基于AIoT业务场景的边缘融合网关解决方案
- 格式:pdf
- 大小:754.86 KB
- 文档页数:8
基于AI芯片的电力边缘智能终端:结构框架及其应用场景摘要:随着电网的发展和能源的数字化转型,电力边缘智能终端的应用范围也在不断扩大。
AI芯片作为一种具有智能分析和并行运算的能力,已经成为了电力系统中的关键设备,因此,如何针对不同的应用场合,对其进行系统的划分,以确定使用合适的AI芯片。
本文通过对智能电网的技术体系和优缺点的比较,给出了基于智能电网的智能感知需求的电力边缘智能终端体系结构,详细分析了其中的关键技术,并针对典型的电网应用情况,给出了一种可替代的AI芯片的定制方案。
本文提出的基于AI芯片的电力边缘智能终端能够为设计、研发和应用提供参考,同时也具有一定的理论和实践意义。
关键词:AI芯片;电力边缘智能终端;结构框架引言本文从技术架构、典型产品、性能指标等方面入手,针对电网的特征和智能感知需求,给出了基于AI芯片的电力边缘智能终端的基本思想和体系结构,并对其所涉及的关键技术和典型的应用场景进行了分析,针对不同的场景特征,给出了可替代的国产AI芯片的选择和解决方案。
本文提出的基于AI芯片的电力边缘智能终端,对于开发具有智能感知和分析处理功能的智能终端,将会对推动电力系统的发展、能源的数字化转型起到积极的作用。
1、AI芯片及其技术架构1.1图形处理单元GPU是一种单指令、多数据处理、大量计算单元和超长流水线的计算单位,目前主要应用在图像处理中。
GPU不能独立运行,需要CPU来调用和发布命令。
由于CPU采用的是串行运算方式,因此不能完全利用CPU的运算能力,GPU是一种高并行架构的CPU,它的运算能力要优于CPU。
CPU在结构上以控制器和寄存器为主,GPU具有更多的运算逻辑(ALU),它更适用于高密度的数据并行处理。
GPU 在算法训练上表现出更好的性能,但是其在单输入推理中的优越性却没有得到充分的体现。
1.2现场可编程门阵列FPGA是以硬件为核心的软件算法,在FPGA中包含大量的数字电路、基本门电路以及内存。
中国智能物联网(AIoT)白皮书核心摘要:智能物联网(AIoT)是2018年兴起的概念,指系统通过各种信息传感器实时采集各类信息(一般是在监控、互动、连接情境下的),在终端设备、边缘域或云中心通过机器学习对数据进行智能化分析,包括定位、比对、预测、调度等。
预计2025年我国物联网连接数近200亿个,万物唤醒、海量连接将推动各行各业走上智能道路。
2019年,受益于城市端AIoT业务的规模化落地及边缘计算的初步普及,中国AIoT市场规模突破3000亿大关直指4000亿量级,由于AIoT在落地过程中需要重构传统产业价值链,未来几年发展节奏较为稳定。
当前AIoT技术和商业快速落地,然而,认知智能层面的发展仍然较慢,行业标准与规范化不足,大规模物联网设备的安全问题也有待重视。
在物联网和人工智能时代,消费领域和产业领域都面临新机遇,这一机遇窗口期内,用户触达能力和内容服务生态聚合能力是最重要的资源,具备明星产品+自有操作系统产品的企业更易突围,成长为AIoT时代的所在场景服务的核心者。
中国AloT的概念与现状智能物联网(AIoT)定义人工智能与物联网的协同应用智能物联网(AIoT)是2018年兴起的概念,指系统通过各种信息传感器实时采集各类信息(一般是在监控、互动、连接情境下的),在终端设备、边缘域或云中心通过机器学习对数据进行智能化分析,包括定位、比对、预测、调度等。
在技术层面,人工智能使物联网获取感知与识别能力、物联网为人工智能提供训练算法的数据,在商业层面,二者共同作用于实体经济,促使产业升级、体验优化。
从具体类型来看,主要有具备感知/交互能力的智能联网设备、通过机器学习手段进行设备资产管理、拥有联网设备和AI能力的系统性解决方案等三大类。
从协同环节来看,主要解决感知智能化、分析智能化与控制/执行智能化的问题。
