高三数学月考、联考、模拟试题汇编空间向量在立体几何中的应用
- 格式:pdf
- 大小:755.55 KB
- 文档页数:17
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
2024年9-10月新高考数学名校大题汇编:立体几何大题必备基础知识梳理【知识点一:空间向量及其加减运算】(1)空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a也可以记作AB ,其模记为a或AB .(2)零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,AB=0.模为1的向量称为单位向量.(3)相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为-a .(4)空间向量的加法和减法运算①OC=OA+OB=a +b ,BA=OA-OB=a -b.如图所示.②空间向量的加法运算满足交换律及结合律a +b =b +a ,a +b +c =a +b +c【知识点二:空间向量的数乘运算】(1)数乘运算实数λ与空间向量a 的乘积λa 称为向量的数乘运算.当λ>0时,λa 与向量a方向相同;当λ<0时,向量λa 与向量a 方向相反.λa 的长度是a的长度的λ 倍.(2)空间向量的数乘运算满足分配律及结合律λa +b =λa +λb ,λμa =λμ a .(3)共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作a ⎳b.(4)共线向量定理对空间中任意两个向量a ,b b ≠0,a ⎳b的充要条件是存在实数λ,使a =λb.(5)直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP =OA +ta ①,其中向量a 叫做直线l 的方向向量,在l 上取AB =a ,则式①可化为OP =OA +tAB =OA +t OB -OA =1-t OA +tOB ②①和②都称为空间直线的向量表达式,当t =12,即点P 是线段AB 的中点时,OP =12OA +OB ,此式叫做线段AB 的中点公式.(6)共面向量如图8-154所示,已知平面α与向量a ,作OA=a,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.(7)共面向量定理如果两个向量a ,b不共线,那么向量p 与向量a,b共面的充要条件是存在唯一的有序实数对x ,y ,使p =xa +yb.推论:①空间一点P 位于平面ABC 内的充要条件是存在有序实数对x ,y ,使AP =xAB +yAC;或对空间任意一点O ,有OP-OA=xAB+yAC,该式称为空间平面ABC 的向量表达式.②已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP =xOA +yOB +zOC (其中x +y +z =1)的点P 与点A ,B ,C 共面;反之也成立.【知识点三:空间向量的数量积运算】(1)两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a ,b 的夹角,记作a ,b ,通常规定0≤a ,b ≤π,如果a ,b =π2,那么向量a ,b 互相垂直,记作a ⊥b .(2)数量积定义已知两个非零向量a ,b ,则a b cos a ,b 叫做a ,b 的数量积,记作a ⋅b ,即a ⋅b =a b cos a,b.零向量与任何向量的数量积为0,特别地,a ⋅a =a 2.(3)空间向量的数量积满足的运算律:λa ⋅b =λa ⋅b ,a ⋅b =b ⋅a (交换律);a ⋅b +c =a ⋅b +a ⋅c(分配律).【知识点四:空间向量的坐标运算及应用】(1)设a =a 1,a 2,a 3 ,b=b 1,b 2,b 3 ,则a +b=a 1+b 1,a 2+b 2,a 3+b 3 ;a -b=a 1-b 1,a 2-b 2,a 3-b 3 ;λa=λa 1,λa 2,λa 3 ;a ⋅b=a 1b 1+a 2b 2+a 3b 3;a ⎳b b ≠0⇒a 1=λb 1,a 2=λb 2,a 3=λb 3;a ⊥b⇒a 1b 1+a 2b 2+a 3b 3=0.(2)设A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB =OB -OA=x 2-x 1,y 2-y 1,z 2-z 1 .这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知a =a 1,a 2,a 3 ,b =b 1,b 2,b 3 ,则a =a 2=a 12+a 22+a 32;b =b2=b 12+b 22+b 32;a ⋅b=a 1b 1+a 2b 2+a 3b 3;cos a ,b =a 1b 1+a 2b 2+a 3b 3a 12+a 22+a 32b 12+b 22+b 32;②已知A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB=x 1-x 22+y 1-y 2 2+z 1-z 2 2,或者d A ,B =AB.其中d A ,B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的投影为a cos a ,b=a ⋅b b.【知识点五:法向量的求解与简单应用】(1)平面的法向量:如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作n ⊥α,如果n⊥α,那么向量n叫做平面α的法向量.几点注意:①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量n 是平面的法向量,向量m 是与平面平行或在平面内,则有m ⋅n =0.第一步:写出平面内两个不平行的向a=x 1,y 1,z 1 ,b=x 2,y 2,z 2 ;第二步:那么平面法向量n=x , y , z ,满足n ⋅a=0n ⋅b =0⇒xx 1+yy 1+zz 1=0xx 2+yy 2+zz 2=0.(2)判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为a ,b.若a ∥b,即a =λb,则a ∥b ;若a ⊥b,即a ⋅b=0,则a ⊥b .②直线与平面的位置关系:直线l 的方向向量为a ,平面α的法向量为n ,且l ⊥α.若a ∥n ,即a =λn ,则l ⊥α;若a ⊥n ,即a ⋅n =0,则a ∥α.(3)平面与平面的位置关系平面α的法向量为n 1,平面β的法向量为n 2.若n 1∥n 2,即n 1=λn 2,则α∥β;若n 1⊥n 2,即n 1⋅n 2=0,则α⊥β.