多级离心泵的轴向力的计算
- 格式:pdf
- 大小:500.56 KB
- 文档页数:2
离心泵轴向力计算式应用与平衡作者:于锡平来源:《科学与财富》2014年第02期摘要:离心泵在工作过程中,可靠运行的一个重要方面就是平衡部件(平衡盘或平衡鼓)和推力轴承的设计,一般在多级离心泵的叶轮上不考虑平衡轴向力的结构,因此,泵轴向力计算的准确程度影响到平衡部件、推力轴承的设计和使用寿命,本文经多年的设计实践,提出较理想的轴向力计算式,基本在设计卧式多级泵或立式多级泵的平衡盘或平衡鼓的部件时没有失误,可以借鉴。
关键词:离心泵;轴向力;计算式应用;平衡1. 轴向力产生的原因由于叶轮前后盖板因液体压力分布情况不同引起很大的轴向力,叶轮后盖板所受压强大于前盖板所受的压强,形成的压力差,方向自叶轮背面指向叶轮入口,这个力是泵轴向力的主要组成部分。
泵在正常运行时,叶轮吸入口的压力P1,叶轮背面的压力为P2,且P2>P1,因此沿着泵的轴向方向就会产生一个推力。
液体流经叶轮后,由于流动方向变化所产生的动压力F2,在多级离心泵中,流体通常由轴向流入叶轮,由径向流出,流动方向的变化是由于流体受到叶轮的作用力,因此流体也给叶轮一个大小相等、方向相反的反作用力。
扭曲叶片工作面和背面压力不同产生的轴向力。
对于立式泵,转子的重量也是轴向力的组成部分。
其它因素产生的轴向力。
2. 轴向力计算式探讨假定叶轮两侧间隙液体压力分布规律相同,则有轴向力F1=π/4(D21-dh2)ρg[HP-U22/8zg{1-(D21-d2h)/2D22}],实际上,由于存在泄漏,轮盖两侧会有液体从外径处经轮盖密封流向吸入口,轮盘测则由于级间泄漏,有液体自高压级漏失到低压级,从叶轮内径处流向外经处,在轮盖测,液体做向心的径向流动,所以压力要减小,而在轮盘测,液体作离心的径向流动,所以,压力要增大,这样一来,轴向力F1的实际值比上式要大一些,所以,一般使用经验公式F1=(π/4)(D21-d2h)ρgkHi,其中,k为实验系数,与比转数有关,当nS=60-150时,k=0.6;当nS=150-250时,k=0.8;i为叶轮级数。
多级离心泵轴向窜量的正常范围
多级离心泵轴向窜量是指泵轴在水平方向上的运动距离。
正常范围会根据具体的泵的设计和工作条件而有所不同。
一般来说,在运行条件下,多级离心泵轴向窜量应满足以下要求:
1. 通常,泵轴窜量应小于泵轴承的允许轴向负荷范围。
2. 轴向窜量应小于轴承的径向游隙。
3. 轴向窜量应小于泵的设计允许值。
具体的正常范围还需要根据具体的泵型号、工况和运行条件来确定。
如果泵轴向窜量超过正常范围,可能会导致泵的性能下降、泵轴承过热甚至损坏等问题。
因此,在安装和调试过程中,需要按照泵的使用说明书和工作条件要求来进行操作,以保证多级离心泵的正常运行。
(1)平衡鼓法这是一种径向间隙液压平衡装置,它装在最后一级叶轮和平衡室之间,和泵轴一起旋转的称为平衡鼓轮,静止部分称为平衡鼓轮头。
用一根管线平衡室与泵进口连通,这样平衡室内的压力就等于进口连通管线中损失压力之和。
平衡鼓法平衡原理:平衡鼓轮前面是最后一级叶轮的后泵腔,其压力接近于泵的排出压力,因而平衡鼓两个端面之间有一个很大的压力差,能够把平衡鼓轮向后推,从而带动整个转子向后移动。
如果我们设法使这个推力和离心泵的轴向力相等,就能够达到平衡轴向力的目的。
