太阳能光伏发电自动跟踪控制系统设计
- 格式:pdf
- 大小:297.53 KB
- 文档页数:3
太阳能追光系统毕业设计一、选题背景随着能源危机的日益严重,太阳能作为一种可再生、清洁、无污染的新型能源,逐渐得到了广泛的关注和应用。
而太阳能追光系统则是太阳能发电中非常重要的一环,其作用是使太阳能电池板始终面向太阳,以最大化地吸收太阳辐射能量,提高发电效率。
二、研究目标本次毕业设计旨在设计并实现一种简单、实用、高效的太阳能追光系统,使其能够自动调整光伏板朝向,并通过控制器对光伏板进行精准定位和跟踪,从而提高光伏板的发电效率。
三、研究内容1. 太阳位置检测模块:通过安装在追光系统上的传感器检测太阳位置,以便于系统自动调整光伏板的朝向。
2. 控制器设计:利用单片机等控制芯片设计控制器,实现对光伏板进行精准定位和跟踪。
3. 机械结构设计:根据追踪系统需要,设计出适合于支撑光伏板的机械结构,使其能够自由旋转,并实现自动调整。
4. 软件开发:编写控制器的程序,实现对光伏板的精准定位和跟踪,并提供人机交互界面。
四、研究方法本次毕业设计采用以下研究方法:1. 理论分析法:通过对太阳运动规律的分析,确定太阳能追光系统的设计方案。
2. 实验研究法:通过搭建实验平台,测试和验证系统的性能和可靠性。
3. 数值模拟法:采用计算机仿真技术,对系统进行数值模拟,优化系统设计方案。
五、预期成果1. 设计出一种简单、实用、高效的太阳能追光系统。
2. 实现对光伏板的精准定位和跟踪,提高光伏板发电效率。
3. 编写控制器程序,并提供人机交互界面,方便用户操作。
4. 发表学术论文或专利申请等相关成果。
六、工作计划本次毕业设计工作计划如下:1. 第一阶段(前期准备):调研相关技术文献,了解太阳能追光系统的原理和设计方案,确定研究目标和内容。
2. 第二阶段(系统设计):设计太阳位置检测模块、控制器、机械结构等,并进行方案评估和优化。
3. 第三阶段(软件开发):编写控制器程序,并提供人机交互界面。
4. 第四阶段(实验测试):搭建实验平台,测试和验证系统的性能和可靠性。
光伏电站太阳跟踪系统技术要求太阳能光伏电站的太阳跟踪系统是为了确保太阳能板始终面向阳光,并最大程度地捕捉到阳光的能量而设计的。
以下是太阳跟踪系统的技术要求。
1.高精度:太阳跟踪系统需要具备高精度的定位功能,能够准确追踪太阳的位置。
系统应具备角度精度小于0.1度、方位精度小于1度的能力,以保证太阳能板始终朝向阳光。
2.稳定性:太阳跟踪系统需要具备良好的稳定性,能够在各种环境条件下正常运行。
系统应能够抵抗风力、震动和其他外界干扰,确保系统能够持续稳定地追踪太阳。
3.可靠性:太阳跟踪系统需要具备高度的可靠性,能够长时间运行而不需要频繁维护。
系统应采用优质材料和耐用的设计,抵抗腐蚀和老化,并具备遥测功能,能够实时监测系统运行状态,及时发现并解决故障。
4.动态控制:太阳跟踪系统应具备动态控制功能,能够根据太阳的位置和时间进行实时调整。
系统应能够通过精确的计算和控制算法,根据太阳的位置自动调整太阳能板的角度和方位,使其始终朝向太阳,最大限度地捕捉太阳能量。
5.能效优化:太阳跟踪系统应能够实现能效优化,以提高太阳能利用率。
系统应能够根据太阳能量的变化和消耗情况,自动调整太阳能板的角度和方位,确保能量捕获的最大化,并提高光伏电站的发电效率。
6.智能控制:太阳跟踪系统应具备智能控制功能,能够实现自动化控制和监控。
系统应能够根据预设的参数和策略,自动调整太阳能板的角度和方位,并能够通过远程监控和控制功能,实现对系统的遥测和远程控制,提高运维效率。
7.安全性:太阳跟踪系统需要具备良好的安全性,能够防止事故和灾害发生。
系统应具备防雷、防火、防盗等安全设计,确保系统在恶劣天气条件和突发事件发生时能够正常工作,并保护设备的安全和可靠性。
综上所述,太阳跟踪系统在光伏电站中具有重要的作用。
通过高精度、稳定性、可靠性、动态控制、能效优化、智能控制和安全性等技术要求的满足,可以有效提高光伏电站的发电效率和运维效率,实现可持续发展。
光伏发电项目平面单轴跟踪系统建设计划一、项目背景光伏发电是一种利用太阳能发电的可再生能源。
随着能源需求的增长和环境保护意识的提高,光伏发电已成为当今最重要的发电方式之一、平面单轴跟踪系统是一种将太阳能电池板随着太阳的运动而自动调节方向和角度的系统,可以增加光伏发电系统的发电效率。
二、项目目标本项目旨在设计一套稳定高效的光伏发电平面单轴跟踪系统,以提高光伏发电系统的发电效率,并实现经济和环境效益的最大化。
三、项目范围本项目主要包括以下主要内容:1.系统设计:设计一套适用于光伏发电系统的平面单轴跟踪系统,包括结构设计、控制系统设计、电动机选择等;2.系统制造:制造和装配平面单轴跟踪系统的各个部件;3.系统安装:将平面单轴跟踪系统安装到光伏发电系统中;4.系统调试:对平面单轴跟踪系统进行测试和调试,确保其正常运行。
四、项目计划本项目计划分为以下几个阶段进行:1.系统设计阶段:包括对平面单轴跟踪系统的结构设计、控制系统设计和电动机选择等,预计耗时2个月;2.系统制造阶段:根据设计图纸进行制造和装配,包括各个零部件的制造和组装,预计耗时1个月;3.系统安装阶段:将平面单轴跟踪系统安装到光伏发电系统中,预计耗时1周;4.系统调试阶段:对平面单轴跟踪系统进行测试和调试,确保其正常运行,预计耗时2周;5.项目验收:对整个项目进行验收并提交相关报告,预计耗时1周。
五、项目资源本项目所需的资源包括人力资源、物资资源和财务资源。
1.人力资源:项目组成员包括项目经理、设计工程师、制造工程师、安装工程师和测试工程师等;2.物资资源:包括所需的零部件、工具和设备等;3.财务资源:根据项目需求编制项目预算,并安排相应的资金投入。
