1991年小学数学奥林匹克初赛A卷
- 格式:doc
- 大小:182.00 KB
- 文档页数:1
1991中国数学奥林匹克试题及其主要部分解答
李名德
【期刊名称】《中学教研:数学版》
【年(卷),期】1991(000)006
【摘要】1991中国数学奥林匹克试题一、平面上有一个凸四边形ABCD. (1)如果平面上存在一点P,使得△ABP,△BCP,△CDP和△DAP的面积都相等,问四边形ABCD 要满足什么条件
【总页数】4页(P21-23,17)
【作者】李名德
【作者单位】杭州大学数学系
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.2006年中国数学奥林匹克(第21届全国中学生数学冬令营)试题解答 [J],
2.1991年中国数学奥林匹克试题及解答 [J], 严镇军
3.1991年日本数学奥林匹克试题及解答 [J], 刘贤俊
4.1991年沈阳市数学奥林匹克学校高一年级培训班入学试题及解答 [J], 苏健一
5.1991年中国数学奥林匹克(第六届冬令营)试题及解答 [J], 黄玉民;李成章
因版权原因,仅展示原文概要,查看原文内容请购买。
第五届数学竞赛初赛试题及答案(满分100分)一、计算下面各题,并写出简要的运算过程(12分)2.1991×199219921992-1992+199119911991二、填空题(48分)1.有A、B两组数,每组数都按一定的规律排列着,并且每组都各有25个数。
A组数中前几个是这样排列的1,6,11,16,21……;B组数中最后几个是这样排列的……,105,110,115,120,125。
那么,A、B这两组数中所有数的和是__(3分)2.某沿海城市管辖7个县,这7个县的位置如图1。
现用红、黑、绿、蓝、紫五种颜色给图1染色,要求任意相邻的两个县染不同颜色。
共有__种不同的染色方法。
(5分)3.如图2的数阵是由77个偶数排成的,其中20、22、24、36、38、40这六个数由一个平行四边形围住,它们的和是180。
把这个平行四边形沿上下、左右平移后,又围住了右边数阵中的另外六个数,如果这六个数的和是660,那么,它们当中位于平行四边形左上角的那个数是__。
(4分)4.在左边的乘法算式中,我、学、数、乐各代表四个不相同的数字。
如果“乐”代表“9”,那么,“我”代表__,“数”代表__,“学”代表__。
(4分)5.1993年一月份有4个星期四、5个星期五,1993年1月4日是星期__。
6.一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。
原来这个小数是__。
(5分)7.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中有一个当了记者。
一次有人问起他们的职业,李志明说:“我是记者。
”张斌说:“我不是记者。
”王大为说:“李志明说了假话。
”如果他们三人的话中只有一句是真的,那么__是记者。
(3分)9.在1992后面补上三个数字,组成一个七位数,使它分别能被2、3、5、11整数,这个七位数最小是__。
(5分)的个位数字1992个“8”是__,十位数字是__,百位数字是__。
数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少?【例3】 红、黄、蓝和白色卡片各一张,每张上写有一个数字。
小明将这4张卡片如图放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差。
结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。
问:红、黄、蓝3张卡片上各是什么数字?蓝白黄红【例4】 如图算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,请求出这个算式。
春夏秋冬四季季年年年年年年【例5】 将1~9分别填入这九个区域,使得每个圆里的数字和相等。
【例6】已知76⨯=⨯,相同的字母代表相同的数字,不同的字母代表不同的数字,求ABCXYZ XYZABCABCXYZ是多少?【例7】三位数AAA乘三位数AAB等于六位数CCCDDD,求A,B,C,D分别是多少?【例8】(第二届“华罗庚金杯”少年数学邀请赛复赛)试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次:(这是一个三位数)、(这是一个三位数)、(这是一个一位数),使得这三个数中任意两个都互质。
小学数学难题解法大全第五部分典型难题讲析(七之一)数的计算(一)数的计算1.四则计算【基本题】例1 计算7142.85÷3.7÷2.7×1.7×0.7(1991年全国小学数学奥林匹克初赛试题)讲析:本题的两个除数和乘数依次是3.7,2.7,1.7,0.7。
从数字上分析,不能运用简便运算。
所以,只能从左至右依次计算。
结果是850.85。
(1990年江西省“八一杯”小学数学竞赛试题)成假分数之后,分子都含有22的约数,于是可采用分配律计算。
