空间向量在立体几何中的应用知识点大全经典高考题带解析练习题带答案
- 格式:doc
- 大小:1.39 MB
- 文档页数:18
专题26 空间向量在立体几何中的运用(2)答案题型一、面面角例1、【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以31(,,0),(0,1,)22EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP =是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为5.变式1、【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,ADb =,1AAc =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.变式2、【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)5.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --变式3、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 题型二、探索性问题例2、【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)3;(3)见解析.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.变式1、(2019南通、泰州、扬州、徐州、淮安、宿迁、连云港二调)如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AB =1,AP =AD =2.(1) 求直线PB 与平面PCD 所成角的正弦值;(2) 若点M ,N 分别在AB ,PC 上,且MN ⊥平面PCD ,试确定点M ,N 的位置.规范解答 (1)由题意知,AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2). 从而PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +2y -2z =0,2y -2z =0,不妨取y =1,则x =0,z =1.所以平面PCD 的一个法向量为n =(0,1,1).(3分) 设直线PB 与平面PCD 所成角为θ, 所以sin θ=|cos 〈PB →,n 〉|=|PB →·n |PB →|·|n ||=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2)设M (a ,0,0),则MA →=(-a ,0,0).设PN →=λPC →,则PN →=(λ,2λ,-2λ),而AP →=(0,0,2), 所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1), 因为MN ⊥平面PCD ,所以MN →∥n .所以⎩⎨⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12.所以M 为AB 的中点,N 为PC 的中点.(10分)变式2、(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD AD 的长.【答案】(1)2 (2. 【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD . 取BC 中点O ,连接AO ,OE , ∵AE ⊥平面BCD ,BC ⊂平面BCD , ∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥, 又AEAO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.∵2BC CD ==,∴112OE CD ==,AO =BD =,∴DE =AE ==∴2AD ==;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO =则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,()CA θθ=-,设平面ACD 的法向量为(,,)nx y z =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sinθ=∴1(0,,22A ,又(1,2,0)D ,∴AD ==变式3、如图1,在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E 、F 、G 分别是PC 、PD 、BC 的中点,现将△PDC 沿CD 折起,使平面PDC ⊥平面ABCD(如图2).(1) 求二面角GEFD 的大小;(2) 在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明过程.图1图2【解析】 (1) 建立如图所示的空间直角坐标系,则EF →=(0,-1,0),EG →=(1,1,-1). 设平面GEF 的一个法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·EF →=-y =0,n ·EG →=x +y -z =0,取n =(1,0,1).又平面EFD 的法向量为m =(1,0,0),所以cos 〈m ,n 〉 =m ·n |m |·|n |=22,所以二面角GEFD 的大小为45°.(2) 设PQ →=λPB →(0<λ<1),则AQ →=AP →+PQ →=(-2+2λ,2λ,2-2λ). 因为AQ ⊥PC ,所以AQ →·PC →=0, 即2×2λ-2(2-2λ)=0,解得λ=12.又AD ⊥PC ,AD ∩AQ =A ,AD ,AQ ⊂平面ADQ , 所以PC ⊥平面ADQ , 故Q 是线段PB 的中点.变式4、如图,在四面体ABOC 中,OC ⊥OA, OC ⊥OB ,∠AOB =120°,且OA =OB =OC =1.(1) 设P 为AC 的中点.在AB 上是否存在一点Q ,使PQ ⊥OA ?若存在,计算ABAQ的值;若不存在,请说明理由.(2) 求二面角OACB 的平面角的余弦值.【解析】 (1) 取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z 轴,建立如图所示的空间直角坐标系 Oxyz ,则A(1,0,0),C(0,0,1),B(-12,32,0).因为P 为AC 的中点,所以P ⎝ ⎛⎭⎪⎫12,0,12.设AQ →=λAB →,λ∈(0,1). 因为AB →=⎝ ⎛⎭⎪⎫-32,32,0,所以OQ →=OA →+AQ →=(1,0,0)+λ(-32,32,0)=⎝ ⎛⎭⎪⎫1-32λ,32λ,0,所以PQ →=OQ →-OP →=⎝ ⎛⎭⎪⎫12-32λ,32λ,-12.因为PQ ⊥OA ,所以PQ →·OA →=0,即12-32λ=0,解得λ=13,所以存在点Q ⎝ ⎛⎭⎪⎫12,36,0使得PQ ⊥OA ,且AB AQ =3.(2) 记平面ABC 的法向量为n =(x ,y ,z), 则由n ⊥CA →,n ⊥AB →,且CA →=(1,0,-1), 得⎩⎪⎨⎪⎧x -z =0,-32x +32y =0,故可取n =(1,3,1). 