看出学生已经有将复杂问题转化为简单问题的意识;在进行两位数乘除法的教学中,要逐步引导学生对此有较清晰的认识;在教学

水处理中正渗透膜分离技术的应用

水处理中正渗透膜分离技术的应用 摘要:渗透(osmosis)是一种仅依靠渗透压驱动的分离过程,基于渗透现象发展起来的正渗透膜分离技术,目前该技术在国际都得到了广泛的应用。本文章综述了水处理中正渗透膜分离技术应用过程的基本原理、应用现状以及水处理正渗透膜分离技术的应用领域,并对未来水处理中正渗透膜分离技术的应用方向提出了展望。希望在未来其技术能得到更加广泛的应用与发展。 关键词:正渗透应用水处理膜分离技术 一、前言 20世纪60年代起,对膜分离技术从实验室研究已经进入到了工业行业的实际应用,直至现在,它已应用到水处理,食品加工,制药工程,医学以及能源等不同的领域。正渗透(Forward osmosis,FO)是一种不需外加压力做驱动力,而仅依靠渗透压驱动的膜分离过程。正渗透膜分离技术与外加压力驱动的膜分离技术最大的区别就是正渗透膜分离技术不需要外加压力或在较低的外加压力下运行,并且膜污染情况相对较轻,在持续长时间运行后无需清洗。水处理中正渗透膜分离技术目前在国际上诸如美国、新加坡、欧洲等国家和地区已得到大量研究和应用。 二、水处理中正渗透膜分离技术的基本原理 正渗透是浓度驱动型的膜过程,它依靠选择性渗透膜两侧的渗透压差为驱动力来自发的实现水在膜中的传递。也就是指水从较高水化学势(或较低渗透压)一侧区域通过选择透过性膜流向较低水化学势(或较高渗透压)—侧区域的过程。在具有选择透过性膜的两侧分别放置两种具有不同渗透压的溶液,一种为具有较低渗透压的原料液(Feed solution),另一种为具有较高渗透压的驱动液(Draw solution),正渗透正是应用了膜两侧溶液的渗透压差作为驱动力,才使得水能自发地从原料液一侧透过选择透过性膜到达驱动液—侧。当对渗透压高的一侧溶液施加一个小于渗透压差的外加压力的时候,水仍然会从原料液压一侧流向驱动液—侧,这种过程叫做压力阻尼渗透(Pressure-retarded osmosis,PRO)。压力阻尼渗透的驱动力仍然是渗透压,因此它也是一种正渗透过程。水处理中正渗透膜分离技术应用正是基于这种原理。 三、水处理正渗透膜分离技术应用现状 正渗透膜过程,具有三低优势,即低压操作,低能耗和低污染,在水处理领域已得到了一定的应用。但是国内并不多见其应用报道,所以说应用不是很多,尽管如此,这一技术仍然具有很大的应用价值和光明的应用前景。如果要大范围普及正渗透膜分离技术,仍需做很多努力。包括了我国对正渗透膜分离技术研究不多,特别是在水处理应用上缺乏经验参数,这需要进行大量的实验,从而积累经验;目前所拥有的正渗透膜性能太低,品种不全、不优;缺少既经济又高效的汲取液体系和汲取液再浓缩途径。 鉴于水处理正渗透膜分离技术仍存在比较多的问题,在今后的研究和应用方面应该从这些方面的着手突破,极大推动正渗透技术在水处理中的广泛应用,以促进新一代水处理工艺的高效发展。总之,对水处理正渗透膜分离技术的研究,都应该围绕如何提高正渗透过程的水回收率、如何提高正渗透过程中的分离效率、以及如何降低正渗透过程的运行成本等方面进行。 四、水处理中正渗透膜分离技术应用领域

相关主题
文本预览
相关文档 最新文档