并行算法设计与分析(2)分析共22页
- 格式:ppt
- 大小:2.22 MB
- 文档页数:22
并行程序设计原理随着计算机技术的飞速发展,计算机系统的处理能力不断提高,但是单个处理器的性能已经无法满足现代应用的大量计算需求。
人们开始将多个处理器组成一个并行计算机系统,以提高处理能力。
并行计算机系统具有多个处理器,并且这些处理器能够同时处理不同的任务,从而提高计算能力。
利用并行计算机系统开发并行程序需要特定的技术和方法。
本文将介绍并行程序设计的原理。
1. 并行处理的基本原理并行处理是指多个处理器同时执行不同的任务。
在并行计算机系统中,每个处理器都可以独立地执行任务,而这些处理器之间通过共享存储器进行通信和数据交换。
(1)任务分配:并行处理需要将任务分配给多个处理器,以实现多个处理器的协同工作。
(2)通信与同步:并行处理需要处理器之间进行通信和同步,确保数据的正确性和计算的一致性。
(3)负载均衡:在并行计算机系统中,要保证所有处理器都得到合理的任务分配,以实现尽可能平衡的负载,从而提高整个系统的效率和性能。
2. 并行程序的基本特点并行程序具有一下几个特点:(1)可扩展性:并行程序可以随着处理器数量的不断增加而提高计算能力,形成高性能的计算机系统。
(2)复杂性:并行程序处理的问题一般比串行程序复杂,需要更多的算法和技巧,也需要更加严格的编程规范和方法。
(3)可重复性:并行程序的结果应该是可重复的,即在多次执行相同的任务时得到相同的结果。
(4)可移植性:并行程序应该具有可移植性,即可以在不同的计算机系统中执行,而不需要对程序进行太多的修改。
(1)分解问题:设计并行程序需要将整个问题分解成多个子问题,以方便并行计算。
(2)任务调度:设计并行程序需要合理地安排任务的执行顺序,以尽可能避免处理器的空闲时间,提高计算效率。
4. 并行程序的设计方法在设计并行程序时,需要遵循一些基本的方法:(1)数据并行:数据并行是指将数据分成多个部分,分配给不同的处理器并行处理。
这种方法适用于数据独立性较强的问题。
(4)管道并行:管道并行是指将整个计算过程分成多个部分,每个部分交替执行。
算法设计与分析基础课后练习答案算法设计与分析基础课后练习答案习题1.1 4.设计一个计算的算法,n 是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
能用到基本的四则运算操作。
算法求//输入:一个正整数n 2 //输出:。
step1:a=1;step2:若a*a<n 转step 3,否则输出a ; step3:a=a+1转step 2; 5. a .用欧几里德算法求gcd (31415,14142)。
b. 用欧几里德算法求gcd (31415,14142),比检查min {m ,n }和gcd (m ,n )间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1. b.有a 可知计算gcd (31415,14142)欧几里德算法做了11次除法。
次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,之间,所以欧几里德算法所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。
倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数对每一对正整数m,n 都成立. Hint: 根据除法的定义不难证明: l 如果d 整除u 和v, 那么d 一定能整除u ±v;l 如果d 整除u,那么d 也能够整除u 的任何整数倍ku. 对于任意一对正整数m,n,m,n,若若d 能整除m 和n,n,那么那么d 一定能整除n 和r=m mod n=m-qn n=m-qn;显然,若;显然,若d 能整除n 和r ,也一定能整除m=r+qn 和n 。
《算法分析与设计》练习题一答案1.程序书写格式应该遵循哪四个原则?参考答案:(1)正确使用缩进:一定要有缩进,否则代码的层次不明显。
(2)在一行内只写一条语句。
(3), '}'位置不可随意放置。
(4)变量和运算符之间最好加1个空格2.什么是算法?参考答案:用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
算法可以理解为冇基本运算及规定的运算顺序所构成的完整的解题步骤,它是求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类屮每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
3.什么是线性结构?什么是非线性结构?参考答案:线性结构:数据逻辑结构屮的一类。
它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所冇结点都冇R只冇一个直接前趋和一个直接后继。
线性表就是一个典型的线性结构。
栈、队列、串等都是线性结构。