又平面OAC 的法向量为c =(0,1,0),所以cos 〈n ,c 〉=(1,3,1)·(0,1,0)5×1=35,故二面角OACB 的平面角是锐角,记为θ,则 cos θ=155.1、【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为CD的中点.D A B C M,由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)=-==(2,1,1),(0,2,0),(2,0,0)AM AB DA设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 2、【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B−CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. 【答案】(1)见解析;(2)(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF . ∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =21||||EB EB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2), ∴=(021)GF -,,,∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内, ∴GF 与平面BCD 相交.3、【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3.【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,, 不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1). 因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故cos BP DCBP DC BPDC h ⋅<⋅>==,解得h ∈[0,2]. 所以线段DP 的长为3. 4、(2020届山东省烟台市高三上期末)如图,在四棱锥S ABCD -中,ABCD 为直角梯形,//AD BC ,BC CD ⊥,平面SCD ⊥平面ABCD ,SCD ∆是以CD 为斜边的等腰直角三角形,224BC AD CD ===,E 为BS 上一点,且2BE ES =.(1)证明:直线//SD 平面ACE ;(2)求二面角S AC E --的余弦值.【答案】(1)证明见解析 (2)13【解析】(1)连接BD 交AC 于点F ,连接EF ,因为//AD BC ,所以AFD ∆与BCF ∆相似,所以2BF BC FD AD==, 又=2BE BF ES FD=,所以//EF SD , 因为EF ⊂平面ACE ,SD ⊄平面ACE ,所以直线//SD 平面ACE(2)由题,因为平面SCD ⊥平面ABCD ,平面SCD平面ABCD CD =,BC ⊂平面ABCD ,BC CD ⊥,所以BC ⊥平面SCD ,以C 为坐标原点,,CD CB 所在的方向分别为y 轴、z 轴的正方向,与,CD CB 均垂直的方向作为x 轴的正方向,建立如图所示的空间直角坐标系C xyz -,因为224BC AD CD ===,2BE ES =,则(0,0,0)C ,(1,1,0)S ,(0,2,2)A ,224(,,)333E , 所以(0,2,2)CA =,(1,1,0)CS =,224(,,)333CE =, 设平面SAC 的一个法向量为(,,)m x y z =,则00m CA m CS ⎧⋅=⎨⋅=⎩,即00y z x y +=⎧⎨+=⎩, 令1z =,得1x =,1y =-,于是(1,1,1)m =-,设平面EAC 的一个法向量为(,,)n x y z =,则00n CA n CE ⎧⋅=⎨⋅=⎩,即020y z x y z +=⎧⎨++=⎩, 令1z =,得1x =-,1y =-,于是(1,1,1)m =--,设二面角S AC E --的平面角的大小为θ,则1cos 3m nm n θ⋅==, 所以二面角S AC E --的余弦值为135、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABCA B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.【答案】(1)详见解析;(2)13. 【解析】(1)因为四边形11A ABB 为菱形,所以11A B AB ⊥,又平面1ACB ⊥平面11A ABB ,平面1A CB 平面111A ABB A B =,所以1AB ⊥平面1A CB , 因为CO ⊂平面1A CB ,所以1AB CO ⊥.(2)因为11A B AB =,所以菱形11A ABB 为正方形,在Rt COA ∆中,CO ==在COB ∆中,CO OB ==2CB =,222CO OB CB +=, 所以,CO OB ⊥,又1CO AB ⊥,11A B AB O ⋂=,所以,CO ⊥平面11A ABB ;以O 为坐标原点,以OA ,OB ,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O xyz -.)A,()10,A,(C,()B,设平面11ACC A的一个法向量为()1111,,n x y z=平面ABC的一个法向量为()2222,,n x y z=,则11110,0,⎧=⎪⎨+=⎪⎩令11x=,得()11,1,1=-n,22220,0,⎧+=⎪⎨+=⎪⎩令21x=,得()21,1,1=n,设平面11ACC A与平面ABC所成锐二面角为α,则21121cos33α⋅===n nn n,所以平面11ACC A与平面ABC所成锐二面角的余弦值为13.6、(2020届山东省日照市高三上期末联考)如图,扇形AOB的半径为2,圆心角120AOB∠=,点C为弧AB上一点,PO⊥平面AOB且PO=,点M PB∈且2BM MP=,PA∥平面MOC.(1)求证:平面MOC ⊥平面POB ;(2)求平面POA 和平面MOC 所成二面角的正弦值的大小.【答案】(1)见证明;(2) 4【解析】(1)如图,连接AB 交OC 于点N ,连接MN ,PA ∥平面MOC ,∴PA ∥MN ,2BM MP =,2BN NA ∴=,2OA OB ==,120AOB ∠=,AB ∴=,BN ∴=,又30OBA ∠=,∴在BON △中,根据余弦定理得ON =, 222ON OB BN ∴+=,90BON ∴∠=,ON OB ∴⊥, 又PO ⊥平面AOB ,ON OP ∴⊥,ON ∴⊥平面POB , 又ON ⊂平面MOC ,∴平面MOC ⊥平面POB(2)由(1)得,,OC OB OP OC OP OB ⊥⊥⊥,如图建立空间直角坐标系O xyz -, 5OP =,2OA OB OC ===,∴OP =,(3,1,0)OA =-,(2,0,0)OC =,(0,2,0)OB =,点M PB ∈且2BM MP =,2(0,3OM ∴=, 设平面POA 的法向量为1111(,,)x y z =n ,则1100n OP n OA ⎧⋅=⎪⎨⋅=⎪⎩,即11100y =-=, 令11x =,得1y =10z =,∴1(13,0)=n ,设平面MOC 的法向量为2222(,,)x y z =n ,则2200n OC n OM ⎧⋅=⎪⎨⋅=⎪⎩,即222202033x y z =⎧⎪⎨+=⎪⎩,即22200x y =⎧⎪⎨+=⎪⎩,令21z =,得2y =,20x =,∴2(0,=n ,设平面POA 和平面MOC 所成二面角的大小为θ,则|cos |4θ==,sin 4θ∴=, ∴平面POA 和平面MOC所成二面角的正弦值的大小为4。