六、项目风险与控制措施1.技术风险:在设计和制造过程中可能会遇到技术问题,影响项目进展。
项目组将加强技术研究和开发,确保技术可行性;2.进度风险:由于各种原因导致项目进度延误。
项目组将制定详细的工作计划,并及时跟踪和调整进度,确保项目按时完成;3.成本风险:由于物资价格波动等原因导致项目成本超出预算。
摘 要太阳能是一种清洁无污染的能源,取之不尽,用之不竭,其广阔的发展前景使得太阳能发电成为一个全球瞩目的、具有深远意义的研究课题。
在中国,太阳能资源非常宝贵,从其分布来看,西部地区的太阳能年辐射总量很高。
因此,开发好太阳能,对中国的西部开发有着重要的现实意义。
太阳能的利用,有利于世界保护,因此如何更进一步地提高太阳能光伏发电装置的效率,无论是从科技应用的角度,还是从商业开发的角度讲都是目前亟待解决的课题。
然而,太阳能强度和方向不确定性及光照间歇性等特点,给太阳能的收集带来了一定难度。
传统的固定式太阳能采集系统没有充分利用太阳的能量,吸收效率相对较低。
因此,本文通过嵌入式太阳位置自动追踪技术的研究,对提高太阳能的吸收效率,高效、合理地利用太阳能具有重要的研究价值。
关键词 太阳, 自动追光系统, 系统设计, 控制, ARMIAbstractSolar power energy is a kind of clean, pollution-free useless energy. Its development prospects are bright. Using solar energy to generate electronic power has already been a meaningful topic which is concerned by people around the world. The solar energy resource is plentiful in our country. And according to the distribution of solar energy resource, the amount of the solar radiation in the western region is more than the other areas. So, making good use of the solar energy will promote the Western Development Project in the future. The applications of solar energy will benefit the environmental protection. Therefore, how to further promote the efficiency of solar photovoltaic devices has become an urgent issue at present from the perspective of commercial development as well as the view of technological applications. However, the solar energy has its own features, such as intermittent, uncertainly direction and uncertainly light intensity. So, it takes us some difficulties to receive the solar energy. Some fixed solar collection systems can`t receive the light energy as much as possible. Their efficiency that the sun cells boards receive the sun light is comparatively low. Therefore, it is necessary to make the sun cell boards track the sun, when we use solar energy.Key words: sun, automatically make track for light system, system design, control, ARMII目 录第一章 绪论 (1)1.1 太阳能利用现状与趋势 (1)1.2 太阳能随动(追踪)技术国内外发展现状 (5)1.2.1 光电追踪 (5)1.2.2 视日运动轨迹追踪 (6)1.3 嵌入式系统的发展 (8)1.3.1 嵌入式发展的历史与现状 (8)1.3.2嵌入式系统的体系结构 (10)1.4 论文的主要工作和总体结构 (13)第二章 太阳追光系统的方案选择和总体设计 (14)2.1 传感部分传感器布置相关方案选择 (14)2.1.1 基于凸透镜的传感部分方案 (14)2.1.2 基于挡板的传感部分方案 (14)2.1.3 传感部分方案的比较和选择 (15)2.2 调整机构的设计 (16)2.2.1 调整机构的设计计算与零件选型 (16)2.2.2 调整机构实体结构 (20)2.3 太阳能随动(追光)系统的总体设计 (23)2.3.1 计算太阳高度角的原理 (24)2.3.2 计算日出日落时间的原理 (27)2.4本章小结 (28)第三章 嵌入式系统的硬件设计 (29)3.1 系统硬件设计的总体选择方案 (29)3.2嵌入式处理器模块设计 (30)3.2.1 Samsung