【知识点六:空间角公式】(1)异面直线所成角公式:设a ,b分别为异面直线l 1,l 2上的方向向量,θ为异面直线所成角的大小,则cos θ=cos a,b =a ⋅b a b.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n为平面α的法向量,θ为l 与α所成角的大小,则sin θ=cos a ,n=a ⋅na n.(3)二面角公式:设n 1,n 2分别为平面α,β的法向量,二面角的大小为θ,则θ=n 1 ,n 2 或π-n 1 ,n 2(需要根据具体情况判断相等或互补),其中cos θ =n 1 ⋅n 2n 1 n 2.【知识点七:空间中的距离】求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线a ,b 的公垂线的方向向量为n ,这时分别在a ,b 上任取A ,B 两点,则向量在n上的正射影长就是两条异面直线a ,b 的距离.则d =AB ⋅n |n |=|AB ⋅n ||n|即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图),n为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|AH |=|AB |⋅sin θ=|AB |⋅|cos <AB ,n >|=|AB ||AB ⋅n |AB ⋅n =|AB ⋅n|nd =|AB ⋅n||n|【必考题型汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第16题)如图,四边形ABCD 与四边形ADEF 均为等腰梯形,BC ⎳AD ,EF ⎳AD ,AD =4,AB =2,BC =EF =2,AF =11,FB ⊥平面ABCD ,M 为AD 上一点,且FM ⊥AD ,连接BD 、BE 、BM .(1)证明:BC ⊥平面BFM ;(2)求平面ABF 与平面DBE 的夹角的余弦值.方法提供与解析:(1)解析:因为FB ⊥平面ABCD ,又AD ⊂平面ABCD ,所以FB ⊥AD .又FM ⊥AD ,且FB ∩FM =F ,所以AD ⊥平面BFM .因为BC ⎳AD ,所以BC ⊥平面BFM .(2)解析:作EN ⊥AD ,垂足为N ,则FM ⎳EN .又EF ⎳AD ,所以四边形FMNE 是平行四边形,又EN ⊥AD ,所以四边形FMNE 是矩形,又四边形ADEF 为等腰梯形,且AD =4,EF =2,所以AM =1.由(1)知AD ⊥平面BFM ,所以BM ⊥AD .又AB =2,所以BM =1.在Rt △AFM 中,FM =AF 2-AM 2=10.在Rt △FMB 中,∴FB =FM 2-BM 2=3.由上可知,能以BM 、BC 、BF 所在的直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.则A -1,-1,0 ,B 0,0,0 ,F 0,0,3 ,D -1,3,0 ,E 0,2,3 ,所以,AB =1,1,0 ,BF =0,0,3 ,BD =-1,3,0 ,BE=0,2,3 ,设平面ABF 的法向量为m=x 1,y 1,z 1 ,由m ⋅AB=0m ⋅BF =0,得x 1+y 1=0z 1=0 ,可取m =1,-1,0 ;设平面BDE 的法向量为n=x 2,y 2,z 2 ,由n ⋅BD=0n ⋅BE =0,得-x 2+3y 2=0-2y 2+3z 2=0 ,可取n=9,3,2 .因此,cos ‹m ,n›=m ⋅n m ⋅n=9-31+1⋅81+9+4=34747.依题意可知,平面ABF 与平面DBE 的夹角的余弦值为34747.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第17题)如图,已知斜三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥侧面AA 1B 1B ,侧面BB 1C 1C 是矩形,侧面AA 1B 1B 是菱形,∠BAA 1=60°,AB =2BC =2,点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点.(1)证明:FG ⎳平面ABC ;(2)求二面角A 1-B 1C -E 的余弦值.方法提供与解析:解析:(1)证明:因为点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点,连接EF ,EG ,则EF ⎳AC ,EG ⎳AB ,又因为EF ⊄平面ABC ,AC ⊂平面ABC ,所以EF ⎳平面ABC ,同理可得EG ⎳平面ABC ,因为EF ∩EG =E ,EF ⊂平面EFG ,EG ⊂平面EFG ,所以平面EFG ⎳平面ABC ,因为FG ⊂平面EFG ,所以FG ⎳平面ABC .(2)解:侧面BB 1C 1C 是矩形,所以BC ⊥BB 1,又因为平面BB 1C 1C ⊥平面AA 1B 1B ,平面BB 1C 1C ∩平面AA 1B 1B =BB 1,所以BC ⊥平面AA 1B 1B ,又BE ⊂平面AA 1B 1B ,因此BC ⊥BE .在菱形AA 1B 1B 中,∠BAA 1=60°,因此△AA 1B 是等边三角形,又E 是AA 1的中点,所以BE ⊥AA 1,从而得BE ⊥BB 1.如图,以B 为坐标原点,BE ,BB 1,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2BC =2,所以BE =AB sin60°=3,因此B 10,2,0 ,A 13,1,0 ,E 3,0,0 ,C 0,0,1 ,所以B 1C =0,-2,1 ,B 1E =3,-2,0 ,B 1A 1=3,-1,0 ,设平面EB 1C 的法向量为m=x 1,y 1,z 1 ,由m⊥B 1C,得-2y 1+z 1=0 ,令y 1=1,得m =23,1,2设平面A 1B 1C 的法向量为n=x 2,y 2,z 2 ,由n ⊥B 1Cn ⊥B 1A 1,得-2y 2+z 2=03x 2-y 2=0 ,令y 2=1,得n =33,1,2 ,cos ‹m ,n ›=m ⋅n m ⋅n =23+1+4193⋅163=171976,即二面角A 1-B 1C -E 的余弦值为171976.3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为梯形,AD ⎳BC ,BC =4,AB =AD =DC =AA 1=2,Q 为AD 的中点.(1)在A 1D 1上是否存在点P ,使直线CQ ⎳平面AC 1P ,若存在,请确定点P 的位置并给出证明,若不存在,请说明理由;(2)若(1)中点P 存在,求平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值.