(2)平衡盘法(下图):平衡盘是一种轴向间隙液压平衡装置。
装在最后一级叶轮与平衡室之间,和轴一起转动的称为平衡盘,静止不动的称为平衡环(套)。
平衡原理:从叶轮出来的一部分液体经过平衡盘与平衡环之间的轴向间隙漏入平衡室,再用管路把平衡室与泵吸入口连通,这时平衡盘背面所受的压力是平衡室压力。
平衡盘正面最小直径上受到的压力是泵的吐出压力,而在周界上是平衡室压力。
只要选择好平衡盘的内、外直径尺寸,就可以使平衡盘正面与背面的压力差和泵的轴向力相等,从而达到平衡的目的。
平衡盘法假如泵的轴向力增加,这额外的压力就会把泵的转子推向吸入口侧,从而使平衡盘和平衡环之间的端面间隙减小。
此时通过这个间隙的漏失量将减少,平衡室压力下降,这时平衡盘前后的压力差增加,将转子向吐出口方向推,直到与轴向力平衡为止。
反之,如果泵的轴向力减小,就会造成平衡盘与平衡环之间的轴向间隙增大,漏失量增加,平衡压力增高,直到又获得新的平衡为止。
(3)平衡盘与平衡鼓组合法(下图):平衡盘与平衡鼓组合实际上是一种径向、轴向液压平衡装置。
高压多级离心泵普遍采用此法,平衡效果好,组合法的平衡原理与上述两法相同。
平衡盘与平衡鼓组合法(4)叶轮对称布置平衡法:在多级水平中开式离心泵中通常采用叶轮对称布置平衡法来平衡轴向力,使成组叶轮的吸人口方向正好相反,从而起到平衡轴向力的作用。
在泵上也要安装止推轴承。
第二节离心泵的结构任何离心泵均由吸入机构、导流机构、过流、密封、平衡、支承及辅助机构等部件组成。
其中吸机构和导流机构组成泵壳部分;过流部件的轴、叶轮、轴套以及其它大部分套装轴上的零件组成了泵的转子部分,另外平衡轴向力的机构和机械密封组件等也装在轴上。
一、泵壳1.泵壳的作用1)将液体均匀地导入叶轮,并收集从叶轮高速流出的液体,送入下一叶轮或导向出口。
2)实现能量的转换,变动能为压力能。
2.泵壳的形式(1)蜗形泵壳通过螺线形流道(如图1-11)使液流平缓地降低流速,以使大部分动能转为压能,同时起导向作用。
(2)有导轮的分段泵壳用于分段式多级泵。
液流通过靠近叶轮外缘的导轮(如图1-12)改变流向。
导轮的流道入口应尽量保持使液流方向与叶轮甩出方向一致,以避免因冲击而引起的能量损失,但工况改变时,有时还是不可避免的。
液体流经导轮同样起降速增压和导向作用。
(3)两种泵壳特点的比较蜗形泵一般多用于单级泵及水平中开式的多级泵;而具有导轮的分段泵壳则都在多级泵。
两种泵壳特点比较见表1-3。
泵壳的材质取决于输送介质的温度、压力和介质的腐蚀性。
表1-3 两种泵壳特点比较二、转子部分转子是一组合部件。
它由轴、叶轮、轴套等组成,是产生离心力和能量的旋转主体。
密封部件、平衡装置等也都套装在轴上,是离心泵的关键部分。
1.叶轮叶轮是离心泵的主要零件。
叶轮主要由轮盖、叶片、轮毂等组成(图1-13)。
在前后轮盖与叶片之间形成流道,叶轮在轴的带动下旋转,产生离心力,液体由叶轮中心轴进入,由外缘排出,完成液体的吸入与排出。
叶轮的形式按进水方式可分为单吸和又吸两种。
2.转轴转轴的作用是传递原动机的动力及带动叶轮旋转,并支承轴上各零部件的重量。
3.轴套轴套套装在轴上,一般是圆柱形。
轴套有两种:一种是装在叶轮与叶轮之间,主要起固定叶轮的作用;另一种是装有轴两头密封处,防止轴磨损,起保护轴的作用。
4.轴与叶轮的装配方法轴与叶轮的装配方法有两种:一是悬臂式,把叶轮固定在轴的一端,并通过键或叶轮与轴的螺纹连接来传递扭矩。