空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。
【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。
点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。
2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。
点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。
3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。
【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。
点评:利用向量垂直的充要条件及单位向量的概念。
4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。
【考点】本题主要考查平行向量及向量的坐标运算。
点评:简单题,按向量平行的充要条件计算。
5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。
空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r .2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若 , ,则 ,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
(2)利用法向量求空间距离(a)点A到平面的距离:,其中,是平面的法向量。
(b)直线与平面之间的距离:,其中,是平面的法向量。
(c)两平行平面之间的距离:,其中,是平面的法向量。
【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D中,B1B与平面AC1D所成角的余弦值为()(A)23(B)33(C)23(D)63【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()(A)3(B)5(C)7(D)34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C-中,底面边长和侧棱长都相等,1160BAA CAA∠=∠=o,则异面直线1AB与1BC所成角的余弦值为____________。
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
专题53空间向量在立体几何中的应用(理)专题知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2l 1∥l 2n 1∥n 2⇔n 1=λn 2l 1⊥l 2n 1⊥n 2⇔n 1·n 2=0直线l 的方向向量为n ,平面α的法向量为ml ∥αn ⊥m ⇔n ·m =0l ⊥αn ∥m ⇔n =λm 平面α,β的法向量分别为n ,mα∥βn ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =03.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角βl 1与l 2所成的角θ范围(0,π)求法cos β=a ·b |a ||b |cos θ=|cos β|=|a ·b ||a ||b |4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD→〉(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).考点探究考向1利用空间向量证明平行与垂直问题【例】如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面PAD ;(2)平面PAB ⊥平面P AD .【解析】以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C xyz .因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°,因为PC =2,所以BC =23,PB =4,所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),32,0,32所以=(0,-1,2),=(23,3,0)32,0,32(1)设n=(x,y,z)为平面PAD -y+2z=0,23x+3y=0,令y=2,得n=(-3,2,1).因为n·=-3×32+2×0+1×32=0,所以n⊥.又CM⊄平面PAD,所以CM∥平面PAD.(2)法一:由(1)知=(0,4,0),=(23,0,-2),设平面PAB的一个法向量为m=(x0,y0,z0),4y0=0,23x0-2z0=0,令x0=1,得m=(1,0,3),又因为平面PAD的一个法向量n=(-3,2,1),所以m·n=1×(-3)+0×2+3×1=0,所以平面P AB⊥平面PAD.法二:取AP的中点E,连结BE,则E(3,2,1),=(-3,2,1).因为PB=AB,所以BE⊥PA.又因为·=(-3,2,1)·(23,3,0)=0,所以⊥.所以BE⊥DA.又PA∩DA=A,所以BE⊥平面PAD.又因为BE⊂平面PAB,所以平面PAB⊥平面PAD.题组训练1.已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.【解析】以A为原点,AB,AC,AA1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1) DE =(-2,4,0),平面ABC 的法向量为1 AA =(0,0,4),∵ DE ·1AA =0,DE ⊄平面ABC ,∴DE ∥平面ABC .(2)1 B F =(-2,2,-4), EF =(2,-2,-2),AF =(2,2,0),1 B F · EF =(-2)×2+2×(-2)+(-4)×(-2)=0,∴1 B F ⊥EF ,∴B 1F ⊥EF ,1 B F · AF =(-2)×2+2×2+(-4)×0=0,∴1 B F ⊥AF ,∴B 1F ⊥AF .∵AF ∩EF =F ,∴B 1F ⊥平面AEF .2.如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .【解析】∵平面PAD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴EF →=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ),n ·EF →=0,n ·EG→=0,y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →,∵PB ⊄面EFG ,∴PB ∥平面EFG .考向2利用空间向量求角的问题【例】(2017·江苏卷)如图,在平行六面体ABCD A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角B A 1D A 的正弦值.