AIoT2025产业瞭望:家庭AI管家智能家居交互方式无感化,跨终端无缝体验AIoT2025产业瞭望:建筑人居人居关怀使五千万人居住和工作体验提升AIoT2025产业瞭望:工业制造人机协同使7万工厂、630万制造从业者受益AIoT2025产业瞭望:智慧城市AIoT能够应用于城市中广泛遍在的各类终端设备AIoT整体架构主要包括智能设备与解决方案层、操作系统层、基础设施AIoT的体系架构中主要包括智能设备及解决方案、操作系统OS层、基础设施等三大层级,并最终通过集成服务进行交付。
基于NB-IoT及ZigBee的无线传感器网络网关设计李玲;郭晓玲;武仁杰;徐婷【摘要】为了使ZigBee网络数据能够通过无线方式直达远程控制中心,设计了基于NB-IoT及ZigBee的无线传感器网络网关.网关由ZigBee芯片CC2530和NB-IoT模块BC95组成,两者通过串口相连.ZigBee协调器是ZigBee网络的控制中心,收集各个节点的数据,并通过串口将数据发送给BC-95模块.BC-95模块通过NB-IoT网络将数据传输到云平台或者控制中心,云平台或者控制中心的指令通过NB-IoT网络到达ZigBee协调器,协调器再将指令转发到下属节点.实验表明,系统运行稳定,适用于无线传感器网络的诸多应用场合.【期刊名称】《通信技术》【年(卷),期】2019(052)001【总页数】5页(P234-238)【关键词】无线传感器网络;ZigBee;NB-IoT;网关【作者】李玲;郭晓玲;武仁杰;徐婷【作者单位】河北北方学院信息科学与工程学院,河北张家口 075000;河北北方学院信息科学与工程学院,河北张家口 075000;河北北方学院信息科学与工程学院,河北张家口 075000;河北北方学院信息科学与工程学院,河北张家口 075000【正文语种】中文【中图分类】TP3930 引言无线传感器网络(WSN)是由大量传感器节点通过无线通信技术构成的自组织网络,集成了传感器、网络、计算机、嵌入式系统等技术,用来采集、处理和传输网络覆盖范围内感知对象的信息。
ZigBee是建立在IEEE802.15.4标准基础上的低功耗个域网协议,具有低成本、近距离、自组织、低功耗、低数据传输率、低复杂度等特点,较蓝牙、WiFi等无线技术,更适用于无线传感器网络,也是无线传感器网络中采用较多的无线传输协议[1-2]。
但是,ZigBee属于短距离技术,它的协议栈也并不支持IP协议。
ZigBee网络中节点的数据要到达控制中心或者云端,必须经过网关进行协议转换。
华为融合通信解决方案1. 简介华为融合通信解决方案是一套结合了传统通信和互联网技术的解决方案,旨在提高企业的通信效率和业务流程的数字化转型。
该解决方案包括硬件设备、软件平台和云服务等组成部分,通过将多种通信方式整合在一起,满足企业对多样化通信需求的同时提高通信效率。
2. 解决方案组成2.1 硬件设备华为融合通信解决方案涵盖了各种硬件设备,包括交换机、路由器、无线基站等。
这些设备能够支持多种通信协议和网络技术,使企业能够灵活地进行通信和数据传输。
2.2 软件平台华为融合通信解决方案的核心是软件平台,该平台提供了丰富的功能和服务,包括音视频通信、即时消息、在线会议等。
通过软件平台,企业能够在不同设备上进行统一的通信,实现多种通信方式的无缝切换。
2.3 云服务华为融合通信解决方案还提供了云服务,可以将通信功能和数据存储等服务迁移到云端。
通过云服务,企业能够获得更高的灵活性和可扩展性,同时减少硬件设备的成本和维护工作。
3. 主要特点3.1 多样化通信方式华为融合通信解决方案支持多种通信方式,包括语音通话、视频会议和即时消息等。
企业员工可以根据具体需求选择最合适的通信方式,提高工作效率和沟通效果。
3.2 统一管理和控制通过华为融合通信解决方案,企业能够实现对通信设备和服务的统一管理和控制。
管理员可以通过集中的管理平台进行设备配置和用户管理,同时可以监控和优化整个通信网络的性能。
3.3 强大的扩展性和可定制性华为融合通信解决方案具有强大的扩展性和可定制性。
企业可以根据自身需求扩展或定制特定的通信功能,使解决方案更符合实际业务场景。
3.4 高安全性和可靠性华为融合通信解决方案采用了先进的安全技术和机制,确保通信和数据传输的安全性。
同时,它还具有高可靠性和冗余性,能够保证通信网络的稳定运行。
4. 应用场景4.1 企业办公华为融合通信解决方案可以满足企业内部员工之间的沟通需求,包括语音通话、视频会议和即时消息等。
