《复变函数与积分变换》习题册
- 格式:doc
- 大小:566.00 KB
- 文档页数:31
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛⎫-+-- ⎪⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+== ②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++④解:1i 1i 22++==4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. 并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式 ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭ 8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:∴1ππ1cosisin i 662=+z .2551cos πisin πi 662=+=+z ⑵-1的三次根 解:∴1ππ1cos isin 332=+=z的平方根.解:πi 4e ⎫⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图. 解:(1)、argz =π.表示负实轴. (2)、|z -1|=|z |.表示直线z =12. (3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=02tdt c f(t))(ωωos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换()()()(cos sin )i tG f t edt f t t i t dt ωωωω+∞+∞--∞-∞==⋅-⎰⎰()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞-∞=⋅-⋅⎰⎰当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt iG ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。
ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=01()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中02()()cos πa f t tdt ωω+∞=⋅⎰ 2.在上一题中,设()f t =21,0,1t t t ⎧<⎪⎨≥⎪⎩.计算()a ω的值.解:1200111220012012011200222()()cos d cos d 0cos d πππ221cos d d(sin )ππ122sin sin 2d 0ππ2sin 4(cos )π2sin 4cos cos π2sin 4co a f t t t t t t t t t t t t t t t t t tt d t t t tdt ωωωωωωωωωωωωωωπωωωωωπωωπω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅+⋅⎡⎤=+⋅-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰⎰23s 4sin ωωπωπω-3.计算函数sin ,6π()0,6πt t f t t ⎧≤⎪=⎨≥⎪⎩的傅里叶变换. 解:[]6π6π6π6π6π02()()d sin d sin (cos sin )d 2sin sin d sin 6ππ(1)i t i t F f f t e t t e tt t i t ti t t t i ωωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换 (1)()tf t e -=解: []||(||)0(1)(1)2F f ()()d d d 2d d 1i t t i t t i t t i t i f te t e e t e te t e t ωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e-=⋅解:因为22222/4F[].()(2)2.t t t t e ee e t t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t t t t t t i t i t t t t t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩(4)41()1f t t=+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i t t t t t t t t t t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰令41R(z)=1z +,则R(z)在上半平面有两个一级极1)i i +-+. R()d 2π[R())]2π[R()1)]i t i z i z t e t i Res z e i i Res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|244cos ||||d Re[d ]sin )1122i t t e t t t t ωωωωω+∞+∞--∞-∞=+++⎰⎰(5) 4()1tf t t =+ 解:4444()d 1sin cos d d 11sin d 1i t tG e t t t t t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z +则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F (t )是解析函数,而且在带形区域Im()t δ<内有界.定义函数()L G ω为/2/2()()e d .L i t L L G F t t ωω--=⎰证明当L →∞时,有1p.v.()e d ()2πi t L G F t ωωω∞-∞→⎰ 对所有的实数t 成立.(书上有推理过程) 6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解: 因为1F (())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较.不难看出 sgn()()().t u t u t =-- 故:[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]000-100000001()F (F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所以8.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭1F[()]()()d ()d()i t i t f at f at e t f at e at a ωωω+∞+∞---∞-∞=⋅=⋅⎰⎰解:当a >0时,令u=at .则11F[()]()()d u i a f at f u e u F a a a ωωω-+∞-∞⎛⎫=⋅= ⎪⎝⎭⎰当a <0时,令u=at ,则1F[()]()F()f at a aωω=-. 故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()[]()()[]()()e d e d e d e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅-⋅--∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦ 证明:()[]()()()()()0000000e +e cos 21e e 22212i t i t i t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F i ωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦ 11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t . 解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()0()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i i t t a i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:习题八1.求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t= (4)2()f t t =, (5)()sinh f t bt=解: (1) 1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24tL f t L s -==+(3)21cos 2()sin 2t f t t -==221cos21111122(())()(1)(cos2)222224(4)t L f t L L t s s s s -==-=⋅-⋅=++(4)232()L t s = (5)22e e 111111(())()(e )(e )22222bt bt bt bt bL f t L L L s b s b s b ---==-=⋅-⋅=-+-2.