S3C44BOX (30)3.3键盘模块的设计 (30)3.4显示模块的设计 (32)3.5感光模块的设计 (34)3.6 传动模块的设计 (35)III3.7系统存储器设计 (36)3.8硬件调试接口 (36)3.8.1串口调试接口 (36)3.8.2 JTAG调试接口 (37)3.9 本章小节 (37)第四章 嵌入式系统的软件设计 (38)4.1 系统总体的功能和设计方案 (38)4.2 系统的初始化 (39)4.3 中断程序模块 (41)4.4键盘模块程序设计 (42)4.4.1 4×4键盘的扫描原理及程序设计 (43)4.4.2 通过键盘获取一个字符串 (43)4.4.3 把字符串转型为整型数 (43)4.4.4 系统功能键的设计 (44)4.5 显示模块的程序设计 (44)4.6 太阳运动轨迹追光模式 (44)4.7 光电检测追光模式 (45)4.8本章小节 (46)4.9 结论 (46)第五章 经济技术分析报告 (48)第六章 结论与展望 (49)5.1 总结 (49)5.2 展望 (49)参考文献 (51)致 谢 (54)声 明 (55)IV第一章 绪论能源是人类经济发展的重要支柱,历史上煤炭和石油的现状及利用都极大地推动了经济的快速发展。
太阳能电池板自动追光控制系统设计蔺金元【摘要】In order to use solar-powered, a system that solar panel can automatic track the sun is produced. The system use combined method of solar movement tracking and maximum power point seeking, it controls solar energy conversion utilization device automatically and rotated it to aim at the sun, and it can raise the solar energy absorption rate. In the system, single- chip microcomputer is used as the controller, small solar battery is used as sensor, and stepper motor is used as actuating mechanism. The system has some practical value for devices which rely on the solar energy.%为实现太阳能供电,介绍了一种太阳自动追踪系统.该系统采用视日运动跟踪与寻求最大功率点相结合的方法,控制太阳能转换利用装置自动旋转去对准太阳,能有效提高太阳能的吸收率.该系统采用单片机作为控制器,小型太阳能电池作为传感器,步进电机作为执行机构.对于各种利用太阳能作为能源的自动装置而言.这种自动追踪系统具有一定的实用价值.【期刊名称】《宁夏工程技术》【年(卷),期】2012(011)004【总页数】4页(P355-358)【关键词】视日运动;太阳能;自动追踪;最大功率点【作者】蔺金元【作者单位】宁夏大学物理电气信息学院,宁夏银川750021【正文语种】中文【中图分类】P631.4宁夏地处沙漠边缘,地广人稀,许多地方远离输电干线,需要太阳能供电系统供电.太阳能资源丰富,是理想的清洁能源,太阳能的开发利用有着积极的意义.目前,太阳能能源转化装置已经应用广泛,常见的有光伏发电、太阳能照明、太阳能热水器、太阳能温室、太阳灶等装置.在大多数装置中,太阳能转换利用装置都是固定不动的,不能够根据太阳位置的变化而变化,这样就造成了太阳能的转化效率降低.本课题研究了一种单片机控制的自动追踪系统.该系统能够自动旋转,可有效提高太阳能的转化效率.相同条件下,采用自动跟踪发电设备要比固定发电设备的发电量提高30%左右[1].1 系统结构和工作原理目前,在太阳追踪系统中用于实现追踪太阳的方法很多,但是总结起来主要有2类方式:一类是光电追踪方式,另一类是视日运动轨迹追踪.这2种方法中,前者是闭环的随机控制系统,能依靠传感器准确检测太阳的位置,但受天气影响大,雨天无法工作;后者是开环的顺序控制系统,通过时间计算出此时本地太阳的位置,有一定的累计误差[2].本文将2种方法结合起来,设计了一种基于单片机控制的单轴太阳跟踪系统.该系统在晴天时采用闭环控制,阴天时采用开环控制,利用这两种方法的优势互补实现了更加准确的追踪定位.该系统的结构图如图1所示.图1 系统结构图该系统采用AT89C51作为控制器,可以快速计算、准确定位;同时,该系统采用步进电机作为执行机构,采用专业的时钟芯片DS1302提供准确时间,以便在阴天时计算出系统的动作,并且准确控制系统在20:00复位到初始位置;另外,该系统采用一种小型太阳能电池作为系统的传感器.这种小型太阳能电池最高输出电压值为5 V,将它们分别放置在太阳能转换利用装置的4个角上检测太阳光的强度. 该系统开始工作时,先读取4个传感器的值,如果输出都低于1 V,则可以判断为阴雨天,此时系统执行视日运动子程序,控制器读取时钟模块的日历时间信息,计算出此时本地太阳的高度角和方位角,决策出步进电机此时应有动作状态,进而通过控制器发出指令,驱动电机转动跟踪;如果4个输出中至少有1个高于1 V,则可以判断为晴天,此时传感器的输出电压随时反馈给控制器,由控制器计算实现闭环控制实时测量追踪.2 视日运动跟踪算法阴天时,该系统采用视日运动跟踪.所谓视日运动跟踪就是根据太阳的运动规律实时跟踪太阳的位置.