离心泵轴向力的产生及平衡措施许华峰【摘要】分析离心泵轴向力产生的原因,根据具体实际情况采用平衡措施,有效减少泵的故障,为装置平稳运行创造有利条件,同时也降低了维修成本.【期刊名称】《中国设备工程》【年(卷),期】2015(000)012【总页数】3页(P61-63)【关键词】轴向力;平衡措施;轴向力计算【作者】许华峰【作者单位】山东天弘化学有限公司,山东东营 257000【正文语种】中文【中图分类】TH311离心泵在运转时产生轴向力,流体作用在转子上的轴向力主要是由于其作用在叶轮两侧的压力分布不对称而引起的,此轴向力在工况稳定的情况下是一定值,即静态轴向力,设计时一般采用平衡装置将其平衡掉,剩余部分由止推轴承承担;而实际上,作用在止推轴承上的轴向力并不是固定不变的,运行工况、密封间隙、制造及装配误差等因素均会引起轴向力的变化,轴向力的变化部分称之为动态轴向力,而它是平衡装置无法平衡的。
加上各种轴向力计算公式理论上都存在着误差,静态轴向力的平衡也是不准确的。
这两方面是引起泵本身及电动机损坏的主要原因,极易造成作用在止推轴承上的轴向力过大或过小,轴向力过大则造成烧瓦、断轴、密封隔板的损坏或增大止推轴承的摩擦,主轴、叶轮向进口方向移动致使叶轮与泵壳发生摩擦,电动机负载加大;如果轴向力过小,则会引起转子的前后窜动。
1.轴向力的产生在离心泵中液体是在低压力P1下进入叶轮,而在高压力P2下流出叶轮。
由于出口压力大于进口压力及叶轮前后盖板的不对称,使得叶轮两侧所受的液体压力不相等,因而产生了轴向推力,如图1所示。
从图1可以看出,作用在叶轮右边的压力为:P右=πr22P2;作用在叶轮左边的压力为:P左=πr12P1+π(r22-r12)P2。
式中r1、r2为叶轮的内、外圆半径,ΔP=P右+P左=πr12(P1-P2)。
因P2>P1,故ΔP是正值。
因此当离心泵运转时总有一个沿轴并指向吸入口的力作用在转子上。
叶轮入口部位是低压,而出口及叶轮背部是高压,在叶轮的前轮盖和后轮盖之间形成压差,这个压差就形成了轴向力。
离心泵轴向力分析和平衡方法探讨曹昆朋摘要:在离心泵工作的过程中,转子会受到一个轴向推力,其和轴心线相互平行。
如果该力得不到有效的控制,在其作用下转子可能会出现一种轴向窜动的情况,这时就会引发转动部件以及固定部件之间直接接触,当这种情况发生就会引发泵零部件非正常运行。
对离心泵的轴向力产生和平衡方法作了详细的叙述,希望可以起到一定的作用。
关键词:离心泵;轴向力分析;平衡方法前言:高速离心泵的轴向力平衡方法有平衡孔、平衡管、背叶片、平衡鼓及平衡盘等方式。
背叶片通过降低叶轮盘侧流体压力,从而来减少叶轮盘侧的方向指向进口的轴向力,但会增加轴功,致使效率降低,不是高速泵轴向力平衡的首选方法。
叶轮对称分布是多级高速泵较有效的轴向力平衡方法,但结构较复杂,因此也不是理想的轴向力平衡方法。
在本文中对平衡方法进行了相关的探讨。
1.离心泵工作原理及基本性能1.1工作原理离心泵起到主要作用的是叶轮,液体能量主要是依靠叶轮旋转来获得的,其减速液体动能在蜗壳中被收集起来,将液体所具有的动能转变成压力能,而起到压送液体的作用。
