有限元分析(FEA)方法PPT课件
- 格式:pptx
- 大小:1.26 MB
- 文档页数:67
有限元分析FEA有限元分析(Finite Element Analysis,FEA)是一种数值分析方法,广泛应用于工程领域,用于估算结构在特定工况下的力学性能。
FEA 将复杂的实际结构抽象为有限数量的简单几何形状,然后通过对这些几何形状进行分割,建立一个离散的节点网格,进而利用数学方法对节点网格上的几何、力学和材料性能进行模拟和计算,通过求解节点间的方程组,得到结构的应力、应变、位移等结果。
1.建立几何模型:通过计算机辅助设计软件建立结构的几何模型。
模型可以是二维或三维的,包括各种几何形状,如线段、矩形、圆形等,并包含结构的尺寸和几何特征。
2.网格划分:将几何模型划分为离散的节点网格,并在节点上分配适当的节点元素。
节点元素可以是线元素、平面元素或体元素,将结构的连续性转化为离散点之间的连接关系。
3.建立力学模型:根据所要研究的问题和加载条件,确定边界条件、加载情况和材料性能等。
边界条件包括约束和加载,在节点和元素上分配适当的约束和加载。
4.建立单元刚度矩阵:根据单元的几何形状和材料特性,建立单元的刚度矩阵。
刚度矩阵包含单元的弹性刚度、几何刚度和材料刚度。
5.组装刚度矩阵:将所有单元的刚度矩阵根据节点的连接关系进行组装,得到总体的刚度矩阵。
组装的过程包括将单元刚度矩阵映射到全局坐标系、考虑边界条件和加载等。
6.求解方程组:建立节点的位移和约束条件之间的关系,得到结构的位移、应力和应变等结果。
可以通过直接解方程组或迭代求解的方法得到最终结果。
7.后处理:根据具体问题的要求,对结果进行分析和解释。
可以绘制位移云图、应力云图、应变云图等,进行结构的评估和优化。
FEA有以下几个主要特点和优势:1.可适用于各种工程领域:FEA可以用于解决结构和材料的强度、稳定性、疲劳、振动、热传导、电磁等多种问题,广泛应用于航空航天、汽车、能源、建筑和机械制造等领域。
2.具有高精度:通过适当的剖分和合理的力学模型,能够在相对较短的时间内提供较准确的结果,并对结构进行合理和有效的评估。