非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接而趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
4.已知二叉树后序遍丿力序列是DABEC,屮序遍丿力序列是DEBAC,则前序遍历序列是什么?参考答案:前序遍历序列是CEDBA5.什么是数制?参考答案:数制是人们利用符号进行计数的一种科学方法。
数制也称计数制,是用一组固定的符号和统一的规则來表示数值的方法。
6.如果将十进制数106转换为八进制数,结果是多少?参考答案:1527.请问查找算法的效率用什么进行度量?参考答案:平均查找长度ASL:在查找其关键字等于给定值的过程小,需要和给定值进行比较的关键字个数的期望值称为查找成功吋的平均查找长度。
AS厶=£皿/=1其屮,n是结点的个数;是杳找第i个结点的概率,是找到第i个结点所需要的比较次数。
并行程序设计并行程序设计是一种软件开发方法,旨在利用多个处理器或核心同时执行计算任务,以提高程序的执行效率和性能。
这种设计方法对于处理大型数据集、复杂算法和需要快速响应的应用至关重要。
以下是对并行程序设计的详细介绍。
并行程序设计的概念并行程序设计基于并行计算的概念,即同时使用多个计算资源来执行程序。
这与传统的串行计算相对,后者一次只能执行一个任务。
并行程序设计的目标是将程序分解为多个可以并行执行的子任务,从而减少总体的执行时间。
并行程序设计的优势1. 提高性能:通过同时执行多个任务,可以显著提高程序的执行速度。
2. 缩短响应时间:对于需要快速处理的应用,如实时系统,可以减少等待时间。
3. 资源利用率:充分利用现代多核处理器的性能,提高资源的使用效率。
4. 可扩展性:并行程序设计允许程序更容易地扩展到更多的处理器或核心。
并行程序设计的挑战1. 数据依赖:并行执行的任务之间可能存在数据依赖,这可能限制并行度。
2. 同步和通信:并行任务需要同步和通信机制来避免数据竞争和确保正确的执行顺序。
3. 负载均衡:合理分配任务到各个处理器上,以避免某些处理器过载而其他处理器空闲。
4. 调试难度:并行程序的调试通常比串行程序更加复杂。
并行程序设计的关键技术1. 多线程:使用线程来实现任务的并行执行。
2. 消息传递:进程间通过发送和接收消息来实现通信。
3. 共享内存:多个线程共享同一块内存区域,需要同步机制来避免冲突。
4. 分布式计算:任务分布在不同的机器或节点上执行,通过网络进行通信。
并行程序设计的工具和语言1. OpenMP:一种用于C/C++的编译器指令,用于简化多线程程序的编写。
2. MPI(Message Passing Interface):一种用于进程间通信的标准,广泛应用于高性能计算。
3. CUDA:由NVIDIA开发的并行计算平台和API,用于利用GPU进行并行计算。
4. Hadoop:一个开源框架,用于在普通硬件上存储和处理大数据集。
并行程序设计导论(精品)一、教学内容本节课的教学内容来自于并行程序设计导论教材的第三章,主要内容包括:并行计算机的基本概念、并行计算模型、并行算法的基本概念及其分类、并行算法的性能评价以及并行算法的设计方法。
二、教学目标1. 让学生了解并行计算机的基本概念,理解并行计算的原理和优势。
2. 掌握并行计算模型,了解不同类型的并行计算机体系结构。
3. 理解并行算法的基本概念,学会分析并评价并行算法的性能。
三、教学难点与重点重点:并行计算机的基本概念、并行计算模型、并行算法的基本概念及其分类、并行算法的性能评价。
难点:并行算法的设计方法。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。
学具:教材、笔记本电脑、编程环境。
五、教学过程1. 实践情景引入:通过介绍一些并行计算机的应用场景,如高性能计算、大数据处理等,让学生了解并行计算机的重要性。
2. 讲解并行计算机的基本概念:解释并行计算机的定义、特点和优势,引导学生理解并行计算的原理。
3. 介绍并行计算模型:讲解不同类型的并行计算模型,如SIMD、MIMD等,并分析它们的优缺点。
4. 讲解并行算法的基本概念:介绍并行算法的定义、分类及其特点,让学生了解并行算法的基本知识。
5. 分析并评价并行算法的性能:讲解并行算法的性能评价指标,如加速比、效率等,并引导学生学会分析并行算法的性能。
6. 讲解并行算法的设计方法:介绍并行算法的设计方法,如流水线算法、分治算法等,让学生掌握并行算法的设计技巧。
7. 例题讲解:通过分析一些典型的并行算法实例,让学生更好地理解并行算法的原理和设计方法。
8. 随堂练习:让学生根据所学的并行算法设计方法,尝试解决一些实际的并行计算问题。
六、板书设计板书内容主要包括并行计算机的基本概念、并行计算模型、并行算法的基本概念及其分类、并行算法的性能评价以及并行算法的设计方法。
七、作业设计1. 请简述并行计算机的基本概念及其优势。
2. 解释并行计算模型的概念,并比较不同类型的并行计算模型的优缺点。
用分支定界算法求以下问题:某公司于乙城市的销售点急需一批成品,该公司成品生产基地在甲城市。
甲城市与乙城市之间共有n 座城市,互相以公路连通。