求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 1220011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s +∞-----=⋅=⋅+=--⎰⎰⎰(2)πππ2011e (())()e cos e (1e )1s ststsL f t f t dt t dt s s -+∞---+=⋅=⋅=+++⎰⎰3.设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换.解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e 1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dts t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4.求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T as as f t dt as aL f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2tf t lt l=⋅ (2)2()e sin5t f t t -=⋅(3)()1e t f t t =-⋅ (4)4()e cos4t f t t-=⋅(5()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()tf t lt t lt l lt F s L f t L lt L t lt l ll ls s l s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(e sin 5)(2)25t F s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=--- (4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++ (5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st stsF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos2)5(sin 2)3(cos2)210353444F s L f t L t t L t L t s ss s s ==-=--=⋅-⋅=+++ (7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s ==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s tsts s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n nF s L f t s =-⋅证明:当n=1时,0()()e st F s f t dt +∞-=⋅⎰0()[()e ][()e ]()e (())st stst F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n nFs L f t s =-⋅显然成立。
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()R e in=,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈C ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈C ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z=12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
习题八1. 求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t=(4)2()f t t =, (5)()sinh f t bt= 解: (1)1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24t L f t L s -==+(3)21cos 2()sin 2tf t t -==221cos 21111122(())()(1)(cos 2)222224(4)tL f t L L t s s s s -==-=⋅-⋅=++(4) 232()L t s = (5)22e e 111111(())()(e )(e )22222bt btbt bt b L f t L L L s bs bs b ---==-=⋅-⋅=-+-2. 求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 122011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s+∞-----=⋅=⋅+=--⎰⎰⎰(2) πππ2011e (())()e cos e (1e)1s ststsL f t f t dt t dt ss -+∞---+=⋅=⋅=+++⎰⎰3. 设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换. 解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dt s t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4. 求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T asas f t dt as a L f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2t f t lt l=⋅ (2)2()esin 5tf t t-=⋅(3)()1e t f t t =-⋅(4)4()e cos 4tf t t-=⋅(5)()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++ 解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()t f t lt t lt ll t F s L f t L lt L t lt l lllssl s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(esin 5)(2)25tF s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=---(4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++(5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st st sF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos 2)5(sin 2)3(cos 2)210353444F s L f t L t t L t L t s s s s s ==-=--=⋅-⋅=+++(7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s t st s s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n n F s L f t s =-⋅证明:当n=1时,()()e st F s f t dt +∞-=⋅⎰()[()e ][()e ]()e (())st st st F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n n Fs L f t s =-⋅显然成立。
《复变函数与积分变换》习题册 合肥工业大学 《复变函数与积分变换》校定平台课程建设项目资助 2018年9月 《复变函数与积分变换》第一章习题 1. 求下列各复数的实部、虚部、模、辐角和辐角主值: 2
(1)122345iiii; (2)3132i. 2. 将下列复数写成三角表达式和指数形式: (1)13i; (2)21ii.
3. 利用复数的三角表示计算下列各式: (1)422i; (2)1031313ii
4. 解方程310z. 5. 设12coszz(0,z是z的辐角),求证:2cosnnzzn. 3
6.指出满足下列各式的点z的轨迹或所在范围. (1)arg()4zi;
(2)0zzazazb,其中a为复数,b为实常数. (选做) 7.用复参数方程表示曲线:连接1i与i41的直线段. 8.画出下列不等式所确定的图形,指出它们是否为区域、闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?并标出区域边界的方向. 4
(1) 11,Re2zz;(2) 0Re1z; 9.函数zw1把下列z平面上的曲线映射成w平面上怎么样的曲线? (1)224xy; (2)xy; (3)1x.
10.试证:0Relimzzz不存在. 《复变函数与积分变换》第二章习题 1.用导数定义求zzfRe)(的导数. 5
2.下列函数在何处可导,何处不可导?何处解析,何处不解析? (1)zzf1)(; (2))32233(3)(yyxixyxzf;
3.试讨论yixxyzf22)(的解析性,并由此回答:若复变函数),(),()(yxivyxuzf中的),(yxu和),(yxv均可微,那么ivuzf)(一定可导吗?
4.设3232()(fzmynxyixlxy)为解析函数,试确定,,lmn的值. 6
5.设()fz在区域D内解析,试证明在D内下列条件是彼此等价的: (1)()fz常数; (2)Re()fz常数; (3)()fz解析.
6.试解下列方程: (1)13zei; (2)0cosz; (3)0cossinzz. 7
7.求下列各式的值: (1)Ln(34)i; (2)i-33; (3)ie2.