方法提供与解析:(1)解析:(几何法)存在,证明如下:在四棱柱ABCD -A 1B 1C 1D 1中,因为平面ABCD ⎳平面A 1B 1C 1D 1,所以可在平面A 1B 1C 1D 1内作C 1P ⎳CQ ,由平面几何知识可证△C 1D 1P ≅△CDQ ,所以D 1P =DQ ,可知P 是A 1D 1中点,因为C 1P ⊂平面AC 1P ,所以CQ ⎳平面AC 1P .即存在线段A 1D 1的中点,满足题设条件.满足条件的点只有一个,证明如下:当CQ ⎳平面AC 1P 时,因为CQ ⎳平面A 1B 1C 1D 1,所以过C 1作平行于CQ 的直线既在平面A 1C 1P 内,也在平面A 1B 1C 1D 1内,而在平面A 1B 1C 1D 1内过C 1只能作一条直线C 1P ⎳CQ ,故满足条件的点P 只有唯一一个.所以,有且只有A 1D 1的中点为满足条件的点P ,使直线CQ ⎳平面AC 1P .(2)解析:(坐标法)过点D 作DF ⊥BC ,垂足为F ,又因为DD 1⊥平面ABCD ,以D 为坐标原点,分别以DA ,DF ,DD 1所在直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系D -xyz ,则A 2,0,0 ,P 1,0,2 ,C 1-1,3,2 ,A 12,0,2 ,B 3,3,0 ,P A =1,0,-2 ,PC 1 =-2,3,0 ,AB =1,3,0 ,AA 1=0,0,2设平面P AC 1的法向量为n=x ,y ,z ,则有n ⋅P A=0,n ⋅PC 1 =0,即x -2z =0,-2x +3y =0. 令x =23,得y =4,z =3,所以n=23,4,3 .设平面ABB 1A 1的法向量为m=x ,y ,z .则有AB ⋅m =0,AA 1 ⋅m =0,即x +3y =0,2z =0. 令x =3,得y =-1,z =0,所以m=3,-1,0 .所以cos n ,m =n ⋅m n m=6-4+0231=3131.故平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值为3131.4.(福建泉州市2025届高中毕业班模拟检测(一)解析第16题)4:如图,在四棱锥P -ABCD 中,PD =PC =CB =BA =12AD =2,AD ⎳CB ,∠CPD =∠ABC =90°,平面PCD ⊥平面ABCD ,E 为PD 中点.(1)求证:PD ⊥平面PCA ;(2)点Q 在棱P A 上,CQ 与平面PDC 所成角的正弦值为63,求平面PCD 与平面CDQ 夹角的余弦值.方法提供与解析:(1)解析:由题意:BC =AB =2,∠ABC =90°,AC =AB 2+BC 2=22同理CD =22,又AD =4,CD 2+AC 2=AD 2,CD ⊥AC .而CD =22=PD 2+PC 2,即PC ⊥PD ,又平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊂平面ABCD ,AC ⊥平面PCD ,PD ⊂平面PCD ,PD ⊥AC ,又PC ⊥PD ,且PC ⊂面PCA ,AC ⊂面PCA ,PC ∩AC =C ,PD ⊥平面PCA .(2)解析:以C 为原点,建立如图所示的空间直角坐标系,则C 0,0,0 ,A 0,22,0 ,D 22,0,0 ,P 2,0,2 ,所以CD =22,0,0 ,CP =2,0,2 ,P A=-2,22,-2 ,设PQ =λP A 0<λ<1 ,有CQ =CP +λP A=21-λ ,22λ,21-λ ,取面PCD 的一个法向量m =0,1,0 ,则cos CQ ,m =22λ41-λ 2+8λ2=63,λ=12,故CQ =22,2,22.令n=x ,y ,z 是平面CDQ 的一个法向量,则n ⋅CD =0n ⋅CQ =0,即22x =022x +2y +22z =0,令y =1,有n =0,1,-2 ,则cos ‹n ,m › =n ⋅m n m=55,故平面PCD 与平面CDQ 夹角的余弦值为55.5.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第17题)5:如图(1),在△ABC 中,CD ⊥AB ,BD =2CD =2AD =4,点E 为AC 的中点.将△ACD 沿CD 折起到△PCD 的位置,使DE ⊥BC ,如图(2).图(1)图(2)(1)求证:PB ⊥PC ;(2)在线段BC 上是否存在点F ,使得CP ⊥DF ?若存在,求二面角P -DF -E 的余弦值;若不存在,说明理由。
第三节空间向量在立体几何中的应用一、填空题1. 若等边的边长为,平面内一点知足,则_________2.在空间直角坐标系中,已知点 A( 1,0, 2), B(1 , -3 , 1) ,点 M在 y 轴上,且 M到 A 与到 B 的距离相等,则 M的坐标是 ________。
【分析】设由可得故【答案】 (0,-1 , 0)二、解答题3.(本小题满分 12 分)如图,在五面体ABCDEF中, FA 平面 ABCD, AD(II )证明:,(I II )又由题设,平面的一个法向量为4.(此题满分15 分)如图,平面平面,是认为斜边的等腰直角三角形,分别为,,的中点,,.(I )设是的中点,证明:平面;(II )证明:在内存在一点,使平面,并求点到,的距离.证明:( I )如图,连结 OP,以 O为坐标原点,分别以 OB、 OC、 OP所在直线为轴,轴,轴,成立空间直角坐标系 O,则,由题意得,因,所以平面BOE的法向量为,得,又直线不在平面内,所以有平面6.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF不在同一平面内,M, N 分别为 AB, DF的中点。
(I)若平面 ABCD ⊥平面 DCEF,求直线 MN与平面 DCEF所成角的正当弦;(I I )用反证法证明:直线 ME 与 BN 是两条异面直线。
设正方形ABCD,DCEF的边长为2,以 D 为坐标原点,分别以射线DC,DF,DA为 x,y,z轴正半轴成立空间直角坐标系如图.则 M( 1,0,2 ) ,N(0,1,0),可得=(-1,1,2).又 =( 0, 0, 2)为平面DCEF的法向量,可得cos(,)=·DCEF所成角的正弦值为所以MN与平面cos · 6 分( Ⅱ ) 假定直线ME与 BN共面,8 分则 AB平面 MBEN,且平面 MBEN与平面 DCEF交于 EN由已知,两正方形不共面,故AB平面 DCEF。
1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。