其实,在地平坐标中,太阳的位置虽然时刻都在变化,但其运行轨迹具有严格的规律性,太阳的位置可以用高度角α和方位角ψ来确定.其中:高度角α是指地球上的观测点同太阳中心点的连线与地平面的夹角;而方位角ψ是指地球上的观测点同太阳中心点的连线在地平面上的投影与正南方向的夹角.这2个参数可以由当前时间和当地的经纬度计算[3-4].(1)高度角α的计算.式中:δ为太阳赤纬角;φ为当地的地理纬度角;ω为时角.其中:Ts为当时的时间,以24小时制取值.时角上午为正,下午为负.(2)方位角ψ的计算:3 最大功率点的获取晴天时,该系统采用的方法是追踪最大功率点(MPPT),就是找到太阳能电池输出功率最大的位置.MPPT采用的是自寻优的概念,实时测量光伏阵列的输出功率,进行比较后,自动地寻找到最大功率点.不断地寻找,不断地调整,不断地再寻找,如此周而复始.该方法可以自动适应一年四季太阳位置的变化,无需人工干预,十分有利于提高系统的全年效率[5].太阳能电池的U-I特性具有非线性,并且它随着外界环境(温度、日照强度)的变化而变化,在某一特定的温度或日照强度下总存在着一个最大功率点.太阳能电池阵列的输出功率特性曲线如图2所示[6].由图2可知,最大功率点几乎分布在一条垂直线的两侧,可以将最大功率点看作是对应着某一个恒定电压Un.图2 太阳光伏电池输出功率特性该系统采用一个小型太阳能电池板作为系统的位置传感器,每隔5 min读取1次输出电压.如果测量值比设定的最大值小,则需要驱动步进电机正向转动;如果测量值比设定的最大值大,则需要驱动步进电机反向转动;如果测量值等于设定的最大值,则不需要驱动步进电机转动,说明此时位置合适.该系统采用干扰观测法,这种方法能快速准确地进行MPPT控制,但在最大功率点附近振荡运行,稳态输出波形有一定波动,偏差较大.因此,扰动步长设定无法兼顾跟踪精度和响应速度,需进行多次尝试才能选定最佳步长,而且在光照强度剧烈变化时会出现误判.所以这种方法适用于对控制精度要求不是特别高的情况.例如,各种独立太阳能路灯、太阳能景观系统等小功率系统,采用干扰观测法进行MPPT控制足以满足控制精度,且参数调整合理匹配.4 主要模块电路设计4.1 时钟芯片由于该系统在阴天时需通过当前时间进行太阳位置计算,因此,需要采用实时时钟,系统选用了时钟芯片DS1302.该器件具有实时时钟,可提供秒、分、时、日、星期、月和年(闰年补偿).DS1302有2个电源,一个是主电源Vcc2,另一个是备份电源Vcc1.主电源Vcc2同单片机一样接5V电源,而备份电源Vcc1使用的是2节1.5V干电池.在系统电源被切断的情况下,DS1302也能正常工作,保证日期、时间的准确性.X1,X2用来外接晶振,晶振的频率为32.768kHz.4.2 A/D转换A/D转换的主要作用是把位置传感器两端采集的电压值(0~5 V的模拟量)转换成数字量.该系统采用PCF8591芯片进行A/D转换,它具有8位的二进制转换精度.传感器采集的模拟量与数字量对应关系的典型值对应:+5 V对应值为FFH,2.5 V对应值为80H,0 V对应值为00H.PCF8591与单片机的连接如图3所示. 图3 PCF8591与单片机的连接图4.3 传动机构传动部分决定着该系统效率的高低、精度的大小.该系统是单轴跟踪,只调整方位角,步进电机就是依靠带动齿轮传动机构来调整太阳能转换利用装置的方位角ψ到位的.该系统在带传动和齿轮传动中选择了齿轮传动.齿轮传动可以做成开式、半开式及闭式,该系统选择了开式齿轮传动.在开式齿轮设计中主要考虑以齿根弯曲疲劳强度和保证齿面接触疲劳强度这2个准则,系统选择了2个齿数分别为16和96的一套齿轮,模数m=2.5,齿数z1=16,z2=96,传动比 i=6,压力角a=20°,齿顶系数 ha=1,齿根系数hf=0.25,中心距a=140.齿轮是重要零件,由于该系统要求的旋转速度不高,考虑到使用寿命和露天的工作环境,选用了优质碳钢(45#钢)材质的齿轮,耐磨性好,如果没有过大的外力损伤,一般不会坏.5 软件设计5.1 系统主程序该系统主程序包括初始化单片机功能模块、选择当前工作方式环节,从而保证可靠驱动步进电机,控制太阳能转换利用装置始终正对太阳.主程序流程如图4所示. 图4 主程序流程图5.2 测量追踪子程序测量追踪子程序是在晴天时启动,通过读取传感用太阳能电池的输出电压判断太阳能的吸收状态,从而调整太阳能转换利用装置准确到达位置.子程序流程如图5所示.5.3 视日运动追踪子程序图5 测量追踪子程序流程图视日运动子程序是在阴天时启动,通过输入的当地经纬度信息、读取的时间信息计算出太阳的准确位置,去实现跟踪.子程序流程如图6所示.图6 视日运动子程序流程图6 系统安装太阳能电池板的方位角与高度角对其吸收太阳能都有很大影响,考虑到是单轴追踪,只有东西方向可以自动调整,所以,在安装过程中要根据计算数据固定好南北方向的安装角.因为是固定角度,在角度选取上一般采用牺牲一些夏天的能量,尽量增加一些冬天的能量的原则.例如,某地区夏至日的最大高度角为74.6°,相应安装角为15.4°;冬至日的最大高度角为27.7°,相应安装角为62.3°,则取其平均值为(15.4°+62.3°)/2≈39°.考虑到 9:00—11:00,13:00—15:00 的情况,此安装角可适当调大(+5°~+8°).该系统也可以随季节调节安装角,夏季略小,冬季略大,而春季和秋季可与当地纬度相当.该系统在安装时,首先要确定安装地点的经纬度,计算出高度角和方位角.再根据时间和季节进行估算定位.