当离心泵内充满液体的情况下,叶轮旋转产生离心力,在离心力作用下叶道内部的液体借助于叶片的作用甩向外围流进泵壳,通过排出管排出;另外液体还会受到离心力的作用从中心高速向四周流动,于是叶轮的中心部位压力降低,形成真空状态,且低于大气压力;因此,液体在这个压力差的作用下,由吸液池进入泵内,使离心泵能连续不断地进而进行一系列液体的吸入和流出。
1.2离心泵基本性能(1)离心泵的特点是具有大流量,而且相对稳定,但是需要注意的是可能会随着扬程发生变化。
(2)扬程在这一原理中的主要作用就是决定了离心泵当中的叶轮外径,以及叶轮自身的转速大小。
(3)扬程不仅仅与叶轮的外径与转速有关系,还与轴功率与流量之间存在一种对应关系。
(4)离心泵的吸入高度通常比较小,在实际操作当中可能会出现汽蚀现象。
(5)具有很高的转速,而且如果相对流量比较低,那么就会降低效率,如果相对流量比较高,效率也就会提高。
多级离心泵型式与基本参数多级离心泵是一种常见的工业设备,广泛应用于液体输送领域。
本文将介绍多级离心泵的型式和基本参数,并对其工作原理和应用进行探讨。
一、型式和基本参数多级离心泵是由多个离心泵级联而成的泵,适用于输送高扬程液体。
其型式和基本参数主要包括以下几个方面:1. 型式:多级离心泵的型式根据叶轮布置可分为两种类型:轴向分离式和径向分离式。
轴向分离式多级离心泵的各级叶轮沿轴向排列,流体在泵内呈轴向流动;径向分离式多级离心泵的各级叶轮沿径向排列,流体在泵内呈径向流动。
2. 叶轮数量:多级离心泵的叶轮数量决定了其扬程能力。
一般来说,叶轮数量越多,扬程能力越高。
常见的叶轮数量有2、3、4、5个等。
3. 叶轮直径:叶轮直径是多级离心泵的重要参数之一。
叶轮直径越大,泵的扬程能力越高。
叶轮直径的选择需要综合考虑泵的使用场合和输送液体的特性。
4. 流量:流量是指泵每单位时间内输送的液体体积。
多级离心泵的流量大小取决于泵的转速、叶轮直径和叶轮数量等因素。
5. 扬程:扬程是指泵能够克服的液体静压力差。
多级离心泵的扬程能力取决于泵的叶轮数量、叶轮直径、转速等因素。
二、工作原理多级离心泵的工作原理是利用叶轮的旋转产生离心力,使液体产生压力,从而实现液体的输送。
当泵启动后,电机驱动叶轮高速旋转,液体被叶轮吸入并加速,然后被叶轮的离心力推出,产生一定的压力。
多级离心泵的特点是在泵体内设置多个叶轮,每个叶轮都对液体进行一次加速和压力增加,从而实现高扬程的输送。
三、应用领域多级离心泵广泛应用于各个工业领域,特别是需要输送高扬程液体的场合。
其主要应用领域包括以下几个方面:1. 石油化工:多级离心泵在石油化工行业中用于输送原油、炼油产物、化工原料和成品油等。
2. 电力工程:多级离心泵在电力工程中用于输送循环水、冷却水和给水等。
3. 钢铁冶金:多级离心泵在钢铁冶金行业中用于输送冷却水、循环水、工艺水和废水等。
4. 污水处理:多级离心泵在污水处理领域中用于输送污水、污泥和废水等。
多级离心泵轴向力
多级离心泵轴向力是指在泵的运转过程中,由于叶轮的离心力和液体的惯性力等因素,使得泵的转子产生了一个沿轴线方向的力,即轴向力。
这种力的大小和方向会随着泵的运转状态而发生变化,如果轴向力过大,会对泵的正常运转产生不良影响,甚至会导致泵的损坏。
在多级离心泵中,轴向力的大小和方向主要受到以下因素的影响:
1. 叶轮的设计:叶轮的叶片数、叶片弯曲角度、进出口角度等都会影响叶轮的离心力和轴向力的大小和方向。
2. 泵的进口和出口布置:进口和出口的位置和布置方式也会影响泵的流量和压力分布,从而影响轴向力的大小和方向。