(1994年全国小学数学奥林匹克决赛试题)讲析:两个分数的分母都是3,所以,可把小数化成分数计算。
【巧算题】(全国第三届“华杯赛”初赛试题)讲析:括号中的三个数如果直接通分,则比较繁琐。
经观察,可将三个分母分解质因数,求出公分母;在求公分母的过程中,不必急于求出具体的数,而可边算边约分,能使计算简便一些。
(1993年全国小学数学奥林匹克决赛试题)讲析:当把两个带分数化成假分数时,分子都是65。
于是,第一个括号中可提出一个65,第二个括号中可提出一个5,能使计算变得比较简便。
例3 计算:(全国第四届“华杯赛”复赛试题)讲析:经观察发现,可将整数部分与分数部分分开计算。
这时,每个带分数的分数部分,都可以拆分成两个单位分数之差,然后互相抵消。
计算就很简便了例4 计算:(1990年《小学生数学报》小学数学竞赛试题)除以两数之积,就等于分别除以这两个数。
然后可将它们重新组合计算为法分配律计算。
于是可将10.375分开,然后重新组合。
(1990年小学数学奥林匹克初赛试题)用字母代替去计算。
(长沙市小学数学奥林匹克集训队选拔赛试题)26.3乘以2.5。
这样计算,可较为简便。
原式=2.5×24.7+29×2.5+26.3×2.5=2.5×(24.7+29+26.3)=200。
例8 已知11×13×17×19=46189计算:3.8×8.5×11×39(广州市小学数学竞赛试题)讲析:根据已知条件来计算另一个算式的结果,应尽量将计算式化成与已知条件式相同或相似的式子。
第五届数学竞赛初赛试题及答案(满分100分)一、计算下面各题,并写出简要的运算过程(12分)2.1991×199219921992-1992+199119911991二、填空题(48分)1.有A、B两组数,每组数都按一定的规律排列着,并且每组都各有25个数。
A组数中前几个是这样排列的1,6,11,16,21……;B组数中最后几个是这样排列的……,105,110,115,120,125。
那么,A、B这两组数中所有数的和是__(3分)2.某沿海城市管辖7个县,这7个县的位置如图1。
现用红、黑、绿、蓝、紫五种颜色给图1染色,要求任意相邻的两个县染不同颜色。
共有__种不同的染色方法。
(5分)3.如图2的数阵是由77个偶数排成的,其中20、22、24、36、38、40这六个数由一个平行四边形围住,它们的和是180。
把这个平行四边形沿上下、左右平移后,又围住了右边数阵中的另外六个数,如果这六个数的和是660,那么,它们当中位于平行四边形左上角的那个数是__。
(4分)4.在左边的乘法算式中,我、学、数、乐各代表四个不相同的数字。
如果“乐”代表“9”,那么,“我”代表__,“数”代表__,“学”代表__。
(4分)5.1993年一月份有4个星期四、5个星期五,1993年1月4日是星期__。
6.一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。
原来这个小数是__。
(5分)7.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中有一个当了记者。
一次有人问起他们的职业,李志明说:“我是记者。
”张斌说:“我不是记者。
”王大为说:“李志明说了假话。
”如果他们三人的话中只有一句是真的,那么__是记者。
(3分)9.在1992后面补上三个数字,组成一个七位数,使它分别能被2、3、5、11整数,这个七位数最小是__。
(5分)的个位数字1992个“8”是__,十位数字是__,百位数字是__。
作者: 严镇军
出版物刊名: 中学数学教学
页码: 1-4页
主题词: 凸四边形 陈省身 最高得分 中学数学教学 题设 日及 可见多边形 构造性 日至 共圆
摘要: 1991年中国数学奥林匹克(CMO),即第六届全国中学生数学冬令营,于1991年1月11日至15日在武汉市华中师范大学举行。
1月12日及13日上午各用4.5小时进行竞赛考试,与此同步还用同一份试题进行了第二届陈省身杯团体赛(部分省、市、自治区各派出3名营员参赛)。
下面是这次竞赛的6道试题及解答。
(每题满分21分,最高得分为117分) 第一天 (1991年1月12日上午8:00—12:30) 一、平面上有一个凸四边形ABCD, (1)如果平面上存在一点P,使得。
小学生智力题:俄罗斯方块智力拼图游戏要想在考试中取得好成绩就必须注重平时的练习与积累,本文库为大家整理了小学生智力题,小朋友们一定要仔细阅读哦!“俄罗斯方块”是一种关于拼图的智力游戏,玩过掌上游戏机或小霸王游戏机的人,大多玩过俄罗斯方块。
玩这种游戏时,从长方形屏幕的顶部,每过一小段时间就自动抛下来一个积木块,形状如图1所示七种中的任意一种,可能事先旋转了90、180或270。
玩的人通过按键,在积木块往下掉的过程中将它旋转或左右移动,使得落在屏幕底部的积木块尽可能整整齐齐地排满一行或几行,不留空隙。
每当一行排满或几行同时排满,这些行就会自动从屏幕上消失,同时得分也就增加了。
以大众化游戏为背景的竞赛题自然也很有趣。
下面是两道以俄罗斯方块为背景的小学数学竞赛题。