专题36 空间向量在立体几何中的应用【高考地位】向量在立体几何中占有重要的地位,且扮演着一个非常重要的角色,其应用打破了立体几何的传统解法,可以减少大量的辅助作图以及对图形的分析、想象过程,能直接使用代数运算来解决立体几何中的计算和证明问题.在近几年的高考中几乎每年都有出现,其题型主要是大题形式出现,有时也会在选择题或填空题中应用. 【方法点评】类型一 证明垂直使用情景:立体几何中证明垂直问题解题模板:第一步 首先根据已知条件建立适当的空间直角坐标系并标出相应点的空间坐标;第二步 然后将已知条件转化为空间向量问题并对其进行求解; 第三步 得出结论.例1、【2018天津滨海新区联考】在四棱锥P ABCD -中, PA ⊥平面ABCD , //AB CD , AB AD ⊥,PA PB =, ::2AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC PQPD的值.【变式演练1】已知正方体ABCD —A 1B 1C 1D 1的棱长为2,P 、Q 分别是BC 、CD 上的动点,且|PQ |=2,建立如右图所示的坐标系; 确定P 、Q 的位置,使得B 1Q ⊥D 1P ;解:设BP =t , 则2)2(2t CQ --=,2)2(22t DQ ---=,∴B 1(2, 0, 2), D 1(0, 2, 2), P (2, t , 0),)0,2,)2(22(2t Q ---. ∴)2,2,)2(2(21---=t QB ,1FD =(-2, 2-t , 2).∵B 1Q ⊥D 1P 等价于011=⋅PD QB , 即022)2(2)2(222=⨯+-----t t , 即t t =--2)2(2.解得t =1.此时, P 、Q 分别是棱BC 、CD 的中点, 即当P 、Q 分别是棱BC 、CD 的中点时, B 1Q ⊥D 1P . 例2、【2018贵州贵阳第一中学模拟】如图,在三棱锥中,分别是的中点,平面平面,,是边长为2的正三角形,.(1)求证:平面; (2)求二面角的余弦值.(Ⅱ)解:平面BDF的一个法向量,平面BDE(即平面ABK)的一个法向量为,所以二面角的余弦值为.【变式演练2】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF;∴⊥,⊥,∴PC ⊥BF ,PC ⊥EF ,BF ∩EF =F , ∴PC ⊥平面BEF .例3.【2018吉林东北师范大学附属中模拟】如图,已知四棱锥P ABCD -的底面为直角梯形, //AB DC ,90DAB ∠=︒, PA ABCD ⊥底面,且12PA AD DC ===, 1AB =, M 是PB 的中点。
空间向量在立体几何中的应用【考纲说明】1. 能够利用共线向量、共血向量、空间向量基本定理证明共线、共面、平行及垂直问题;2. 会利用空间向量的处标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3. 培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算1、向量的几何运算(1)向量的数量积:已知向量〜匸,贝U |〜| | r | 〜f 叫做f f 的数量积,记作一],即〜工| 1 | Hi 十工a.b | 幺 | • |・cos <a,b > a.b a ・b a ・b =|纠・|纠・ccs <a,b空间向量数量积的性质:①乳汨W|cos<N@>;f f ② 丄bo /・D = 0.③ 问“怎(2)向量共线定理:向量万(&工0)与方共线,当且仅当有唯一一个实数2,使b=Aa ・2、向量的坐标运算(])若4(兀1,乃,习),直(兀2丿2,?2),则=(兀2 一兀1‘尹2 一乃‘习一习)一个向暈在肓 •角处标系小的朋标等于表示这个向量的有向线段的终点的处标减去起点的处标。
°)十若纟=(鬥卫2,他)乜=($』2,鸟)'」、":+ 了=(两+$卫2+玄,色±劣a-b-(两一对卫2 —玄,他一鸟) Aa =(兄知兄勺,兄色)(久e R ) a ・b = + a 2b 2 +a 现 a H b V 》a 】--JI 对,a? —=丸鸟(久 w 氏)a 丄b O + a 2b 2 + a 曲=0 | a |= +拧 +_ ab _丨引•丨纠侷+勺? +宓2 J 辭+鸟2 +鸟2a 禹 + a 2b 2 + (3)夹角公式:二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明・3 •利用空间向量证明垂直问题f f f f对于垂直问题,一般是利用“丄b^a-b=O 进行证明;4. 利用空间向量求角度(1) 线线角的求法: _ _设直线AB 、CD 对应的方向向量分别为s 、b,则直线AB 耳CD 所成的角为 打“代 山恳丨(线线角的范围[0: 90°]) wTC COS —=F -- =F —Ml I 纠(2) 线面角的求法:- 是直线'的方向向量,则直线/与平面°所成的角为 .|殛.;| arc sin 二=——亠\AB\-\n\5. 利用空间向量求距离(1)平面的法向量的求法:设n =(x,y, z ),利川n 与平面内的两个不共线的向a, b 垂直,其数量积为零,列出两个三元一次方程,联立后取 其一组解,即得到平面°的一个法向量(如图)。
第三节 空间向量在立体几何中的应用第一部分 三年高考荟萃2019年高考题一、选择题1.(2019全国卷2理)(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D 【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D. 2.(2019辽宁理)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(62 (B)(1,22 (C) (62-62 (D) (0,22 【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a 可以取最大值,可知,,则有228a <+=,即有+(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0;综上分析可知a ∈(3.(2019全国卷2文)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D【解析】:本题考查了空间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,4.(2019全国卷2文)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )(C) 4 (D) 34【答案】D【解析】:本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
