认知诊断理论
- 格式:pptx
- 大小:271.90 KB
- 文档页数:15
261区域治理MARKET作者简介:邱 瑾,生于1996年,江西师范大学研究生,研究方向为心理统计与测量。
认知诊断中的Q 矩阵简述江西师范大学心理学院 邱瑾摘要:作为新一代的心理测量理论,在教育测量领域认知诊断受到越来越多的青睐。
它不仅能在细粒度的层面上,评估个体在学科能力上的知识掌握状态,而且可以根据评估结果,给教师提供个体接下来的发展学习的道路。
在运用认知诊断理论作认知诊断评估的过程中,Q矩阵起着至关重要的作用。
关键词:认知诊断;Q矩阵;知识状态中图出版号:B842.1文献标识码:A文章编号:2096-4595(2020)28-0261-0001认知诊断是一项通过评估被试者的认知技能或特定知识(属性)集合的掌握情况的技术。
正如Tasuka 所说,它至少包含“Q 矩阵理论”和“诊断分类”两大部分。
在目前的认知诊断的领域中,有相当多的研究正把热点集中于Q 矩阵的修正和估计研究上。
这一研究热点不仅仅只存在于Q 矩阵修正方法开发研究、Q 矩阵估计方法开发研究,国内同样还存在着对Q 矩阵相关研究的综述上。
例如,王晓军,丁树良和罗芬(2019)作了Q 矩阵的综述,存在层级属性关系的Q 矩阵的算法、作用,刘永和涂冬波(2015)讨论的是根据被试反应估计Q 矩阵的6种方法。
一、认知诊断的目的在认知诊断的过程中,Q 矩阵是必不可少的一部分。
在认识Q 矩阵的概念和作用之前,我们应该了解认知诊断的目的。
Leighton 和Gierl(2007)指出,认知诊断致力于评估受测者的特定知识结构和加工技能的掌握情况,它是基于个人的认知过程上的诊断。
在认知过程中加工技能也可称之为属性,认知诊断评估最后会给出受测者在多个属性上的属性掌握状态用以表示被试的知识状态。
关键的问题是,如何通过被试作答项目的反应来判断被试的属性掌握状态?重点在于Q 矩阵的建立。
Q 矩阵理论主要是确定测验项目所测的间接观察的认知属性,并把它转化为可直接监测的理想反应模式,将被试在“黑箱子”里的认知状态与在项目上直观的作答反应联系起来,进而为了解并推测被试的认知状态提供基础。
摘要随着信息化时代的不断发展,人们对教育的重视程度越来越高,更加希望教育能够关注到每位学习者。
教学评价环节作为学习过程中的重要一环,直接反应了学习者的个体差异。
然而传统的教育评价仅仅能够报告较为笼统的测验分数,无法提供详细的学生知识掌握情况。
现今,人们不再满足于如此模糊的测量结果,期望能够在分数的基础上,详细的了解学生知识结构,从而发挥出辅助教学功能。
贝叶斯知识追踪模型作为一种典型的学生知识评估方法,可以准确的反映出学习者的学习水平、知识结构等一系列个性化数据。
本研究在现有的贝叶斯知识追踪模型的基础上,增加了知识点关系这一参数矩阵,对标准知识追踪模型进行改进,提出了CS-BKT模型。
并且通过使用2010年KDD数据集,基于准确率、均方根误差等四个指标,将CS-BKT模型和标准贝叶斯知识追踪模型结果进行比较。
实验结果表明,CS-BKT模型在所有指标中表现均优于标准知识追踪模型,能够更加准确的计算学生知识掌握情况。
基于CS-BKT模型,本研究对某小学六年级数学作答数据进行了训练和分析,得到了学生对于不同知识点的掌握程度以及数学能力水平,并且最终生成了个性化认知诊断报告,帮助教师更好的了解学生知识水平,调整教学策略,从而提升教学效率。
同时可以使学生更加清晰的掌握自身知识结构,促进个性化学习的开展。
关键词:知识追踪模型;学生评价;隐马尔科夫模型;认知诊断AbstractWith the continuous development of the information age, people pay more and more attention to education, and they hope that education can pay attention to every learner. As an important part of learning process, teaching evaluation directly reflects the individual differences of learners. However, the traditional education evaluation can only report general test scores, and fail to provide detailed information about students' knowledge acquisition. Nowadays, people are no longer satisfied with such ambiguous measurement results. They expect to understand the knowledge structure of students in detail