0 引言网关作为物联网技术的核心组成部件,具有承上启下的作用,是用于连接感知层网络与上层公共网络的纽带,也被视为一种协议转换器。
网关正朝着效率、实时性、抗干扰能力逐渐提升的方向发展,应用的场景也越来越多,在农业、工业、交通、智慧电网等诸多场景都有一席之地。
应用场景的增加导致网关种类随之增多,如家居智能网关、工业数据网关和交通管控网关等。
网关的功能是相通的,主要用于协议转换、数据交互、网络互联互通,区别在于各网关的应用场景不同。
传统网关的创建方法是把现场设备的数据先收集到网关节点,利用内嵌协议分析转换器将处理完毕的数据通过MQTT物联网协议传送到客户自定义的云平台[1-2]。
存在支持的数据协议较为单一、应用范围较小、开放性不足等问题,当现场使用的设备和数据协议发生改变时,需要重新对网关程序进行二次开发,花费大量的人力物力。
针对此类问题,设计一种支持多种接入协议、具备边缘计算特性以提高网关的通用性[3]、数据采集可配置以减少数据冗余,避免浪费传输带宽的物联网网关就变得十分重要。
1 可配置物联网网关架构1.1 软件架构物联网网关整体框架可分为五层,如图1所示。
感知层作为物联网关框架的第一层,用于采集各类接入网关设备数据,并将采集的数据上传给数据处理层。
数据处理层对感知层上传的数据包进行解析和协议转换,将数据分析成标准格式后交给边缘计算层处理[4]。
图1 物联网网关总体设计框架边缘计算层作为物联网网关的核心层,需要对转换后的标准格式数据进行边缘计算,包括数据运算、逻辑判断、信号联动和故障研判。
边缘计算的内容需要预先设定,计算方法由用户设定。
传输层用于传输感知层采集的数据,使用4G网络传输。
应用层是指对采集设备的数据进行本地动态曲线显示,网关的本地显示使用微信小程序实现[5]。
1.2 硬件架构物联网网关硬件平台由边缘计算核心板EC Core-L-1和网关底板和扩展单片机STM32F4007IG组成,其连接和软件架构如图2和图3所示。
中国电信智慧网关系统设计方案中国电信智慧网关系统设计方案一、方案背景及目标:随着5G时代的到来,中国电信需要构建一个智慧网关系统,以支持更高速的数据传输、更多种类和规模的设备连接,并提供更加智能化的服务。
该系统的目标是提供高效、可靠的数据传输和智能化的服务管理,以满足用户对更好网络体验的需求,并支持物联网和边缘计算等新兴技术的发展。
二、系统架构设计:1. 网络接入层:智慧网关系统需要支持多种网络接入方式,包括有线接入(如光纤、以太网)和无线接入(如4G、5G、Wi-Fi)。
在有线接入方面,可以采用光纤接入技术,将光纤接入设备连接到智慧网关系统。
在无线接入方面,可以采用蜂窝网络技术,如4G和5G网关,将移动通信设备连接到智慧网关系统。
同时,还可以支持Wi-Fi接入,以满足家庭和办公环境中的无线连接需求。
2. 数据传输层:智慧网关系统需要具备高效、可靠的数据传输能力,以满足大规模设备连接和大数据传输的需求。
对于有线接入,可以采用高速的以太网传输技术,如千兆以太网或万兆以太网,以提供更高的传输速度和带宽。
对于无线接入,可以采用LTE技术或5G技术,以支持更高速的无线数据传输和更多设备的连接。
3. 服务管理层:智慧网关系统需要提供智能化的服务管理功能,包括设备管理、用户管理、服务配置等。
设备管理:对接入系统的设备进行管理和监控,包括设备注册、认证、状态监测等。
用户管理:对接入系统的用户进行管理和授权,包括用户注册、认证、权限控制等。
服务配置:提供统一的服务配置接口,以方便用户自定义服务和配置各种智能化应用。
4. 安全管理层:智慧网关系统需要提供全面的安全管理功能,包括数据加密、用户认证、权限控制等,以保障用户数据和隐私的安全。
数据加密:对用户数据进行加密传输,以保障数据的机密性。
用户认证:对用户进行身份认证,防止非法用户的接入。
权限控制:对用户权限进行管理和控制,以防止非授权用户的不当操作。
三、系统功能设计:1. 数据传输功能:支持高速、可靠的数据传输,采用高速传输协议,并支持即时传输和流媒体传输等。