问题1(填空题)用方格纸剪成面积是4的图形,其形状只能有图1所示的七种。
如果只用其中的一种图形拼成面积是16的正方形,那么可用的图形共有____种。
本题的答案是:只有图1中的1号、2号、5号、6号和7号图形满足条件。
其中只用6号图形拼成面积为16的正方形的方法见图2,其余几种的拼法都很容易。
所以可用的图形共有5种。
问题2(填空题)用方格纸剪成面积是4的图形,其形状只能有图1所示的七种。
如果用其中的四种拼成一个面积是16的正方形,那么这四种图形编号之和的最小值是____。
因为总面积是16,每一小块的面积是4,所以必须用4块拼成。
题目要求用4种图形,可见每块图形的形状各不相同。
只有三种可能的搭配方法,见图3。
这三种方法所用图形的编号分别是:1,2,3,7;1,2,4,7;1,2,5,7。
所用四种图形编号之和的最小值是1+2+3+7=13。
以上两题都是1991年小学数学奥林匹克的试题,其中问题1是初赛试题,问题2是决赛试题。
在《小学生学习报》第六届数学竞赛的决赛试题中,还有一道作图题,直接说出名词“俄罗斯方块”,画出了其中的四种,要求解题的人画出其余几种。
数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。
如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。
问这6个质数的积是多少?【分析】 设每个小三角形三个顶点上的数的和都是S ,4个小三角形的和S 相加时,中间三角形每个顶点上的数被算了3次,即多算了2次,所以 4220S S =+,即10S =这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:223355900⨯⨯⨯⨯⨯=【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少? 【分析】 方法一:由于13的倍数满足其后三位与前面隔开后,差是13的倍数。
1231396÷=L L ,所以123与6的差是13的倍数,所以6123一定是13的倍数,且为满足条件的最小自然数。
91赛试题「共21份有答案」1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A)、(B)(C)、(D)四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.设等式在实数范围内成立,其中a,x,y是两两不同的实数,则的值是(A)3 ;(B);(C)2;(D).答()2.如图,AB‖EF‖CD,已知AB=20,CD=80,BC=100,那么EF的值是(A)10;(B)12;(C)16;(D)18.答()3.方程的解是(A);(B);(C)或;(D).答()4.已知:(n是自然数).那么,的值是(A);(B);(C);(D).答()5.若,其中M为自然数,n为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答()6.若a,c,d是整数,b是正整数,且满足,,,那么的最大值是(A);(B);(C);(D)1.答()=1 7.如图,正方形OPQR内接于ΔABC.已知ΔAOR、ΔBOP和ΔCRQ的面积分别是,和,那么,正方形OPQR的边长是(A);(B);(C)2 ;(D)3.答()8.在锐角ΔABC中,,,,ΔABC的外接圆半径≤1,则(A)c 2 ;(B)0 c ≤;答()(C)c 2;(D)c = 2.答()二、填空题1.E是平行四边形ABCD中BC边的中点,AE 交对角线BD于G,如果ΔBEG的面积是1,则平行四边形ABCD 的面积是.2.已知关于x的一元二次方程没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,.3.设m,n,p,q为非负数,且对一切x 0,恒成立,则.4.四边形ABCD中,∠ ABC,∠BCD,AB,BC,CD = 6,则AD = .第二试x + y,x -y,x y,四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF 三、将正方形ABCD分割为个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.满足的非负整数的个数是(A)1; (B)2; (C)3; (D)4. 2.若是一元二次方程的根,则判别式与平方式的关系是(A) (B)= (C) (D)不确定. 3.若,则的个位数字是(A)1; (B)3; (C)5; (D)7. 答( ) 4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于,则这个多边形的边数必为(A)7;(B)6; (C)5; (D)4. 答( ) 5.如图,正比例函数的图像与反比例函数的图像分别相交于A点和C点.若和的面积分别为S1和S2,则S1与S2的关系是(A) (B) (C) (D)不确定答( ) 6.