on the basis of scores, so as to play an auxiliary teaching function.As a typical student knowledge assessment method, Bayesian knowledge tracing model can accurately reflect a series of personalized data such as learners' learning level and knowledge structure. Based on the existing Bayesian knowledge tracing model, this study adds a parameter matrix of knowledge relationships and proposes CS-BKT model. By using the 2010 KDD data set, the results of the CS-BKT model and the standard Bayesian knowledge tracing model are compared based on four indicators such as accuracy and root mean square error. The experimental results show that the CS-BKT model outperforms the standard knowledge tracing model in all indicators.Based on the CS-BKT model, this study trained and analyzed the sixth-grade mathematics answer data of a primary school, obtained the students' mastery of different knowledge and the level of mathematics ability. Finally, the study generated a personalized cognitive diagnosis report to help teachers better understand students' knowledge level and adjust teaching strategies, so as to improve teaching efficiency. At the same time, the report can help students to grasp their own knowledge structure more clearly and promote the development of personalized learning.Key words: Knowledge tracing model; Student evaluation; Hidden Markov model; Cognitive diagnosis目录摘要 (I)Abstract........................................................... I I 目录............................................................. I II 图目录............................................................ V I 表目录.......................................................... V III 第1章绪论. (1)1.1 研究背景 (1)1.1.1 教育评价的个性化需求 (1)1.1.2 知识追踪有利于实现个性化评价 (2)1.2 研究现状 (2)1.2.1 知识追踪模型构建 (2)1.2.2 知识追踪系统开发 (5)1.3 研究目标与研究内容 (6)1.4 研究思路与研究方法 (7)1.5 研究意义 (8)第2章理论基础综述 (10)2.1 知识追踪理论 (10)2.1.1知识追踪概念 (10)2.1.2 知识组件 (11)2.2 隐马尔科夫模型 (12)2.2.1隐马尔科夫模型定义 (12)2.2.2隐马尔科夫模型三个基本问题 (15)2.3 认知诊断理论 (20)2.3.1认知诊断理论的含义 (20)2.3.2认知诊断理论的发展 (21)2.3.3认知诊断理论的基础 (22)2.3.4常用的认知诊断模型 (23)第3章 CS-BKT知识追踪模型提出 (28)3.1贝叶斯知识追踪模型 (28)3.1.1 贝叶斯知识追踪模型的概念 (28)3.1.2 贝叶斯知识追踪模型的基本原理 (29)3.1.3 