在宁夏地区,考虑到 9:00—11:00,13:00—15:00 的情况,可以使夏季为20°~24°,冬季为67°~70°,春分、秋分以调节到当地纬度加10°为好.7 结语该系统采用的这种自动跟踪太阳的方法,能够使太阳能转换利用装置始终保持在太阳能吸收率最高的位置,控制方法简单,容易实现,可靠性也比较高,尤其在沙漠干旱地区这种强光照环境中,是一种能更好地吸收利用太阳能的好方法,可以广泛应用到太阳能路灯、热水器、太阳灶等太阳能转换利用装置中.【相关文献】[1]肖玉华,熊和金.基于ATmega8的双轴太阳跟踪器设计[J].电子设计工程,2010,3(18):46-47.[2]郑小年,黄巧燕.太阳能跟踪方法及应用 [J].能源技术,2003,24(4):149-151.[3]乔彩风,宋世军,何忠.数字视频监控系统的智能化实现[J].计算机与现代化,2007(12):46-48.[4]许春东.嵌入式数字视频监控系统中串口通信的设计与实现[J].电子技术,2005(11):61-64.[5]刘洋,白连平.太阳能光伏发电最大功率跟踪控制器的研究[J].节能,2008(12):8-9.[6]卢琳,殳国华,张仕文.基于MPPT的智能太阳能充电系统研究[J].电力电子技术,2007,41(2):96-98.[7]刘京诚,任松林,李敏,等.智能型双轴太阳跟踪控制系统的设计[J].传感器与微系统,2008,27(9):69-71.。
《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的进步和人类对可再生能源需求的日益增长,太阳能作为清洁、可再生的能源受到了广泛关注。
太阳能电池板作为太阳能利用的核心设备,其效率的提高对于推动绿色能源发展具有重要意义。
追日自动跟踪系统作为一种能够提高太阳能电池板光电转换效率的技术,近年来得到了广泛的研究和应用。
本文旨在研究太阳能电池板追日自动跟踪系统的原理、设计及其应用,以期为太阳能利用技术的发展提供理论支持和实践指导。
二、追日自动跟踪系统的基本原理追日自动跟踪系统基于太阳能电池板对太阳辐射的响应,通过传感器和控制系统实现自动跟踪太阳的运动轨迹,以达到最大化光电转换效率的目的。
系统主要包括以下几个部分:太阳位置传感器、控制单元、驱动单元和太阳能电池板。
太阳位置传感器负责实时监测太阳的位置,将太阳的位置信息传递给控制单元。
控制单元根据太阳的位置信息,结合预设的算法,计算出太阳能电池板需要调整的角度,并发出控制信号给驱动单元。
驱动单元根据控制信号驱动太阳能电池板进行相应的旋转和调整,使其始终保持最佳的光照角度。
三、追日自动跟踪系统的设计1. 硬件设计:追日自动跟踪系统的硬件设计主要包括传感器、电机和控制电路等部分。
传感器负责监测太阳的位置和环境光强等信息;电机用于驱动太阳能电池板的旋转和调整;控制电路则负责将传感器信号转换为控制信号,驱动电机进行相应的动作。
2. 软件设计:软件设计是追日自动跟踪系统的核心部分,主要包括控制算法和控制系统软件等。
控制算法负责根据太阳的位置信息和预设的规则,计算出太阳能电池板需要调整的角度;控制系统软件则负责将控制算法的输出转换为电机驱动信号,实现对太阳能电池板的精确控制。
四、追日自动跟踪系统的应用追日自动跟踪系统在提高太阳能电池板光电转换效率方面具有显著的优势。
通过实时监测太阳的位置,并调整太阳能电池板的姿态,使太阳能电池板始终保持最佳的光照角度,从而提高其光电转换效率。
本科毕业论文(设计)太阳能智能追光系统的设计摘要在太阳能发电系统中,如何将太阳能电池板的发电效率调节至最大状态,并克服太阳能发电效率低、能量不连续、工作不稳定的缺点,成为当前太阳能发电系统研究的重点。
太阳能的强度和方向不确定性,及光照间歇性等特点,给太阳能的收集带来了一定难度,传统的固定式太阳能残疾系统没有充分利用太阳的能量,吸收效率相对较低。
因此,太阳位置的自动追踪技术的研究,智能调节方向的太阳能支架的制作,对于提高太阳能的吸收效率,高效合理的利用太阳能,具有重要的研究价值。
本设计通过控制芯片对传感器的信号进行实时处理,驱动各个控制电机工作,实现对于太阳位置的实时更新,目的是为提高太阳能的收集效率,改善太阳能产品的利用程度。
关键词:太阳能,光敏电阻,89C52芯片,自动追踪技术The Design Of Solar Intelligent T racking Light SystemAuthor:Liu hai fengTutor: Bai xiao leiAbstractDuring the study of the solar power system ,the current major point is how to adjust the g enerating efficiency to an ultimate state and overcome the shortcomings of low efficiency,disc ontinuity of energy and operating instability.The uncertainty of both solar intensity and light d irection as well as illumination intermittent make it more difficult to collect solar energy.Beca use traditional fixed solar collection system doesn`t make full use of solar energy ,the absorpti on efficiency is low relatively.Hence,to research the technology of automatic tracking system for sun position and the pruduction