工业智能制造IT-OT融合解决方案目录1 目标和概述 (1)2 方案介绍 (2)2.1 IoT平台 (4)2.2 IOC运营中心 (6)2.3 边缘计算模块 (8)2.4 AI算法平台 (9)2.5 智能质检系统 (10)3 代表性及推广价值 (11)1目标和概述5G通信、人工智能、云计算等技术的应用与逐渐普及,给制造业发展带来了巨大的变革。
根据工业和信息化部发布的《智能制造发展规划(2016-2020)》,国家正在加快推进制造业逐步向智能制造转型的进程。
《规划》提出智能制造实施“两步走”战略:第一步,到2020年,智能制造发展基础和支撑能力明显增强,传统制造业重点领域基本实现数字化制造,有条件、有基础的重点产业智能转型取得明显进展;第二步,到2025年,智能制造支撑体系基本建立,重点产业初步实现智能转型。
该方案的目标主要有以下几个方面:(1)验证通信标准、5G应用,以及构建智能工厂所需的IT与OT融合的技术。
(2)以物联网技术与5G应用为主线,将新一代信息技术,如边缘计算、人工智能、深度学习等,与制造领域的系统深度融合。
(3)建立云-边-端一体化系统架构。
(4)探索OT领域的信息生态应用,制定OT网络接入标准(协议、数据接口规范等)。
(5)验证以5G、信息技术主导传统制造产业的协同创新应用及相关技术。
2方案介绍该方案采用云-边协同架构,云端包括基于云的设施即服务(IaaS)、软件即服务(SaaS)、平台即服务(PaaS)三部分,提供在云中的应用程序开发和管理,云计算平台采用Open Stack相关组件实现云基础服务架构。
如图1所示。
边缘侧包括云边协同、边缘计算、系统支撑三部分,实现集中化的资源使用、监控和运维等。
如图2所示。
图1 解决方案云端架构图图2 解决方案边缘侧架构图系统框架如图3所示。
图3 系统框架图该方案通过边缘网关将云与端的数据打通,通过IoT 平台及边缘网关将OT与IT打通,IoT平台既可与制造执行系统(Manufacturing Execution System,MES)、仓库管理系统(Warehouse Management System,WMS)、企业资源计划(Enterprise Resource Planning,ERP)等IT系统进行通讯与交互,也可通过边缘网关与OT设备交互,进行数据采集,它是数据的汇总与处理中心。
边缘计算及建设方案目录1. 边缘计算概述 (3)1.1 定义与特点 (3)1.1.1 边缘计算定义 (5)1.1.2 与传统云计算的对比 (6)1.2 发展历程 (8)1.3 应用领域 (8)1.3.1 工业自动化 (10)1.3.2 智能交通 (12)1.3.3 医疗健康 (13)1.3.4 娱乐产业 (15)2. 边缘计算架构 (17)2.1 设备层 (18)2.1.1 传感器与执行器 (19)2.1.2 物联网设备 (20)2.2 网关层 (22)2.2.1 边缘网关功能 (23)2.2.2 数据预处理 (25)2.3 云服务层 (26)2.3.1 数据存储与分析 (28)2.3.2 机器学习与人工智能 (29)3. 边缘计算建设方案 (31)3.1 规划与设计 (33)3.1.1 需求分析 (34)3.1.2 架构设计 (36)3.1.3 技术选型 (38)3.2 实施步骤 (39)3.2.1 硬件部署 (41)3.2.2 软件集成 (43)3.2.3 测试与优化 (44)3.3 安全与隐私保护 (45)3.3.1 数据加密 (46)3.3.2 访问控制 (47)3.3.3 隐私政策制定 (48)4. 案例分析 (50)4.1 某智能制造边缘计算案例 (51)4.1.1 背景介绍 (53)4.1.2 方案实施 (54)4.1.3 成效评估 (55)4.2 某智能交通边缘计算案例 (57)4.2.1 背景介绍 (58)4.2.2 方案实施 (59)4.2.3 成效评估 (59)5. 未来展望 (61)5.1 技术发展趋势 (62)5.2 行业应用前景 (63)5.3 政策与标准制定 (65)1. 边缘计算概述边缘计算指的是将数据处理、分析和应用逻辑部署到靠近数据源的边缘节点,例如:用户设备、物联网传感器、网关路由器等。
与云计算相比,边缘计算的特点是处理靠近用户端,数据传输距离短,带宽占用低。