江苏省2023届新高考数学高三上学期9月期初考试试卷分类汇编:立体几何与空间向量一、小题部分1.(2023·江苏南京9月期初零模)已知圆柱的轴截面是边长为2的正方形,P 为上底面圆的圆心,AB 为下底面圆的直径, E 为下底面圆周上一点,则三棱锥P -ABE 外接球的表面积为 A.25π16 B. 25π4 C. 5π2D. 5π 2.(2023·江苏南京9月期初零模)(多选题)已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列选项中,“l ⊥m ”的充分条件有A .α⊥β,l ⊥α,m ⊥βB .α⊥β,l ⊥α,m ⊥βC .α⊥β,l ⊥α,m ⊥βD .α⊥β,l ⊥α,m ⊥β3.(2023·江苏9月百校第一次联考)(多选题)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是棱A 1D 1,AB 的中点,则A .异面直线MD 与AC 所成角的余弦值为15B .MC 1⊥D 1NC .四面体CAB 1D 1的外接球体积为43π D .平面MNC 截正方体所得的截面是四边形4.(2023·江苏9月百校第一次联考)祖暅是我国南北朝时期伟大的数学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平而的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.现已知直线y =±2与双曲线x 2-y 2=4及其渐近线围成的平面图形G 如图所示.若将图形G 被直线y =t (-2≤t ≤2)所截得的两条线段绕y 轴旋转一周,则形成的旋转面的面积S = ▲ ;若将图形G 绕y 轴旋转一周,则形成的旋转体的体积V = ▲ .(本题第一空2分,第二空3分)5.(2023·江苏海安9月期初)已知圆锥的轴截面是斜边为23的直角三角形,该圆锥的体积为A.33π B.332π C.3π D.33π6.(2023·江苏海安9月期初)(多选题)在正方体中,已知M为棱的中点,N上底面的中心,下列图形中,PQ⊥MN的是7.(2023·江苏泰州中学9月期初)《算数书》是已知最早的中国数学著作,于上世纪八十年代出土,大约比现有传本的《九章算术》还要早近二百年.《算数书》内容丰富,有学者称之为“中国数学史上的重大发现”.在《算数书》成书的时代,人们对圆周率的认识不多,用于计算的近似数与真实值相比误差较大.如书中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一.此术相当于给出了圆锥的体积V的计算公式为136L2h,其中L和h分别为圆锥的底面周长和高,这说明,该书的作者是将圆周率近似地取为( ) A.3.00 B.3.14 C.3.16 D.3.20 8.(2023·江苏泰州中学9月期初)(多选题)《已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是( )A.若m⊥n,m⊥α,n∥β,则α⊥βB.若m⊥α,n∥α,则m⊥nC.若α∥β,m α,则m∥βD.若m∥n,α∥β,则m与α所成的角和n与β所成的角相等9.(2023·江苏镇江9月期初)四棱柱ABCD-A1B1C1D1的底面ABCD是边长为1的菱形,侧棱长为2,且∠C1CB=∠C1CD=∠BCD=60°,则线段A1C的长度是( )MDCBAPA . 6B .342C .3D .11 二、解答题部分1.(2023·江苏南京9月期初零模)(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,P A ⊥平面ABCD ,M 为PC 中点. (1)求证:P A ⊥平面MBD ;(2)若AB =AD =P A =2,⊥BAD =120°,求二面角B -AM -D 的正弦值.2.(2023·江苏9月百校第一次联考)(12分)在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,侧面P AB ⊥底面ABCD ,P A =PB =AD =12BC =2,且E ,F 分别为PC ,CD 的中点.(1)证明:DE ∥平面P AB .(2)若直线PF 与平面P AB 所成的角为60°,求平面P AB 与平面PCD 所成锐二面角的余弦值.(第19题图)3.(2023·江苏海安9月期初)(12分)如图,在四棱锥P-ABCD中,△P AD是边长为2的等边三角形,AB⊥平面P AD,AB∥CD,且|AB|>|CD|,|BC|=|CP|,O为棱P A的中点.(1)求证:OD∥平面PBC;(2)若BC⊥PC,求平面PBC与平面P AD所成锐二面角的余弦值.4.(2023·江苏泰州中学9月期初)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=t,M是线段EF的中点.(1)求证:AM∥平面BDE:(2)若线段AC上总存在一点P,使得PF⊥BE,求t的最大值.5.(2023·江苏南通上学期第一次调研9月)(12分)如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC =60°,∠ACB=90°,AC=BC=2.(1)若D为A1C的中点,求证:AD⊥A1B;(2)求二面角A-A1C-B1的正弦值.6.(2023·江苏镇江9月期初)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD 是梯形,AD∥BC,且AB⊥SD,SA=AB=BC=1,AD=2.(1)求二面角B-SC-D的大小;(2)已知E为CD中点,问:棱SD上是否存在一点Q,使得BQ与AE垂直?若存在,请求出SQ的长;若不存在,请说明理由.。
8.7 空间向量在立体几何中的应用五年高考考点空闻向量及其应用 1.(2013江西.19,12分)如图,四棱锥P- ABCD 中,PA ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,EA DCB DAB ,∆≅∆,23,1====PA AB EB 连结CE 并延长交AD 于F . (1)求证:AD ⊥平面CFG;(2)求平面BCP 与平面DCP 的夹角的余弦值.2.(2013浙江.20,15分)如图,在四面体A- BCD 中,AD ⊥平面,2,,=⊥AD CD BC BCD M BD .22= 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且.3QC AQ = (1)证明:PQ//平面BCD;(2)若二面角C-BM -D 的大小为,600求∠BDC 的大小.3.