of the solar holder to adjust direction intelligently is of gre at value for improving the absorption efficiency so as to utilize the solar energy properly and efficiently.The design of the sensor signal in real-time processing through controling chip, and to drive the control of motor wok.In order to update in real time the position of the sun for solar energy collection efficiency and improve the degree of utilization of solar energy products.key words:solar energy,photoresistance,89C52, the technology of automatic tracking system目录1绪论 (1)1.1 太阳追光系统的发展现状 (1)1.2 太阳能追光系统的设计思想 (1)1.3 太阳能智能追光系统的研究意义 (1)1.4 研究目标、研究内容和拟解决的关键问题 (2)2硬件设计 (3)2.1 主控制器 (3)2.1.1 主控制器的选用 (3)2.1.2 控制器的介绍 (3)2.2 驱动元件 (4)2.2.1 直流电机与步进电机的比较 (4)2.2.2 步进电机控制原理 (5)2.3 输入模块 (6)2.3.1 电压比较器 (6)2.3.2 光敏电阻 (6)2.4 硬件结构框图与原理图 (8)2.4.1 系统整体结构框图 (8)2.4.2 整体硬件原理图 (8)3方案研究 (9)3.1 基于挡板的传感部分方案 (9)3.2 接收系统方案 (10)4系统软件设计 (11)5智能追光算法 (12)6仿真与实验调试 (15)6.1 Protues仿真 (15)6.1.1 仿真原理 (15)6.1.2 软件仿真及调试 (15)6.1.3 仿真结果 (16)6.2 实验调试 (16)6.2.1 硬件调试 (16)6.2.2 解决过程 (17)6.3 PCB制版 (17)结束语 (18)参考文献 (19)致谢 (20)附录 (21)附录A:程序清单 (21)附录B:电路原理图 (24)附录C:PCB图 (25)附录D:实物照片 (26)1绪论太阳能既是一次能源,又是可再生能源。
《太阳能追光系统毕业设计》摘要:本毕业设计旨在设计并实现一套高效的太阳能追光系统。
通过对太阳能光伏发电原理的深入研究,结合先进的控制技术,构建了一个能够实时跟踪太阳位置并自动调整太阳能电池板朝向以最大程度获取太阳能的系统。
该系统具有较高的精度和可靠性,能够有效提高太阳能的利用效率,为解决能源短缺问题提供了一种可行的解决方案。
一、概述随着全球能源需求的不断增长和传统能源的日益枯竭,开发可再生能源成为了当今世界的重要课题。
太阳能作为一种清洁、无污染且取之不尽用之不竭的能源,具有广阔的应用前景。
太阳能追光系统能够最大限度地利用太阳能,提高太阳能发电的效率,对于推动太阳能产业的发展具有重要意义。
二、太阳能光伏发电原理太阳能光伏发电是利用半导体材料的光电效应将太阳能直接转化为电能的一种技术。
当太阳光照射到太阳能电池板上时,电池板中的半导体材料会吸收光子能量,产生电子-空穴对。
在电场的作用下,电子和空穴分离,形成电流,从而实现太阳能到电能的转换。
太阳能电池板的输出功率与光照强度、电池板的面积、电池板的转换效率等因素有关。
三、系统总体设计(一)硬件设计1. 太阳跟踪传感器选用高精度的太阳跟踪传感器,能够实时检测太阳的方位和高度角信息,并将这些数据传输给控制系统。
2. 控制系统设计基于微处理器的控制系统,负责接收太阳跟踪传感器的数据,进行数据处理和算法运算,控制电机驱动太阳能电池板进行跟踪转动。
3. 电机驱动系统选择合适的电机驱动芯片,实现对电机的精确控制,确保太阳能电池板能够准确地跟踪太阳的运动。
4. 机械结构设计设计坚固稳定的机械结构,保证太阳能电池板在跟踪过程中的稳定性和可靠性。
(二)软件设计1. 数据采集与处理程序编写程序实现对太阳跟踪传感器数据的采集和处理,获取太阳的实时位置信息。
2. 跟踪控制算法设计先进的跟踪控制算法,根据太阳的位置信息实时调整太阳能电池板的朝向,使其始终与太阳光线垂直。
3. 通信接口程序设计与上位机通信的接口程序,实现系统参数的设置和运行状态的监测。
基于单片机的太阳能电池板自动对光跟踪系统【摘要】太阳能电池板自动对光跟踪系统是利用单片机技术实现的一种高效太阳能利用系统。
本文首先介绍了太阳能电池板的工作原理,然后对传统固定式安装方式进行了比较,进而详细阐述了基于单片机的自动对光跟踪系统的设计和工作原理。
该系统可以实现对太阳的精确跟踪,有效提高太阳能转化效率。
其优势在于可以根据太阳位置实时调节太阳能电池板的角度,使光线垂直照射,最大限度地吸收太阳能。
结论部分总结了该系统的优势和应用前景,展望未来将继续优化系统性能并拓展更广泛的应用领域,为太阳能利用技术的发展提供重要参考。
【关键词】太阳能电池板、单片机、自动对光跟踪系统、工作原理、固定式安装、设计、优势、结论、展望、技术应用前景、研究背景、研究目的、研究意义。
1. 引言1.1 研究背景太阳能是一种清洁、可再生的能源,随着环保意识的提高和能源需求的增加,太阳能电池板作为太阳能利用的关键组成部分,受到了越来越多的关注。