【解析】(1)在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .故以AE ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B ―→=(3,-1,-3),AC 1―→=(3,1,3).则cos 〈A 1B ―→,AC 1―→〉=A 1B ―→·AC 1―→|A 1B ―→||AC 1―→|=3-1-37×7=-17.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1DA 的一个法向量为AE ―→=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B ―→=(3,-1,-3),BD ―→=(-3,3,0),m ·A 1B ―→=0,m ·BD ―→=0,3x -y -3z =0,-3+3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE ―→,m 〉=AE ―→·m |AE ―→||m |=333×4=34.设二面角B A 1D A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74.因此二面角B A 1D A 的正弦值为74.题组训练1.在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为______.【解析】建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.2.如图,直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=4,BC =22.BD ⊥AC ,垂足为D ,E 为棱BB 1上一点,BD ∥平面AC 1E .(1)求线段B 1E 的长;(2)求二面角C 1-AC -E 的余弦值.【解析】(1)由AB =AC =4,知△ABC 为等腰三角形,又BD ⊥AC ,BC =22,故12·AC ·BD =12·BC ·AB 2-12BC 2BD =7.从而在Rt △CDB 中,CD =BC 2-BD 2=1,故AD =AC -CD =3.如图,过点D 作DF ∥CC 1,交AC 1于F ,连接EF .因为DF ∥CC 1,从而AD AC =DF CC 1=34,得DF =3.因为DF ∥CC 1,CC 1∥BB 1,故DF ∥BB 1,即DF ∥BE ,故DF 与BE 确定平面BDFE .又BD ∥平面AC 1E ,而平面BDFE ∩平面AC 1E =EF ,故BD ∥EF .故四边形BDFE 为平行四边形,从而DF =BE =3,所以B 1E =BB 1-BE =1.(2)如图,以D 为坐标原点,分别以DA →,DB →,DF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则D (0,0,0),C (-1,0,0),E (0,7,3),DC →=(-1,0,0),DE →=(0,7,3).设平面ACE 的一个法向量为n 1=(x ,y ,z ),由n 1·DC →=0,n 1·DE →=0-x =0,7+3z =0,故可取n 1=(0,3,-7).又平面ACC 1在xDz 面上,故可取n 2=(0,1,0)为平面ACC 1的一个法向量.从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=34.由图知二面角C 1-AC -E 为锐角,故二面角C 1-AC -E 的余弦值为34.3.(2018苏北四市一模)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC和11A C 的中点.以{,,}FA FB FG为正交基底,建立如图所示的空间直角坐标系F xyz -.⑴求异面直线AC 与BE 所成角的余弦值;⑵求二面角1F BC C --的余弦值.【解析】(1)因为11,2AB AA ==,则1131(0,0,0),(,0,0),(,0,0),(0,(,0,1)222F A C B E -,所以(1,0,0)=- AC ,13(,22=-BE ,记直线AC 和BE 所成角为α,则221122cos |cos ,||413()()122α-⨯=<>==+-+AC BE ,所以直线AC 和BE 所成角的余弦值为24.(2)设平面1BFC 的法向量为111(,,)x y z =m ,因为3(0,2FB = ,11(,0,2)2FC =- ,则11113021202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩m m ,取14x =得:(4,0,1)=m 设平面1BCC 的一个法向量为222(,,)x y z =n ,因为13(22CB = ,1(0,0,2)CC = ,则22121302220CB x y CC z ⎧⋅=+=⎪⎨⎪⋅==⎩ n n ,取23x =(3,1,0)=-n222222351cos ,17(3)(1)0401∴<>=⋅+-+⋅++m n 根据图形可知二面角1F BC C --为锐二面角,所以二面角1F BC C --的余弦值为25117。
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MA MB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A B ,为垂足,42PA PB ==,,则AB 的长为( ) A.42B.23C.25D.279.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( ) A.22B.3C.2D.710.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )A.平行 B.垂直 C.相交 D.以上都可能11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( ) A.1条 B.2条 C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆 C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么: ①必存在平面α过m 且与l 平行; ②必存在平面β过m 且与l 垂直; ③必存在平面γ与m l ,都垂直; ④必存在平面δ与m l ,距离都相等. 其中正确命题的序号是三、解答题17.设空间两个不同的单位向量122(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π4.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,. (1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小;(3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(1) 求证:向量p 为平面OAB 的法向量;(2) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D 10.【答案】A 11.【答案】D 12.【答案】B 13.14.【答案】120°. 