贝叶斯知识追踪模型的应用 (34)3.2 CS-BKT知识追踪模型 (36)3.2.1 CS-BKT知识追踪模型的提出原则 (36)3.2.2 CS-BKT知识追踪模型的基本原理 (37)3.2.3 CS-BKT知识追踪模型的实现方法 (39)3.2.4 CS-BKT知识追踪模型的实现过程 (41)3.3 知识追踪模型结果比较 (44)3.3.1 测试数据集 (44)3.3.2 评价指标 (45)3.3.3 结果分析 (47)第4章 CS-BKT模型在小学数学认知诊断中的应用 (50)4.1 实验设计 (50)4.1.1 实验对象 (50)4.1.2 测验试题设计 (50)4.1.3 数学能力概述 (53)4.2 测试结果分析 (55)4.2.1 整体分数分布情况 (55)4.2.2 不同群体结果分析 (57)4.3 CS-BKT模型结果分析 (62)4.3.1 知识矩阵 (62)4.3.2 学生知识掌握情况分析 (64)4.3.3 数学能力掌握情况分布 (72)4.4 诊断报告的设计与有效性检验 (73)4.4.1 诊断报告的设计 (73)4.4.2 诊断报告的有效性检验 (74)第5章总结与展望 (76)5.1 研究总结 (76)5.2 研究创新点 (76)5.3 研究不足与展望 (77)参考文献 (78)附录一:CS-BKT模型部分实现代码 (85)附录二:个性化认知诊断报告 (88)致谢 (89)图目录图1-1 研究思路 (8)图2-1 HMM模型流程图 (14)图2-2 观测序列概率计算过程 (15)图2-3 前向算法示意图 (16)图2-4 前向算法流程图 (16)图2-5 后向算法示意图 (17)图2-6 后向算法流程图 (17)图2-7 鲍姆-韦尔奇算法流程图 (18)图2-8 鲍姆-韦尔奇算法示意图 (19)图2-9 维特比算法主要步骤 (20)图2-10 RSM模型的基本原理 (25)图3-1 贝叶斯知识追踪模型结构图 (29)图3-2 贝叶斯知识追踪模型参数实例 (32)图3-3 作答情况预测过程 (33)图3-4 贝叶斯知识追踪算法流程图 (33)图3-5 技能关系矩阵 (38)图3-6 CS-BKT模型结构图 (38)图3-7 CS-BKT模型流程图 (39)图3-8 初始参数定义 (40)图3-9 参数计算过程 (41)图3-10 CS-BKT模型的网络结构图 (41)图3-11 train节点展开图 (42)图3-12 Sigmoid节点展开图 (42)图3-13 猜测参数折线堆叠图 (43)图3-14 失误参数折线堆叠图 (43)图3-15 猜测参数直方堆叠图 (44)图3-16 失误参数直方堆叠图 (44)图3-17 KDD数据集结构图 (45)图3-18 混淆矩阵 (46)图3-19 两种模型预测准确率比较图 (47)图3-20 两种模型AUC比较图 (48)图3-21 两种模型均方根误差值比较图 (48)图3-22 两种模型loss比较图 (49)图4-1 学生测试题目结构 (52)图4-2 测试分数分布直方图 (56)图4-3 A班成绩分布直方图 (58)图4-4 B班成绩分布直方图 (59)图4-5 C班成绩分布直方图 (59)图4-6 D班成绩分布直方图 (60)图4-7 男生成绩分布直方图 (61)图4-8 女生成绩分布直方图 (61)图4-9 初始知识点影响矩阵 (62)图4-10 最终知识点影响矩阵 (63)图4-11 知识点影响值变化图 (63)图4-12 知识点2学生掌握情况 (64)图4-13 知识点3学生掌握情况 (65)图4-14 知识点4学生掌握情况 (65)图4-15 知识点5学生掌握情况 (66)图4-16 不同性别知识掌握情况 (67)图4-17 不同班级知识掌握情况 (68)图4-18 学生103认知曲线 (70)图4-19 学生110认知曲线 (70)图4-20 学生85认知曲线 (71)图4-21 学生137认知曲线 (71)图4-22 学生不同数学能力掌握比例 (72)图4-23 学生知识掌握情况 (73)图4-24 学生数学能力表现 (74)表目录表3-1 贝叶斯知识追踪模型参数 (30)表3-2 初始状态概率分布表 (31)表3-3 隐含状态转移概率分布表 (31)表3-4 观测概率分布表 (31)表3-5 技能变化情况分布表 (38)表4-1 被试情况统计 (50)表4-2 测试题目内容域及描述 (50)表4-3 知识点与题目对应详情 (51)表4-4 测试题目能力属性对应表 (54)表4-5 测试分数频率分布表 (56)表4-6 不同班级分数情况 (58)表4-7 男女生分数情况表 (60)表4-8 不同知识掌握模式人数分布表 (69)表4-9 学生数学能力情况表 (72)第1章绪论1.1 研究背景1.1.1 教育评价的个性化需求在信息技术迅猛发展的21世纪,教育变得更加多样,学习的内容、形式和对象也在逐渐发生着变化。
认知诊断理论与自学考试评价
田霖;王桥影;赵晓茫
【期刊名称】《中国考试》
【年(卷),期】2010(000)009