传统的太阳能电池板固定式安装在屋顶或地面上,难以实现对太阳光的最大利用,效率较低。
研究和设计一种基于单片机的太阳能电池板自动对光跟踪系统具有重要意义。
目前,基于单片机的太阳能电池板自动对光跟踪系统已经成为一个研究热点。
该系统通过传感器实时监测太阳位置,控制电机使太阳能电池板朝向太阳光,实现最大限度的光能转换。
与传统固定式安装相比,这种自动对光跟踪系统能够提高太阳能电池板的光能转换效率,从而提高能源利用效率,降低能源消耗和减少环境污染。
本文旨在介绍基于单片机的太阳能电池板自动对光跟踪系统的设计原理、工作方式和优势,旨在为太阳能利用技术的进一步发展提供参考和借鉴。
通过对该系统的研究,可以促进太阳能电池板技术的创新和应用,推动可再生能源的发展,实现能源的可持续利用和环境保护。
1.2 研究目的太阳能电池板自动对光跟踪系统的研究目的是为了提高太阳能电池板的能量转换效率,进一步推动太阳能发电技术的应用和发展。
太阳能光伏发电自动跟踪控制系统设计发表时间:2019-09-21T11:56:42.470Z 来源:《基层建设》2019年第18期 作者: 廖春华[导读] 摘要:为了提高太阳能的利用效率,设计了太阳能光伏发电自动跟踪控制系统。
广东保威新能源有限公司 528000
摘要:为了提高太阳能的利用效率,设计了太阳能光伏发电自动跟踪控制系统。本文首先对光伏发电进行了简述,介绍了光伏电池的发电原理及光伏发电的优点和不足;其次对光电跟踪和太阳运动轨迹跟踪这两种自动跟踪方式进行了探讨;最后对自动跟踪控制系统设计进行分析。
关键词:太阳能;自动跟踪;视日运动跟踪;光电跟踪;硬件;软件
引言
随着全球工业的快速发展,全球能源匮乏和大气污染日益严重。太阳能作为一种清洁可再生能源,对解决以上问题起到了不可替代的作用。我国太阳能资源丰富,分布广泛,提高太阳能的利用率,可为我国经济的可持续发展提供强有力的动力支援。当前,如何提高太阳能的接收效率成为研发的重点。
一、光伏发电 1.1光伏电池
太阳能光伏发电主要通过光伏电池进行光能和电能之间的转化,通过PN结的电场效应产生电能。当前光伏电池的种类很多,制作工艺也有很多种,其原理是一致的,如图1所示。
图1光伏电池的发电原理图
光伏电池的发电效率随着太阳光谱分布、太阳光强度及电池自身温度等的变化而不断变化。 1.2光伏发电的优点
光伏电池是以PN结半导体为主,在地球上拥有丰富的半导体制作原材料——硅,因此光伏发电与传统的发电设备相比,有以下优点:
(1)太阳能非常丰富,取之不尽,用之不竭,在当前看来,太阳能是一种可以“无限”使用的可再生免费能源。
(2)光伏发电不会产生噪声、有害气体、磁场、光等对人体造成影响的污染物,是真正的绿色环保能源。
(3)适合于各种有太阳光照的环境,一旦安装调试成功,无需进行材料的运输。
(4)当前的光伏设备的使用寿命一般长达25年以上,随着工艺和技术的提高,其使用寿命还会不断增长。 1.3光伏发电的不足
光伏发电的能力与太阳光的强度有着直接的关系,当前社会上的光伏设备一旦安装,在一天之中,其发电的能力随着太阳的转动而不同,这使得发电的效率受到极大的影响。另外,自然界中的风也可能改变光伏电池原有的位置,严重影响光伏电池的发电效率。
二、太阳能跟踪控制方法
目前国内外太阳能跟踪控制方法有很多种,常用的跟踪控制方法主要有视日运动轨迹跟踪和光电跟踪两种方法。 2.1视日运动轨迹跟踪方法
太阳运行的轨迹是有规律可循的,通过计算可以得出任何时间和地点的太阳位置,从而完成对日跟踪。可以认为,早上太阳从东方升起经正南方向向西运动并落山,太阳在方位角上以15°/h匀速运动,24h移动一周。高度角等于当地纬度作为一个极轴不变。跟踪过程是将固定在极轴上的太阳能电池板以地球自转角速度15°/h的速度转动,即可达到跟踪太阳,保持太阳能电池板平面与太阳光线垂直的目的。该方法控制简单,但安装调整困难,初始角度很难确定和调节,受季节等因素影响较大,控制精度较差等。 2.2光电跟踪方式
图2光电跟踪控制示意图
光电跟踪是国内外常用的跟踪方式。高度角和方位角分别利用两只光敏管进行太阳跟踪。4只光敏管安装在一个透光的玻璃试管中。如图2所示,每对光敏管被中间隔板隔开,对称地放在隔板两侧。当太阳光线垂直照射光伏阵列时,两只光敏管的感光量在误差允许的范围内视为是相等,输出电压相同。当太阳光略有偏移时,隔板的阴影落在其中一只光敏管上,使两只光敏管的感光量不相等,输出电压有偏差。根据输出电压的变化来进行自动跟踪控制。该方法的特点是测量精度高、电路简单、易于实现,但在多云和阴天环境下会出现无法跟踪或误跟踪问题。
根据以上分析,本文采取将视日运动跟踪和光电跟踪相结合的跟踪控制策略。在光电跟踪的基础上,同时设置视日运动轨迹跟踪,当遇到乌云遮挡或阴天等天气状况差时,由于光强太弱,光敏管上产生的电信号会低于设定的阈值,系统自动跳到视日运动轨迹跟踪程序进行太阳跟踪,天气好转后自动跳出,继续进行光电跟踪。为了更准确的检测天气状况,也可通过检测方阵输出电压低于阈值的方式判断天气状况。用视日运动跟踪弥补光电跟踪的不足,能在任何气候条件下使光伏发电系统得到稳定而可靠的跟踪控制。这种跟踪方式跟踪准确度高,工作过程稳定,可应用于许多大中型光伏发电自动跟踪装置。
三、自动跟踪控制系统的设计 3.1系统的组成
如图3所示,太阳跟随控制系统主要由光敏传感器、风速传感器、光照度传感器、CPU主控制器、电机驱动单元和保护电路组成。它不仅控制太阳能光伏阵列跟随太阳运动,还具有在大风、阴天等气候条件下的保护功能。同时具备与上位机通信的功能,便于设备的远程控制。
图3系统组成示意图