3. 液体的物理性质:液体的密度、粘度、温度等物理性质也会影响泵的流量和压力分布,从而影响轴向力的大小和方向。
4. 泵的运转状态:泵的运转状态包括转速、流量、压力等参数,这些参数的变化也会影响轴向力的大小和方向。
为了减小轴向力的影响,多级离心泵通常采用以下措施:
1. 采用双吸式结构:双吸式结构可以使得泵的进口压力分布更加均匀,从而减小轴向力的大小。
2. 采用对称式结构:对称式结构可以使得泵的进口和出口布置更加对称,从而减小轴向力的方向。
3. 采用轴向力平衡装置:轴向力平衡装置可以通过调整叶轮的进出口角度等参数,使得泵的轴向力趋于平衡。
4. 采用轴向力测量和控制系统:轴向力测量和控制系统可以实时监测泵的轴向力,并通过调整泵的运转状态等参数来控制轴向力的大小和方向。
总之,多级离心泵的轴向力是一个重要的运转参数,需要采取适当的措施来减小其影响,从而保证泵的正常运转和长期稳定性。
OPL (十分钟教育)
培训班组 授课人员 □设备原理 □设备构造 □设备操作 □故障判断 □事故学习 □应急预案
培训时间
受教育人签名
分类 √设备原理课题
离心泵的轴向力
一、 轴向力的产生:
产生轴向力的原因:1、叶轮前后盖不对称,前盖板吸入口部分无盖板,高压液体在这一部分产生压力无法平衡,因而产生轴向力。
2、液体进入叶轮后,液流方向发生变化(离心泵、混流泵都是如此),这时对叶轮后盖板产生一个冲力。
二、轴向力的平衡 (一) 单级泵平衡轴向力措施:①采用双吸式叶轮,叶轮两侧形状对称,两侧液体压力相等,叶轮两侧压力平衡。
②开平衡孔:在靠近轮毂后盖板上钻有数个小孔。
后部密封环与前部密封环直径相同,所以密封环以外两侧盖板受压面积对称,因而没有轴向力,当叶轮后部的液体从密封环间隙漏到密封环以内,又从小孔流回叶轮入口处,使两侧压力相等。
③平衡管:这种方法与平稳孔原理相似。
将带压漏进后部密封环内的液体经平衡管引回到泵入口管线,使前后密封上压力保持一致。
(二)多级离心泵轴向力平衡措施:①叶轮对称布置。
两级或两级以上的离心泵上,将叶轮靠背或面对面对称安装在一根轴上,这样轴向力即可自动平衡。
②采用平衡鼓平衡管。
平衡鼓是多级泵平衡装置,它是装在末级叶轮之后的一个圆柱体,它的外圆与泵体上平衡套之间有很小的间隙,平衡鼓前面是高压区(与末级叶轮背后压力相同),而平衡室里压力与入口管压力相近,因此平衡鼓前后产生一压力差。
在这一压力差的作用下,平衡鼓受向后推力(即叶轮入口向后盖板方向)。
这个力就叫平衡力。
如何正确消除离心泵的轴向力
离心泵的轴向力:
1、轴向力产生的原因:因吸排液口压力不等也使并非完全对称的叶轮两侧所受液体压力不等,从而产生了轴向力。
叶轮两侧液体压力假如不计轴的截面积,也不考虑叶轮旋转对压力分布的影响,则作用在叶轮上的力为轮盘受的力和轮盖受的力的差值,转化为计算式就是出口压力和进口压力差值与叶轮轮盖的面积的乘积,因为出口压力始终大于进口压力,所以,当离心泵旋转起来就一定有了一个沿轴并指向入口的力作用在转子上。
2、轴向力产生的问题:不平衡的轴向力会加重止推轴承的工作负荷,对轴承不利,同时轴向力使泵转子向吸入口窜动,造成振动并可能使叶轮口环摩擦使泵体损坏。
如何正确消除离心泵的轴向力:
对于多级离心泵来说,一般出口压力远大于入口压力,所以用平衡力来消除轴向力就显得尤其重要,如何消除轴向力呢?