(2012北京.16,14分)如图1,在Rt△ABC 中,BC C ,90=∠E D AC ,.6,3==分别是.AC ,AB 上的点,且.2,//=DE BC DE 将△ADE 沿DE 折起到DE A 1∆的位置,使,1CD C A ⊥如图2. (1)求证:⊥C A 1平面BCDE ;(2)若M 是D A 1的中点,求CM 与平面BE A 1所成角的大小;(3)线段BC 上是否存在点P ,使平面DP A 1与平面BE A 1垂直?说明理由.4.(2012天津.17,13分)如图,在四棱锥P- ABCD 中,PA ⊥平面,,,A BC AB AD AC BCD ⊥⊥.1,2,45====∠AC AD PA BAC(1)证明PC ⊥AD ;(2)求二面角A-PC -D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为,03求AE 的长,智力背景控制论的诞生(二) 第二次世界大战期间,他参加了美国研制防空火力自动控制系统的工作,为提 高炮火的命中率,许多数据必须迅速、准确地计算出来.让维纳兴奋的是,他发现自动防空炮火系统的运 转和生物体有着惊人的相似:在二者的内部都存在着对输A 信息的处理和反应,于是,他将大脑和神经 系统与计算机设备联系在一起.:1943年,维纳与人合写了《行为、目的和目的论》的论文,从反馈角度研究了目的性行为,找出神经系统和自动机之间的一致性,这是第一篇关于控制论的论文.5.(2011辽宁,18,12分)如图,四边形ABCD 为正方形,PD ⊥平面.21,//,PD AB QA QA PD ABCD == (1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q- BP -C 的余弦值.6.(2010山东,19,12分)如图,在五棱锥P - ABCDE 中,PA ⊥平面,//,//,ED AC CD AB ABCDE==AB ABC BC AE ,45/,// ,42,22==⋅AE C B 三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC ;(2)求直线PB 与平面PCD 所成角的大小;(3)求四棱锥P-ACDE 的体积.解读探究知识清单1.空间向量的有关概念(1)空间向量:在空间中,具有①____和②____的量叫做空间向量.(2)相等向量:方向③____且模④ 的向量. (3)共线向量. (4)共面向量.2.共线向量、共面向量定理和空闻向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b≠0),a∥b 的充要条件是⑤ 推论;如图所示,点P 在L 上的充要条件是:,ta +=其中a 叫直线L 的方向向量,,R t ∈在L 上取,a =则可化为⑥=0或=0.)1(t t +-(2)共面向量定理的向量表达式:p=⑦____,其中b a R y x ,,,∈为不共线向量,推论的表达式为+=x y 或对空间任意一点O 有⑧= 或y x +=.1,=+++z y x z 其中(3)空间向量基本定理如果三个向量a ,b,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z},使得p=⑨____,把{a ,b ,c}叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 (i)两向量的夹角已知两个非零向量a ,b ,在空间内任取一点O ,作ω,a =,b =则⑩ 叫做向量a 与b 的夹角,记作 ,其范围是 ,若,2,π>=<b a 则称a 与b 记作a ⊥b.智力背景华罗庚的读书法-- “厚薄”法 华罗庚把读书过程归结为“由厚到薄”“由薄到厚”两个阶段,当你对书的内容真正有了透彻的了解,抓住了全书的要点,掌握了全书的精神实质后,读书就由厚变薄了,愈是懂得透彻,就愈有薄的感觉,如果在读书过程中,你对各章节又作深入的探讨,在每页上添加注解,补充参考资料,那么,书又会愈读愈厚. (ii)两向量的数量积已知空间两个非零向量a ,b ,则 叫做向量a ,b 的数量积,记作 ,即(2)空间向量数量积的运算律(i)结合律:=⋅b a )(λ(ii)交换律:=⋅b a(iii)分配律:=+⋅)(C b a 4.空间向量的坐标表示及应用 (1)数量积的坐标运算若),,,(),,,(321321b b b b a a a a ==则=⋅b a (2)共线与垂直的坐标表示设),,,(),,,(321321b b b b a a a a ==则⇔b a //⇔⊥b a(a ,b 均为非零向量).(3)模、夹角和距离公式设),,,(),,,(321321b b b b a a a a ==则=⋅=a a a ||=⋅>=<||||,cos b a ba b a若),,,(),,,(222111c b a B c b a A 则==||dAB5.直线的方向向量及其应用 (1)直线的方向向量直线的方向向量就是指和这条直线所对应向量 (或共线)的向量,显然一条直线的方向向量可能有(2)直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.(i)若有直线L ,点A 是直线L 上一点,向量a 是L 的方向向量,在直线L 上取,a =则对于直线L 上任意一点P ,一定存在实数t ,使得 ,这样,点A 和向量a 不仅可以确定直线L 的位置,还可以具体表示出L 上的任意一点.(ii)空间中平面α的位置可以由α内两条相交直线来确定.设这两条直线相交于点0,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对(x ,y ),使得= 这样,点0与方向向量a ,b 不仅可以确定平面α的位置,还可以具体表示出α内的任意一点.6.平面的法向量(1)所谓平面的法向量,就是指所在直线与平面垂直的向量,显然—个平面的法向量也有 个,它们是 向量 (2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是 确定的. 7.直线的方向向量与平面的法向量在确定直线、平面位置关系中的应用直线1l 的方向向量为),,,(1111c b a u =直线2l 的方向向量为⋅=),,(2222c b a u 如果,//21l l 那么⇔21//u u如果,21l l ⊥那么⇔⊥21u u直线L 的方向向量为),,,(111c b a u =平面α的法向量为n ⋅=),,(222c b a若,//αl 则⇔=⋅⇔⊥0n u n u若L ⊥α,则⇔=⇔kn u n u //平面1α的法向量为),,,(1111c b a u =平面2α的法向量为⋅=),,(2222c b a u若,//21αα则⇔=2121~//ku u u若,21αα⊥则⇔=⋅⇔⊥02121u u U u【知识拓展】1.空间向量中数量积的性质:(1)可用来求角;(2)可证明线线垂直;(3)可用来求线段的长.2.