(1)CPU控制单元 CPU控制单元是整个控制系统的核心,控制策略至关重要。本文采用光电跟踪为主,视日运动轨迹跟踪为辅的控制策略,互补其短,可以得到比较满意的效果。充分考虑到系统在运行过程中,会遇到的各种外界因素的影响(如:大风、夜间光线干扰、阴雨、多云气候等),选择最优的控制方式,从而保证系统的跟踪精度,提高系统的可靠性和稳定性。同时CPU控制单元还具有与上位机通信的功能。
(2)光敏传感器
光敏传感器是检测光伏阵列是否对准太阳的主要器件。当太阳光垂直照射到光敏传感器上时,四个光敏传感器在规定的误差范围内输出信号全部为零,表示光敏传感器已对准太阳。当太阳光偏离垂直照射光敏传感器时,偏离到一定程度时,光敏管检测到偏差信号从而有输出,控制光伏阵列转动。
(3)风速传感器
通过风速传感器对风速进行检测,将检测到的信号进行A/D转换传送到主控制器,当风速达到定设定的阈值时,控制部分发出指令,驱动执行机构,调整光伏阵列到水平角度,从而保证光伏阵列单元的安全运行。
(4)光照度传感器
通过光强传感器对太阳光强进行检测,可以使系统在不同的天气状况下采用不同的控制策略进行自动跟踪,提高太阳能的利用效率。
(5)电机驱动单元
当控制单元发出跟踪控制信号时,通过电机驱动单元驱动不同类型的电机(如:步进电机等)转动,使光伏阵列重新垂直十太阳光。
(6)保护电路由十光伏阵列跟踪支架的高度角和方位角都有极限位置,其中高度角的范围为10°-80°,方位角的范围为±1100。为了跟踪支架的安全,在方位角和高度角的4个极限位置上要设计保护电路。
3.2设计原则
太阳能发电的目的是为了节省能源,提高经济效益,因此,在设计的过程中,要考虑成本和维护的问题。自动跟踪控制系统的设计原则包括如下几点:
(1)系统的可扩展性
根据太阳能发电的需要,随着工艺水平和科技的进步,太阳能光伏电池可能进行更换或数量增加,所以搭建的平台应能够满足更新和维护的需求。
(2)模块化设计
为了缩短研发的周期,模块化设计可以使得设计各个部件更加科学化、标准化,有效提高研发的工作效率。
(3)标准接口
在软件设计上,要预留软件功能接口,为以后的二次开发打下基础。
(4)经济耐用
太阳能电池板需要长年在户外工作,可能会遇到恶劣的风雪天气,在安装的过程中,要考虑到耐用性,避免二次安装。 3.3系统硬件设计
太阳能光伏发电自动跟踪系统的硬件设计要以主计算机控制单元为核心,外围设备由多种传感器(风力、风向传感器、光强传感器、太阳光入射角传感器、方位磁传感器、GPS接收机等)收集的数据信息经过单片机模块分析转化后传给主计算机控制单元,经控制单元运算后,用其结果控制电机的单片机,使驱动电机进行转动,带动太阳能电池板到合适的位置。具体如图4所示。
图4自动控制系统的硬件设计图 3.4系统软件设计
系统主控程序的流程是首先对太阳能电池板的起始位置进行确认,将程序进行初始化操作,首先根据光敏管确认天气情况,假如天气状态良好,则采用光电跟踪,否则采用太阳运动轨迹跟踪,无论采用何种跟踪方式,根据每个时刻太阳的位置通过电机转动带动电池板转动,使电池板与太阳光方向相对应。当太阳落山后,自动关闭跟踪系统,将电池板恢复至起始位置。核心代码如下: acceconn.Open(); aldistance.Clear(); clearft1(); clearft2(); jw=0; jv=0;//距离 al.Clear(); clearlist2(); aldistance.Add(0); stringfsjm1=""; stime=gettime(this.dateTimePicker1.Text.this.dateTimePicker2.Text); etime=gettime(this.dateTimePicker4.Text.this.dateTimePicker3.Text); String qcpz1=this.textBox14.Text; String myselcommand1=“select fsjm from qcxxxx where qcpz=@qcpz1”;//由光敏管查找对应的太阳能电池板 SqlCommand myselcmd1=new SqlCommand(myselcommand1,acceconn); myselcmd1.Parameters.Add("@qcpz1",System.Data.SqlDbType.NVarChar,14); myselcmd1.Parameters[0].Value=qcpz1.ToString(); dr1=myselcmd1.ExecuteReader(); while(dr1.Read() {fsjm1=dr1.GetSqlString(0).ToString();//得到对应的太阳能电池板} dr1.Close();
四、结束语
本文对太阳能光伏发电自动跟踪控制系统进行了研究,当前太阳能发电已经受到人们越来越多的重视。如何最大效率地发挥出太阳能电池板的功能,是提高资源利用率的有效途径之一。在自动跟踪系统中,优化跟踪控制方式和多任务控制系统,可更加有效的提高太阳能光伏电池板的发电效果。
参考文献: [1]太阳能自动跟踪发电系统的创新设计[J].肖英,曾元精,罗虎,欧舟,王艳,余建,刘吉普. 太阳能.2010(10) [2]太阳能光伏发电自动跟踪系统[J].郭忠文. 太阳能.2008(06) [3]基于PIC单片机控制的太阳能光伏系统[J].郭亚男,张洋,韩波,李胜利. 科学技术与工程.2008(15) [4]太阳能跟踪系统设计[J].王淼,王保利,焦翠坪,景崇友. 电气技术.2009(08) [5]太阳能跟踪系统设计[J].贾传圣,耿进进. 电子制作.2013(05) [6]太阳能跟踪系统的智能控制及系统设计[J].郑益文,马立新,鲁奕,余涛,肖川. 微特电机.2011(07)