1、多级泵一般采用的是平衡盘和叶轮的对称安装,单级泵一般是在叶轮上开平衡孔,当然还有在叶轮轮盘上安装平衡叶片的方式来平衡轴向力。
2、虽然我们要求的是消除轴向力,但假如完全消除了也会造成转子在旋转中的不稳定,所以在设计的时候,会设计出30%的量让轴承来抵消,这就是为什么多级泵非驱动端轴承通常都是角接触轴承的原因,因为它可以用来承受很大的轴向力。
长沙三昌泵业有限公司给您带来一种全新的体验,自平衡多级离心泵既解决了平衡问题而且更经济,具有高效区宽、性能范围广、汽蚀性能好、运转安全和平稳、噪音低、易损件少,安装维修方便等优点。
可靠性大大提高,无故障运行时间是普通泵的3倍以上,用户维修成本大大降低,从而降低泵的寿命周期成本。
离心叶轮轴向力的产生与计算(摘自《叶片式泵 通风机 压缩机(原理、设计、运行、强度)》 成心德 编著)由于叶轮轮盘和轮盖外侧所受的流体作用力不同,相互抵消后还剩下一部分轴向力。
所有叶轮上轴向力纸盒就是作用在转子上的轴向力,其作用方向是从高压端指向低压端。
分析叶轮上的轴向力,通常作两个假定:1)在叶轮出口2R 处,无论是轮盘或轮盖侧的流体压力等于叶轮出口压力2P 。
2)轮盘和轮盖与机壳间的间隙内的流体旋转速度是叶轮旋转速度的一半。
从以上两个假定,可以得出这样的结论,即叶轮两侧流体压力分布的规律是一样的,如图1所示。
图中从c D 到2D 范围内作用于叶轮两侧的力大小相等,方向相反,被抵消了。
因此叶轮上的轴向力就是轮盘侧从m d 到c D 和轮盖侧从h d 到c D 的流体作用力合力。
图 1 闭式叶轮轴向力计算轮盖侧从h d 到c D 的流体作用力用0P 表示,它包括两部分的作用力: 一是由流体静压力1P 产生的轴向力,其值为:()1224p d D πb c ⋅-⋅; 二是轴向速度0c 对叶轮产生的冲力,其值为:0c Q m ⋅。
因此:()012204c Q pd D πP m b c ⋅+⋅-⋅=(1) 式中 m Q ——质量流量 kg/s 。
轮盘侧从m d 到c D 间流体的压力2r p 产生的轴向力为:()R R πp P P cm D d r d 222212⋅⋅⋅=-⎰(2) 式中 2P ——流体静压强作用在轮盘上的总压力;1P ——流体静压强作用在从c D 到2D 间轮盘上的总压力。
为了求上式的积分值,必须先求出2r p 随R 变化的关系式。
根据径向平衡条件,R 'ωρRp r ⋅⋅=22d d 将2ω'ω=代入上式,得: R ωρR p r ⋅⋅=224d d 假定间隙中流体的密度ρ不变且等于m ρ,则:⎰⎰⋅⋅=222d 422R R p p m r R R ωρp r 由此得: ()2222228R R ωρp p m r -⋅⋅-= (3) 将式(3)代入式(2),进行积分后得:()()()⎥⎦⎤⎢⎣⎡-⋅⋅--⋅⋅⋅-⋅-⋅=-442222222221221324mc m c m m cd D D d D u ρπp d D πP P (4)叶轮上的净轴向力为:()()()()12244222222222012421324c Q p d D πd D D d D u ρπp d D πP P P P m h c m c m c m m c ⋅-⋅-⋅-⎥⎦⎤⎢⎣⎡-⋅⋅--⋅⋅⋅-⋅-⋅=--=(5)对于通风机和压力不高的压缩机,气体密度m ρ不大,可略去离心力项,并设h m d d =,则:()()012224c Q p pd D πP m h c ⋅--⋅-⋅=(6) 如果压力较高,在十几个大气压以上,就不能忽视气体的离心力。