在计算和证明立体几何问题时,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形中有关问题可用向量表示,利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象.3.对空间任意一点A 求其坐标的一般方法:过A 作z 轴的平行线交平面xOy 于B ,过B 分别作x 、y 轴的平行线,分别交x 、y 轴于C 、D ,则由O 0的长度和方向便可求得点A 的坐标.知识清单答案智力背景英国数学家康威 康威喜欢小孩子的玩意.他常赤着脚,用纸和笔玩数学游戏,有时就捉着学生、 教授和他玩.康威的办公室以杂乱闻名,以致很难容两人坐下来.他结婚两次,生活相当清贫.他不开车也不买车,因为他常深入数学世界,忘记周围.他除了搞数学,唯一的乐趣就是每月买几本旧书.他认为大战发生就是世界末日.他试着计算地球毁于核意外的日子,为不久全世界毁于核爆炸而忧心忡忡.突破方法方法1异面直线所成角及点面距离例1 (2012广东中山二模,19,14分)如图,已知两个正四棱锥P - ABCD 与Q- ABCD 的高分别为l ,2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成角的余弦值; (3)求点P 到面QAD 的距离.解题思路解析 (1)证明:如图,设,0=BD AC连结,,OQ OP .,BD ACABCD Q ABCD P --与 都是正四棱锥,∴ PO ⊥平面ABCD ,QO ⊥平面ABCD ,从而P 、0、Q 三点在一条直线上. ∵ PQ 上平面ABCD. (4分)(2)由题设知,四边形ABCD 是正方形, ∴ AC ⊥BD .由(1)知,PQ ⊥平面ABCD ,故可分别以CA ,DB ,QP 为x ,y ,z 轴建立空间直角坐标系O- xyz ,由条件得),0,0,22(),1,0,0(A P ),0,22,0(),2,0,0(B Q -⋅-=--=∴)1,22,0(),2,0,22(P (6分)于是⋅==<93|||AQ |,cos PB从而异面直线AQ 与PB 所成角的余弦值为⋅93(9分) (3)由(2)得=-),0,22,0(D Q ),0,22,22(P --),3,0,0(-=设),,(z y x n =是面QAD 的一个法向量.由⎪⎩⎪⎨⎧==0D ,0A nn得⎩⎨⎧=+=+.0,02y x z x 不妨取x=l ,得).2,1,1(--=n (12分) ∴ 点P 到面QAD 的距离⋅=⋅=223|ln ||n P d (14分)【方法点拨】异面直线所成角及点面距离的向量求法:方法2 平行与垂直、直绒与平面所成角例2(2012河南开封三模.19,12分)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD= DE= 2AB ,F 为CD 的中点. (1)求证:AF//平面BCE ;(2)求证:平面BCE ⊥平面CDE ;(3)求直线BF 和平面BCE 所成角的正弦值,解题思路解析 设,22a AB DE AD ===建立如图所示的坐标系),0,0,0(,A xyz A 则-),,0,0(),0,0,2(a B a C),0,3,(a a D ).2,3,(a a a E∵ F 为CD 的中点,∴⋅)0,23,23(.a a F (3分) (1)证明:),,3,(),0,23,23(a a a BE a a AF == ⋅⊂/+=-=AF a a ),(21),,0,2( 平面BCE , ∴ AF∥平面BCE. (6分)智力背景不是洗澡堂 德国女数学家爱米·诺德,虽已获得博士学位,但无开课“资格”,当时,著名数学家希尔伯特十分欣赏爱米的才能,他到处奔走,要求批准她为哥廷根大学的第一名女讲师,但在教授会上还是出现了争论,一位教授说:“当我们的战士从战场回到课堂,发现自己拜倒在女人脚下读书,会作何感想呢?”希尔伯特站起来,坚定地批驳道:“先生们,候选人的性别绝不应成为反对她当讲师的理由,大学评议会毕竟不是洗澡堂!”(2)证明:∴=-==⋅),0,3,(),0,23,23(E a a C a a ),2,0,0(a - (7分) ,,,0.,0.E A A E C ⊥⊥∴==⋅∴ ⊥∴平面CDE ,又AF //平面BCE ,∴ 平面CDE ⊥平面BCE. (9分)(3)设平面BCE 的法向量为),,,(z y x n =由,0=⋅B n0C =⋅B n 可得,02,03=-=++z x z y x取),2,3,1(-=n (10分)又),,23,23(a a a -=设BF 和平面BCE 所成的角为θp , 则,422222sin =⋅==a a θ ∴ 直线BF 和平面BCE 所成角的正弦值为⋅42(12分) 【方法点拨】 直线与平面所成角的向量求法直线L 与平面α的夹角一是直线L 的方向向量L 与平面α的法向量n 的夹角β(锐角)的余角,故有⋅⋅==||||cos sin n l nl βθ方法3 二面角例3 (2012课标全国.19,12分)如图,直三棱柱-ABC 111C B A 中,D AA BC C ,21A .1==是棱 1AA 的中点,.1BD DC ⊥(1)证明:;1BC DC ⊥(2)求二面角11C BD A --的大小,解题思路解析 (1)由题设知,三棱柱的侧面为矩形. 由于D 为1AA 的中点,故⋅=1DC DC 又⋅=,211AA AC 可得,21221CC DC DC =+所以.1DC DC ⊥(2分) 而,,1D BD DCBD DC =⊥ 所以⊥1DC平面BCD. (4分)又⊂BC 平面BCD ,故.1BC DC ⊥ (6分)(2)由(1)知,1DC BC ⊥且,1CC BC ⊥则BC ⊥平面,1ACC 所以1,,CC CB CA 两两相互垂直,以C 为坐标原点,的方向为x 轴的正方向,C 的方向为y 轴的正方向,||为单位长,建立如图所示的空间直角坐标系C .xyz -由题意知 ).2,0,0(),1,0,1(),0,1,0(),2,0,1(11C D B A则⋅-=-=-=)1,0,1(),1,1,1(),1,0,0(11DC B A (8分) 设),,(z y x n =是平面BD B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅,0,01A n BD n 即⎩⎨⎧==+-.0,0z z y x 可取n=(l ,l ,0).(9分) 同理,设m 是平面BD C 1的法向量,则⎪⎩⎪⎨⎧=⋅=⋅.0,01DC m m可取⋅=)1,2,1(m (10分) 从而⋅=⋅>=<23||.|ln ,cos m m n m n 故二面角11C BD A --的大小为.30o (12分)【方法点拨】 二面角的向量求法:(1) 若AB 、CD 分别是二面角α-L-β的两个面内与棱L 垂直的异面直线,则二面角的大小就是向量 与的夹角(如图①).