15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴. 1114x y =∴. (4)同理可得222214x y x y +==, 11x y ,∴是方程2104x +=的两根,同理22x y ,也是. 又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a b a b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.18.解:以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,则1(012)(240)(010)C B A ,,,,,,,,. 1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CD BC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴.设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -, 1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,. 由1AF EC =,得(20)(202)z -=-,,,,,2z =∴.(002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.114x y =⎧⎪⎨=-⎪⎩,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111cos CCCC α==·n n. C ∴到平面1AEC F 的距离1cos d CC α=. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴.以O 为原点,建立如图所示空间直角坐标系O xyz -.设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB .(2)12k =,即2PA a =,72h a =∴,27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴n n n. 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·. 22h a =∴. 22PA OA h a =+=∴,即1k =.反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心. (3) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·,⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯.∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c ,又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.空间向量课后习题1.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上2.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =( ) A.(042),, B.(042)--,, C.(040),, D.(202)-,,3.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( ) A.12x x R- B.21x x R- C.12x x R-D.12()x x R-±4.若向量MAMB MC ,,的起点与终点M A B C ,,,互不重合且无三点共线,O 是空间任一点,则能使MA MB MC ,,成为空间一组基底的关系是( ) A.111333OM OA OB OC =++B.MA MB MC ≠+ C.1233OM OA OB OC =++ D.2MA MB MC =-5.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 是平面11ABC D 的距离是( )C.126.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a7.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( )A.2 B.4 C.6 D.128.设P 是60°的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,AB ,为垂足,42PA PB ==,,则AB 的长为( )A. B. C. D.9.ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( )A. C.210.已知()()(00)x y z a b c xyz abc ==≠≠,,,,,,p q ,若有等式2222222()()()x y z a b c ax by cz ++++=++成立,则,p q 之间的关系是( )11.已知平面α与β所成二面角为80°,P 为αβ,外一定点,过点P 一条直线与αβ,所成的角都是30°,则这样的直线有且仅有( )A.1条 B.2条C.3条 D.4条12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( )A.直线 B.圆C.椭圆 D.双曲线二、填空题13.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为1BD =,若15.如图2,在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上,且AD 与平面11AAC C 所成的角为α,则sin α=16.已知m l ,是异面直线,那么:①必存在平面α过m 且与l 平行;②必存在平面β过m 且与l 垂直;③必存在平面γ与m l ,都垂直;④必存在平面δ与m l ,距离都相等.其中正确命题的序号是三、解答题17.设空间两个不同的单位向量(0)(0)x y x y ==,,,,,a b 与向量(111)=,,c 的夹角都等于π.18.如图3,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小.19.如图4,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.20.如图5所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,.(1)求BF ;(2)求点C 到平面1AEC F 的距离.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是AC PC ,的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)当12k =时,求直线PA 与平面PBC 所成角的大小; (3)当k 为何值时,O 在平面PBC 内的射影恰好为PBC △的重心?22.如图7,已知向量OA OB OC ===,,a b c ,可构成空间向量的一个基底,若123()a a a =,,,a123123()()b b b c c c ==,,,,,b c ,在向量已有的运算法则的基础上,新定义一种运算233231131221()a b a b a b a b a b a b ⨯=---,,a b ,显然⨯a b 的结果仍为一向量,记作p .