在一个由个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为,把圆周经过的所有小方格的圆内部分的面积之和记为,则的整数部分是(A)0; (B)1; (C)2;(D)3. 答( ) 7.如图,在等腰梯形ABCD中, AB//CD, AB=2CD, ,又E 是底边AB上一点,且FE=FB=AC, FA=AB. 则AE:EB等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( ) 8.设均为正整数,且,,则当的值最大时,的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题 1.若一等腰三角形的底边上的高等于18cm,腰上的中线等15cm,则这个等腰三角形的面积等于________________. 2.若,则的最大值是__________.3.在中,的平分线相交于点,又于点,若,则 .4.若都是正实数,且,则 . 第二试一、设等腰三角形的一腰与底边的长分别是方程的两根,当这样的三角形只有一个时,求的取值范围. 二、如图,在中,是底边上一点,是线段上一点,且. 求证:. 三、某个信封上的两个邮政编码M和N均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A:__ B:__ C:__ D:__ 已知编码A、B、C、D各恰有两个数字的位置与M和N相同.D恰有三个数字的位置与M和N相同.试求:M和N. 1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.多项式除以的余式是(A)1; (B)-1; (C); (D); 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形. Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A)Ⅰ,Ⅱ都对(B)Ⅰ对,Ⅱ错(C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错. 3.设是实数,.下列四个结论: Ⅰ.没有最小值; Ⅱ.只有一个使取到最小值; Ⅲ.有有限多个(不止一个)使取到最大值; Ⅳ.有无穷多个使取到最小值. 其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ 4.实数满足方程组其中是实常数,且,则的大小顺序是(A); (B); (C); (D). 5.不等式的整数解的个解(A)等于4 (B)小于4 (C)大于5 (D)等于5 6.在中,, 则的值是(A) (B) (C) (D). 答( ) 7.锐角三角ABC的三边是a, b, c,它的外心到三边的距离分别为m, n, p,那么m:n:p等于(A); (B) (C) (D). 答( ) 8.可以化简成(A); (B) (C) (D) 答( ) 二.填空题1. 当x变化时,分式的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球. 3.若方程有四个非零实根,且它们在数轴上对应的四个点等距排列,则=____________. 4.锐角三角形ABC中,.以BC边为直径作圆,与AB, AC分别交于D, E,连接DE, 把三角形ABC分成三角形ADE与四边形BDEC,设它们的面积分别为S1, S2,则S1:S2=___________. 第二试一.设H是等腰三角形ABC垂心,在底边BC保持不变的情况下让顶点A至底边BC的距离变小,这时乘积的值变小,变大,还是不变?证明你的结论. 二.中, BC=5, AC=12, AB=13, 在边AB ,AC上分别取点D, E, 使线段DE将分成面积相等的两部分.试求这样的线段DE的最小长度. 三.已知方程分别各有两个整数根及,且. (1)求证: (2)求证:≤≤; (3)求所有可能的值. 1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30) 考生注意:本试共两道大题,满分80分. 一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分. 〔答〕( ) 2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,z A.都不小于0 B.都不大于0 C.至少有一个小0于D.至少有一个大于0 〔答〕( ) 3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4 B.等于5 C.等于6 D.不能确定〔答〕( ) A.1 B.-1 C.__ D.-__ 〔答〕( ) 5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( ) 〔答〕( ) 7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。