甲城市、乙城市以及其它各城市之间的公路连通情况及每段公路的长度由矩阵M1 给出。
每段公路均由地方政府收取不同额度的养路费等费用,具体数额由矩阵M2 给出。
请给出在需付养路费总额不超过1500 的情况下,该公司货车运送其产品从甲城市到乙城市的最短运送路线。
具体数据参见文件:m1.txt: 各城市之间的公路连通情况及每段公路的长度矩阵(有向图); 甲城市为城市Num.1,乙城市为城市Num.50。
m2.txt: 每段公路收取的费用矩阵(非对称)。
思想:利用Floyd算法的基本方法求解。
程序实现流程说明:1.将m1.txt和m2.txt的数据读入两个50×50的数组。
2.用Floyd算法求出所有点对之间的最短路径长度和最小费用。
3.建立一个堆栈,初始化该堆栈。
4.取出栈顶的结点,检查它的相邻的所有结点,确定下一个当前最优路径上的结点,被扩展的结点依次加入堆栈中。
在检查的过程中,如果发现超出最短路径长度或者最小费用,则进行”剪枝”,然后回溯。
5.找到一个解后,保存改解,然后重复步骤4。
6.重复步骤4、5,直到堆栈为空,当前保存的解即为最优解。
时间复杂度分析:Floyd算法的时间复杂度为3O N,N为所有城市的个数。
()该算法的时间复杂度等于DFS的时间复杂度,即O(N+E)。
其中,E为所有城市构成的有向连通图的边的总数。
但是因为采用了剪枝,会使实际运行情况的比较次数远小于E。
求解结果:算法所得结果:甲乙之间最短路线长度是:464最短路线收取的费用是:1448最短路径是:1 3 8 11 15 21 23 26 32 37 39 45 47 50C源代码(注意把m1.txt与m2.txt放到与源代码相同的目录下,下面代码可直接复制运行):#include<stdlib.h>#include<stdio.h>#include<time.h>#include<string.h>#define N 50#define MAX 52void input(int a[N][N],int b[N][N]);void Floyd(int d[N][N]);void fenzhi(int m1[N][N],int m2[N][N],int mindist[N][N],int mincost[N][N]);int visited[N],bestPath[N];void main(){clock_t start,finish;double duration;int i,j,mindist[N][N],mincost[N][N],m1[N][N],m2[N][N]; /* m1[N][N]和m2[N][N]分别代表题目所给的距离矩阵和代价矩阵*/// int visited[N],bestPath[N];FILE *fp,*fw;// system("cls");time_t ttime;time(&ttime);printf("%s",ctime(&ttime));start=clock();for(i=0;i<N;i++){visited[i]=0;bestPath[i]=0;}fp=fopen("m1.txt","r"); /* 把文件中的距离矩阵m1读入数组mindist[N][N] */if(fp==NULL){printf("can not open file\n");return;}for(i=0;i<N;i++)for(j=0;j<N;j++)fscanf(fp,"%d",&mindist[i][j]);fclose(fp); /* 距离矩阵m1读入完毕*/fp=fopen("m2.txt","r"); /* 把文件中的代价矩阵m2读入数组mincost[N][N] */if(fp==NULL){printf("can not open file\n");return;}for(i=0;i<N;i++)for(j=0;j<N;j++)fscanf(fp,"%d",&mincost[i][j]);fclose(fp); /* 代价矩阵m2读入完毕*/input(m1,mindist); /* mindist[N][N]赋值给m1[N][N],m1[N][N]代表题目中的距离矩阵*/input(m2,mincost); /* mincost[N][N]赋值给m2[N][N],m2[N][N]代表题目中的代价矩阵*/for(i=0;i<N;i++) /* 把矩阵mindist[i][i]和mincost[i][i]的对角元素分别初始化,表明城市到自身不连通,代价为0 */{mindist[i][i]=9999;mincost[i][i]=0;}Floyd(mindist); /* 用弗洛伊德算法求任意两城市之间的最短距离,结果存储在数组mindist[N][N]中*//*fw=fopen("1.txt","w");for(i=0;i<N;i++){for(j=0;j<N;j++)fprintf(fw,"%4d ",mindist[i][j]);fprintf(fw,"\n");}fclose(fw);// getchar();//*/Floyd(mincost); /* 