(4) 求证:向量p 为平面OAB 的法向量;(5) 求证:以OA OB ,为边的平行四边形OADB 的面积等于⨯a b ;(3)将四边形OADB 按向量OC =c 平移,得到一个平行六面体111OADB CA D B -,试判断平行六面体的体积V答案1.【答案】C2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D10.【答案】A11.【答案】D12.【答案】B13.14.【答案】120°.15.16.【答案】①④17.解:(1)由πcos 4==ac a c 11a c =+·x y ,11+=∴x y又1==a ,222111111113()2122x y x y x y x y +=++=+=∴.1114x y =∴.(4)同理可得222214x y x y +==,11x y ,∴是方程2104x +=的两根,同理22x y ,也是.又≠∵a b ,1221==,∴x y x y .cos ==,·∴·a ba b a b a b 1212112212=+=+=x x y y x y x y ,60a b =,∴°.则1(012)(240)(010)C B A ,,,,,,,,.1(232)BC =--,,∴,(010)CD =-,,.设1BC 与CD 所成角为θ, 则11317cos 17BC CDBC CDθ==·. θ=∴. ∴异面直线1BC 与DC 所成角的大小为 19.解:设AE x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,. 11(120)(021)(001)CE x D C DD =-=-=,,,,,,,,∴. 设平面1D EC 的法向量为()a b c =,,n , 由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x CE 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11π2cos 42DD DD ==⇒=n n ·.2x =∴(2x =+ 2AE =∴20.解:(1)以D 为原点,DAF DC DF ,,所在直线为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -,1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,.由1AF EC =,得(20)(202)z -=-,,,,, 2z =∴. (002)(242)F BF =--,,,,,∴.26BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n 得410220y x +=⎧⎨-+=⎩,.11x y =⎧⎪⎨=-⎪,.∴又1(003)CC =,,,设1CC 与1n 的夹角为α, 则111433cos 33CC CC α==·n n . C ∴到平面1AEC F 的距离1433cos 11d CC α==. 21.解:(1)证明:OP ⊥∵平面ABC OA OC AB BC ==,,, OA OB OA OP OB OP ⊥⊥⊥,,∴. 以O 为原点,建立如图所示空间直角坐标系O xyz -. 设AB a =,则222000000222A a B a C a ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,. 设OP h =,则(00)P h ,,.D ∵为PC 的中点,21042OD a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴. 202PA a h ⎛⎫=- ⎪ ⎪⎝⎭,,,12OD PA =-∴. OD PA ∴∥,OD ∴∥平面PAB . (2)12k =,即2PA a =,72h a =∴, 27022PA a a ⎛⎫=- ⎪ ⎪⎝⎭,,∴ 可求得平面PBC 的法向量1117⎛⎫=-- ⎪ ⎪⎝⎭,,n . 210cos 30PA PA PA ==,·∴nn n . 设PA 与平面PBC 所成的角为θ, 则210sin cos 30PA θ==,n . PA ∴与平面PBC 所成的角为210arcsin30. (3)PBC △的重心221663G a a h ⎛⎫- ⎪ ⎪⎝⎭,,,221663OG a a h ⎛⎫=- ⎪ ⎪⎝⎭,,∴, OG ⊥∵平面PBC ,OG PB ⊥∴.又202PB a h ⎛⎫=- ⎪ ⎪⎝⎭,,,2211063OG PB a h =-=∴·.h =∴.PA a =∴,即1k =. 反之,当1k =时,三棱锥O PBC -为正三棱锥. O ∴在平面PBC 内的射影为PBC △的重心.(6) ()⨯·a b c 的大小. 22.解:(1)233213113212213()()()0a b a b a a b a b a a b a b a =-+-+-=p a ·, ⊥p a ∴,同理⊥p b .p ∴是平面OAB 的法向量.(2)设平行四边形OADB 的面积为S ,OA 与OB 的夹角为θ,则sin θ=S OA OB =a a b =⨯. ∴结论成立.(3)设C 点到平面OAB 的距离为h ,OC 与平面OAB 所成的角为α, 则=V Sh sin α=⨯a b c , 又()cos sin α⨯=⨯⨯=⨯,·a b c a b c a b c a b c , ∴V ()a b c =⨯·.。
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β 的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C )5(D )222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C )60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A )31 (B)32 (C )33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若 , ,则 ,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
(2)利用法向量求空间距离 (a ) 点A 到平面的距离: ,其中,是平面的法向量。
(b ) 直线与平面之间的距离: ,其中,是平面的法向量。
(c ) 两平行平面之间的距离: ,其中, 是平面的法向量。
【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为( )(A ) 23(B )33 (C )23 (D )63 【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )(A )34 (B) 54(C) 74 (D) 34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为____________。
【解析】66 ABC SEF【例4】(2012重庆)如图,在直三棱柱ABC-A 1B 1C 1中,AB=4,AC=BC=3,D 为AB 的中点。
(Ⅰ)求异面直线CC 1和AB 的距离;(Ⅱ)若AB 1⊥A 1C ,求二面角A 1—CD —B 1的平面角的余弦值。