8.等式33Ln3Lnzz是否正确?请给出理由. 《复变函数与积分变换》第三章习题 3.1复积分的概念与基本计算公式
1. 计算积分dzixyxC)(2,其中C为从原点到点1+i的直线段. 8
2.计算积分dzzzC的值,其中C为2z 3.当积分路径是自i-沿虚轴到i,利用积分性质证明:2)(22dziyxii
3.2柯西古萨基本定理 1.计算积分dzzC1,其中C为2z 9
2. 计算积分dzzezCz)sin(,其中C为az. 3.3基本定理的推广 1. 计算积分dzzeCz,其中C为正向圆周2z与负向圆周1z所组成。
2. 计算积分dzzzzC212,其中C为包含圆周1z在内的任何正向简单闭曲线。 10
3.4原函数与不定积分 1. idzzz02sin
2. izdzze11
3.5柯西积分公式 1.计算下列积分 11
(1)Cdzzzz32132,其中4:zC,正向; (2)Cdzzz14,其中2:zC,正向; (3)CizizCdzze232:,12,正向 2.计算积分dzzeCz12,其中C为 (1) 1iz (2) 1iz (3) 2z 12
3.已知)1()(3RdzezfR 求)(),(ifif 3.6高阶导公式 1.计算下列积分
(1)Cdzzz2)2(cos,其中2:zC,正向 13
(2)Czdzze100,其中1:zC,正向 (3)Cdzazz3)-()2ln(,其中1:zC,正向,1a 2. 已知dzzf322173)(, 求)4(),1(fif 14
3.7解析函数与调和函数的关系 1.已知23),(xyaxyxu是某一解析函数的虚部,求a
2. 设()fzuiv为解析函数,已知222uxxyy,(0)fi. (1)求()fz的表达式;
(2)求()fz
3. 已知调和函数xyvarctan )0(x,求调和函数u,使ivuzf)(成为解析函数,并满足2)1(f 15
4. 设)0(sinpyevpx,求p的值使得v为调和函数,并求出解析函数iuvzf 5.证明:2222(,),(,)xuxyxyvxyxy都是调和函数,但()(,)i(,)fzuxyvxy不是解析函数. 16
6.证明:若()(,)i(,)fzuxyvxy是解析函数,则),(yxv是),(yxu的共轭调和函数 《复变函数与积分变换》第四章习题 4-1复数项级数
1.下列数列{}n是否收敛?如果收敛,则求出它们的极限:
(1)21[1(1)]ninnen;(2)(35)7nnni. 17
2.下列级数是否收敛?若收敛,则判别是绝对收敛还是条件收敛. (1)2lnnnin;(2)22(12)5nnnni;(3)2221(1)ninen.
3.幂级数1(1)nnnaz能否在2z处收敛,在2z处发散? 4-2幂级数 1.级数0nnncz的收敛半径0R,且在收敛圆周zR的某一点0z处级数0nnncz绝对收
敛,证明级数0nnncz在闭圆盘zR上绝对收敛. 18
2.下列幂级数的收敛半径: (1)21(!)nnnnzn;(2)12(1)3nnnnz;
(3)1()nnnnaz,其中a为正实数
4-3泰勒级数 1.设有级数展开式12201sin(1)1nznnzecziz,问级数0(1)nnnczi的收敛半径是多少?并说明理由. 19
2.把下列函数展开为z的幂级数,并指出展开式成立的范围: (1)221(1)z;(2)coszez.
3.求下列函数在指定点0z处的泰勒级数展开式,并指出它们的收敛半径: (1)0sin,4zz;(2)021,143zzz. 20
4-4洛朗级数 1.函数1tanz能否在圆环域0(0)zRR内展开为洛朗级数?为什么?
2.把下列函数在指定的圆环域内展开为洛朗级数: (1)21,121)(2)zzz(;
(2)21()zzi,分别在圆环域01zi及1zi内展开; (3)11,01zzez. 21
3.利用洛朗级数展开式求积分1zCzedz的值,其中C为正向圆周2z. 《复变函数与积分变换》第五章习题 5-1孤立奇点 1.下列函数有些什么奇点?如果是极点,指出它的级数:
(1)2231(1)(2)zz;(2)51cos(1)zzz;(3)2(1)(1)zzze;(4)11ze;(5)21sinz. 22 2.设函数()z与()z分别以za为m级与n级极点,那么下列三个函数
(1)()()zz;(2)()()zz;(3)()()zz. 在za处各有什么性质? 23
5-2留数 1.求下列函数()fz在各有限奇点处的留数:
(1)4221(1)zz;(2)231zez;(3)31coszz; 24
2.计算下列各积分,C为正向圆周: (1)21,:2(1)(2)CzdzCzzz; (2)2sin,:1()4CzdzCzzz;
(3)1cos,:1mCzCzz,其中m为整数; (4)tan,:5CzdzCz. 25 *3.利用无穷远点的留数计算下列积分:
(1) 13,:21zCzedzCzz正向;(2)152243,:3(1)(2)CzdzCzzz正向. 26
5-3留数在定积分计算中的应用 1.计算下列积分:
(1)20(1)cosdaa;(2)222(1)xdxx;(3)220sin(0,0)xaxdxabxb.
《复变函数与积分变换》第六章习题 1、 求矩形脉冲函数1,||,()0,||tftt的傅氏变换,并验证0sin2xdxx。 27
2、 求函数||()(0)tfte的傅氏变换,并证明||220cos2ttde成立。 3、 求正弦函数0()sinftt的傅氏变换。 4、 求正弦函数3()sinftt的傅氏变换。