【摘要】认知诊断理论作为新一代测量理论的核心,为大规模教育考试评价提供了新的指导思想,在教育测量实践中具有广阔的应用前景。
传统的自学考试评价方式局限于“学习成果验收”功能,已经无法满足广大考生的需求,难以实现考试的诊断和指导功能。
本文将认知诊断评估理念引入自学考试领域,通过分析自考生的自我调节学习特征及自学考试评价现状。
对自学考试的试题命制、试卷组配、成绩反馈等方面提出建议。
【总页数】6页(P27-32)
【作者】田霖;王桥影;赵晓茫
【作者单位】北京教育考试院
【正文语种】中文
【中图分类】G405
【相关文献】
1.新一代测验理论-认知诊断理论的源起与特征 [J], 刘声涛;戴海崎;周骏
2.认知诊断评价理论视角下的教育测量理论述评——兼论认知诊断对基础教育评价的展望 [J], 黄小平;胡中锋
3.高等教育自学考试学业评价改革的理论与实践探索 [J], 刘瑛;彭莉
4.认知诊断理论及其应用探讨r——以高校思想政治理论课检测为例 [J], 宫长瑞
5.认知诊断理论在数学教育评价中的应用 [J], 王立东;郭衎;孟梦
因版权原因,仅展示原文概要,查看原文内容请购买。
常见的认知诊断模型及其比较范士青;刘华山【期刊名称】《教育测量与评价(理论版)》【年(卷),期】2015(000)007【摘要】认知诊断模型是连接学生的内在属性掌握模式和外在题目反应之间的桥梁,是教育评估领域一个新的发展方向.经过40多年的发展,认知诊断模型目前有60种左右,DINA、DINO、NIDA、NIDO、R-RUM和C-RUM是其中最常见的模型.这六种认知诊断模型适用于题目计分、属性掌握表征和题目对属性的考查都采用二值方式的情况,都以概率的形式表达了特定的知识状态在特定题目上正确作答的概率.这六种模型的区别主要表现在三个方面:①依据属性之间的关系,DINA、NIDA 和R-RUM属于非补偿模型,DINO、NIDO和C-RUM属于补偿模型;②DINA和DINO的失误参数和猜测参数定义在题目水平上,NIDA和NIDO的参数定义在属性水平上;③六个模型中除NIDO和C-RUM采用的是logit函数形式,其他都采用了恒等的形式.梳理出常见的认知诊断模型及其背后蕴含的思想方法、模型结构及各自特点,能够为认知诊断评估的进一步推广提供助力.【总页数】6页(P4-9)【作者】范士青;刘华山【作者单位】华中师范大学心理学院,武汉430205;刘华山华中师范大学心理学院,武汉430205【正文语种】中文【中图分类】G449.1【相关文献】1.参数化认知诊断模型:心理计量特征、比较及其转换2.认知诊断模型中项目参数的方差-协方差矩阵估计方法比较:Bootstrap与解析法3.认知诊断模型中项目参数的方差-协方差矩阵估计方法比较:Bootstrap与解析法4.认知诊断模型题目功能差异检验方法的健壮性比较5.五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较因版权原因,仅展示原文概要,查看原文内容请购买。
---一、封面标题:认知诊断总结报告姓名:[姓名]学号:[学号]专业:[专业]班级:[班级]指导教师:[指导教师姓名]完成日期:[日期]---二、摘要本文主要对本次认知诊断实习进行了总结。
通过对认知诊断理论的学习和实践操作,我对认知诊断的基本概念、方法及在现实中的应用有了更为深刻的理解。
以下为实习过程中的主要收获和反思。
---三、实习目的及意义1. 理解认知诊断的基本概念和原理。
2. 掌握认知诊断的基本方法和技巧。
3. 提高对认知障碍的识别和评估能力。
4. 了解认知诊断在临床和教育教学中的应用。
---四、实习内容1. 理论学习:- 认知诊断的定义、发展历程及其重要性。
- 认知障碍的类型、表现和诊断标准。
- 常用的认知诊断工具和方法。
2. 实践操作:- 使用认知诊断工具对被试进行评估。
- 分析评估结果,识别被试的认知障碍类型。
- 制定针对性的干预方案。
3. 案例分析:- 通过对实际案例的分析,加深对认知诊断理论和方法的理解。
---五、实习收获1. 理论知识:对认知诊断的基本概念、方法及在现实中的应用有了更为深刻的理解。
2. 实践技能:掌握了认知诊断的基本方法和技巧,提高了对认知障碍的识别和评估能力。
3. 团队合作:在实习过程中,与团队成员相互协作,共同完成了认知诊断任务。
4. 问题解决:通过分析案例,培养了问题解决能力。
---六、实习反思1. 理论知识的局限性:认知诊断理论和方法在实践中的应用存在一定的局限性,需要根据实际情况进行调整。
2. 实践操作的不足:在实习过程中,发现自己在操作过程中存在一定的不足,需要加强实践练习。
3. 团队合作的重要性:在认知诊断过程中,团队合作至关重要,需要加强沟通与协作。
---七、建议1. 加强对认知诊断理论和方法的学习,提高自身的专业素养。
2. 积极参与实践操作,提高自己的实际操作能力。
3. 加强团队合作,提高沟通与协作能力。
4. 关注认知诊断领域的发展动态,不断更新自己的知识体系。