用弗洛伊德算法求任意两城市之间的最小代价,结果存储在数组mincost[N][N]中*//*fw=fopen("2.txt","w");for(i=0;i<N;i++){for(j=0;j<N;j++)fprintf(fw,"%4d ",mincost[i][j]);fprintf(fw,"\n");}fclose(fw);// getchar();//*/fenzhi(m1,m2,mindist,mincost); /* 调用分支定界的实现函数,寻找出所有的可行路径并依次输出*/finish=clock();duration = (double)(finish - start) / CLOCKS_PER_SEC;printf( "%f seconds\n", duration );//*/}void Floyd(int d[N][N]) /* 弗洛伊德算法的实现函数*/{int v,w,u,i;for(u=0;u<N;u++){for(v=0;v<N;v++){for(w=0;w<N;w++)if(d[v][u]+d[u][w]<d[v][w]){//printf("v,w,u,d[v][u],d[u][w],d[v][w] %d %d %d %d %d %d",v+1,w+1,u+1,d[v][u],d[u][w],d[v][ w]);getchar();d[v][w]=d[v][u]+d[u][w];}}}}void input(int a[N][N],int b[N][N]) /* 把矩阵b赋值给矩阵a */{int i,j;for(i=0;i<N;i++)for(j=0;j<N;j++)a[i][j]=b[i][j];}void fenzhi(int m1[N][N],int m2[N][N],int mindist[N][N],int mincost[N][N]){int stack[MAX],depth=0,next,i,j; /* 定义栈,depth表示栈顶指针;next指向每次遍历时当前所处城市的上一个已经遍历的城市*/int bestLength,shortestDist,minimumCost,distBound=9999,costBound=9999;int cur,currentDist=0,currentCost=0; /* cur指向当前所处城市,currentDist和currentCost分别表示从甲城市到当前所处城市的最短距离和最小代价,currentDist和currentCost初值为0表示从甲城市出发开始深度优先搜索*/stack[depth]=0; /* 对栈进行初始化*/stack[depth+1]=0;visited[0]=1; /* visited[0]=1用来标识从甲城市开始出发进行遍历,甲城市已被访问*/while(depth>=0) /* 表示遍历开始和结束条件,开始时从甲城市出发,栈空,depth=0;结束时遍历完毕,所有节点均被出栈,故栈也为空,depth=0 *//* 整个while()循环体用来实现从当前的城市中寻找一个邻近的城市*/{cur=stack[depth]; /* 取栈顶节点赋值给cur,表示当前访问到第cur号城市*/ next=stack[depth+1]; /* next指向当前所处城市的上一个已经遍历的城市*/for(i=next+1;i<N;i++) /* 试探当前所处城市的每一个相邻城市*/{if((currentCost+mincost[cur][N-1]>costBound)||(currentDist+mindist[cur][N-1]>=distBound)){ /* 所试探的城市满足剪枝条件,进行剪枝*///printf("here1 %d %d %d %d %d %d %d\n",cur,currentCost,mincost[cur][49],costBound,curre ntDist,mindist[cur][49],distBound); getchar();//printf("%d %d %d %d %d %d",cur,i,m1[cur][i],currentCost,mincost[cur][49],costBound); getchar();continue;}if(m1[cur][i]==9999) continue; /* 所试探的城市不连通*/if(visited[i]==1) continue; /* 所试探的城市已被访问*/if(i<N) break; /* 所试探的城市满足访问条件,找到新的可行城市,终止for循环*/ }if(i==N) /* 判断for循环是否是由于搜索完所有城市而终止的,如果是(i==N),进行回溯*/{// printf("here");getchar();depth--;currentDist-=m1[stack[depth]][stack[depth+1]];currentCost-=m2[stack[depth]][stack[depth+1]];visited[stack[depth+1]]=0;}else /* i!