(2)设21,n n 分别是二面角βα--l 的两个面βα,的法向量,则向量21n n 与的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③),即⋅⋅⋅=|n |n n cos 2121n θ智力背景东方第一几何学家——— 苏步青 1927年毕业于东北帝国大学,1931 年获该校理学博士学位.1948 年被选聘为中央研究院院士,复旦大学教授、名誉校长,中国数学会名誉理事长.主要从事微分几何学和 计算几何学等方面的研究,被誉为“东方第一几何学家”,在仿射微分几何学和射影微分几何学研究方面 取得出色成果;在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面 取得突出成就.1955年被选聘为院士.三年模拟A 组 2011-2013年模拟探究专项基础测试时间:60分钟 分值:65分一、远择题(共5分)1.(2013辽宁大连一模,5)长方体1111D C B A ABCD -中,=AB E AD ,1,2AA 1==为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )1010.A 1030.B 10152.C 10103.D 二、填空题(每题5分,共10分)2.(2013上海普陀二模.12)正四棱锥S - ABCD 中,O 为顶点S 在底面上的射影,P 为侧棱SD 的中点,且SO = OD ,则直线BC 与平面PAC 所成的角是 .3.(2012江苏苏州3月模拟.6)已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CC =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为 .三、解答题(共50分)4.(2013北京延庆一模)如图,四棱锥P - ABCD 的底面ABCD 为菱形,,60 =∠ABC 侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD.(1)设AB 的中点为Q ,求证:PQ ⊥平面ABCD ;(2)求斜线PD 与平面ABCD 所成角的正弦值;(3)在侧棱PC 上存在一点M ,使得二面角M - BD -C 的大小为,600求CP CM 的值.5.(2013天津南开4月.17)在直三棱柱中,,3AA 1===BC AB D AC ,2=是AC 中点.(1)求证://1C B 平面;1BD A(2)求点1B 到平面BD A 1的距离;(3)求二面角11B DB A --的余弦值.6.(2013山东聊城二模.20)正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E-DF-C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BCBP 的值;如果不存在,请说明理由. 7.(2012广东汕头4月模拟,18)如图所示的长方体-ABCD 1111D C B A 中,底面ABCD 是边长为2的正方形,0为AC 与BD 的交点,M BB ,21=是线段11D B 的中点.(1)求证:BM∥平面;1AC D(2)求证:O D 1⊥平面;1C AB(3)求二面角C AB B --1的大小.智力背景数理统计学学科的奠基者---费谢尔歇(一)数理统计 一个进一步完善的数学学科,他的奠基者是英国人费歇尔(R .A .Fisher ,1890—1962).费歇尔1909年入剑桥大学,攻读数学物理专业,三年后毕 业,毕业后,他曾去投资办工厂,又到加拿大农场管过杂务,也当过中学教员.1919年,他开始对生物统计学产生浓厚的兴趣,并参加了罗萨姆斯泰德试验站的工作 ,致力于数理统计在农业科学和遗传学中的应用研究,年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定.B 组 2011-2013年模拟探究专项提升测试时间:40分钟 分值:45分一、选择题(每题5分,共10分)1.(2013福建泉州二模.7)设正方体1111D C B A ABCD -的棱长为2,则点1D 到平面BD A 1的距离是( )23.A 22.B 332.C 332.D 2.(2011辽宁沈阳4月.8)如图所示,在正方体1111D C B A ABCD -中,E 、F 分别在AC D A 、1上,且,31,3211AC AF D A E A ==则( ) A .EF 至多与AC D A 、1之一垂直B .EF 是ACD A 、1的公垂线C .EF 与1BD 相交D .EF 与1BD 异面二、填空题(每题5分,共10分)3.(2013江苏南京一模.9)P 是二面角βα--AB 棱上的一点,分别在平面βα、上引射线,PN PM 、如果=∠=∠BPN BPM ,60,45 =∠MPN 那么二面角βα--AB 的大小为4.(2013湖南长沙一模.15)正方体1111D C B A ABCD -的棱长为l ,E 、F 分别为CD BB 、1的中点,则点F 到平面E D A 11的距离为 三、解答题(共25分)5.(2013北京房山一模.19)如图,四棱锥P - ABCD 的底面为正方形,侧棱PA 上底面ABCD ,且PA= AD =2,E ,F ,H 分别是线段PA ,PD ,AB 的中点.(1)求证:PB∥平面EFH;(2)求证:PD ⊥平面AHF ;(3)求二面角H- EF -A 的大小.6.(2013河北衡水二模,19)如图,在四棱锥P - ABCD 中,侧面PAD ⊥底面ABCD ,侧棱2PD PA ==,,PD PA ⊥底面ABCD 为直角梯形,其中,,//AD AB AD BC ⊥0,1==BC AB 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值;(2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q - AC -D 的余弦值为?36若存在,求出QDPQ 的值;若不存在,请说明理由,智力背景数理统计学学科的奠基者 —一费歇尔(二) 费歇尔热衷于数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据而不减少信息、对一个模型的参数估计等.最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面“科学化”了,不知节省了多少人力和物力,提高了若干倍的工效.费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的.在30—50年代,费歇尔是统计学的中心人物.1959年费歇尔退体后在淡失利亚度遭了最后三年.。