【解析】5 31【例5】(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 1B 求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .【例6】(2012山东)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB=60°,FC ⊥平面ABCD ,AE ⊥BD ,CB=CD=CF .(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值. 1【解析】二面角F-BD-C 的余弦值为55.【例7】(2012江西)在三棱柱111ABC A B C -中,已知15AB AC AA ===,4BC =,点1A 在底面ABC 的投影是线段BC 的中点O 。
(1)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长; (2)求平面11A B C 与平面11BB C C 夹角的余弦值。
【解析】55,1030B 1C 1O ACBA 11A1CFECD ABPABCED【例8】(2012湖南)四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点. (Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积.【解析】118512851633515V S PA =⨯⨯=⨯⨯=【例9】(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ⊥平面ABCD ;(2)若1,2,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB .【解析】三棱锥E BCF -的体积111112123326212BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯⨯⨯= 【例10】(2012新课标)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】二面角11C BD A --的大小为30︒【例11】如图所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD 点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.【解析】二面角B PC A --的平面角的正切值为3【例12】(2012天津)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,0=45ABC ∠,DA 1CAC 1==2PA AD ,=1AC . (Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长. 【解析】630,1010【课堂练习】1、(2012上海)若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (用反三角函数值表示)2、(2012四川)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。
3、(2012全国卷)如图,四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥底面ABCD ,22AC =2PA =,E 是PC 上的一点,2PE EC =。
(Ⅰ)证明:PC ⊥平面BED ;(Ⅱ)设二面角A PB C --为90,求PD 与平面PBC 所成角的大小。
4、(2010辽宁理)已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.(Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.5、(2010辽宁文)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥N MB 1A 1C 1D 1BD E DA P(Ⅰ)证明:平面1AB C ⊥平面11A BC ;(Ⅱ)设D 是11A C 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.6、(2010全国文)如图,直三棱柱ABC-A 1B 1C 1 中,AC=BC , AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3 EB 1(Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45°,求二面角A 1-AC 1-B 1的大小7、(2010江西理)如图△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =。
(1) 求点A 到平面MBC 的距离;(2) 求平面ACM 与平面BCD 所成二面角的正弦值。
8、(2010重庆文)四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面CBA DE PABCD ,2PA AB ==,点E 是棱PB 的中点.(Ⅰ)证明:AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.9、(2010浙江文)如图,在平行四边形ABCD 中,AB=2BC ,∠ABC=120°。
E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A ’DE ,使平面A ’DE ⊥平面BCD ,F 为线段A ’C 的中点。
(Ⅰ)求证:BF ∥平面A ’DE ;(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A ’DE 所成角的余弦值。
10、(2010重庆理)四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,6,点E 是棱PB 的中点。
(1)求直线AD 与平面PBC 的距离;(2)若3A-EC-D 的平面角的余弦值。
11、(2010北京理)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC,EF ∥AC,AB=2,CE=EF=1. (Ⅰ)求证:AF ∥平面BDE ; (Ⅱ)求证:CF ⊥平面BDE ; (Ⅲ)求二面角A-BE-D 的大小。
12、如图,弧AEC 是半径为a 的半圆,AC 为直径,点E 为弧AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED,FB=a 5(1)证明:EB ⊥FD(2)求点B 到平面FED 的距离.13、(2010江苏卷)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900。
(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离。
14、(2012上海)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.15、(2012四川)如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC 。