=N,表示for循环的终止是由于寻找到了当前城市的一个可行的邻近城市*/{//printf("%d %d %d %d %d %d\n",cur,i,m1[stack[depth]][i],m2[stack[depth]][i],currentCost,curre ntDist);//getchar();currentDist+=m1[stack[depth]][i]; /* 把从当前所处城市到所找到的可行城市的距离加入currentDist */currentCost+=m2[stack[depth]][i]; /* 把从当前所处城市到所找到的可行城市的代价加入currentCost */depth++; /* 所找到的可行城市进栈*/stack[depth]=i; /* 更新栈顶指针,指向所找到的可行城市*/stack[depth+1]=0;visited[i]=1; /* 修改所找到的城市的访问标志*/if(i==N-1) /* i==N-1表示访问到了乙城市,完成了所有城市的一次搜索,找到一条通路*/{// printf("here\n");for(j=0;j<=depth;j++) /* 保存当前找到的通路所经过的所有节点*/ bestPath[j]=stack[j];bestLength=depth; /* 保存当前找到的通路所经过的所有节点的节点数*/shortestDist=currentDist; /* 保存当前找到的通路的距离之和*/minimumCost=currentCost; /* 保存当前找到的通路的代价之和*///costBound=currentCost;distBound=currentDist; /* 更新剪枝的路径边界,如果以后所找到的通路路径之和大于目前通路的路径之和,就剪枝*/if(minimumCost>1500) continue; /* 如果当前找到的通路的代价之和大于1500,则放弃这条通路*/printf("最短路径:%3d,路径代价:%3d,所经历的节点数目:%3d,所经历的节点如下:\n",shortestDist,minimumCost,bestLength+1); /* 输出找到的通路的结果*/bestPath[bestLength]=49;for(i=0;i<=bestLength;i++) /* 输出所找到的通路所经过的具体的节点*/ printf("%3d ",bestPath[i]+1);(完整word版)北航研究生算法设计与分析Assignment_2 printf("\n");depth--; /* 连续弹出栈顶的两个值,进行回溯,开始寻找新的可行的通路*/currentDist-=m1[stack[depth]][stack[depth+1]];currentCost-=m2[stack[depth]][stack[depth+1]];visited[stack[depth+1]]=0;depth--;currentDist-=m1[stack[depth]][stack[depth+1]];currentCost-=m2[stack[depth]][stack[depth+1]];visited[stack[depth+1]]=0;// getchar();}}}}。
《算法设计与分析》课程思政优秀教学案例(一等奖)一、课程简介本课程介绍计算机算法的设计和分析,内容包括计算模型、排序和查找、矩阵算法、图算法、动态规划、模式匹配、近似算法、并行算法等。
学完本课程后学生将基本掌握数据结构和算法的设计与分析技术,提高程序设计的质量,能够根据所求解问题的性质选择合理的数据结构和算法,并对时间、空间复杂性进行必要的分析与控制。
本课程的培养目标包括:理解算法分析基本方法,掌握时间和空间权衡的原则;理解穷举、贪心、分治、动态规划和回溯算法;理解算法分析对程序设计的重要性;具备算法设计与分析技能;具备精益求精的工匠精神、科技报国的使命担当,以及坚定“四个自信”的爱国主义精神。
二、课程内容三、教学组织过程第1学时1.程序运行效率对比(5分钟,问题引导式教学)现场先后运行两个计算程序,计算同一个矩阵乘法,运行时间(效率)差异巨大,从而引起学生的兴趣:为何差异巨大?2.分治法回顾(5分钟)回顾分治法的主要思想,以及用于分析分治法算法的主定理,为后续相关算法分析做准备。
3.朴素的矩阵乘法算法(10分钟,需求引导式教学)介绍并分析基于直观分治法思想的朴素矩阵乘法算法,时间复杂度并不理想,有进一步改进的需求。
4.改进的矩阵乘法思想(15分钟,对比式教学)在朴素算法的某些关键参数上进行改进,并通过分析得知算法效率有较大提升。
5.讨论进一步改进的思路(10分钟,研讨式教学)在对照中感受关键参数对整体算法的影响。
现场组织研讨,在研讨中明确改进的方向和思路。
第2学时6.矩阵乘法思想的发展历程(10分钟)了解矩阵乘法算法近50年里不断改进的历程,让学生感受并领会精益求精的工匠精神。
7.矩阵乘法算法的最新进展(10分钟)通过相关知识点的最新科研前沿情况,增强学生的科学素养和国际视野。
8.课程思政重点案例——“Matlab被禁”事件(20分钟,激发学生科技报国的历史担当)(1)过渡:从算法理论过渡到现实环境中的常用工具——Matlab。