幂级数复习总结
- 格式:ppt
- 大小:806.50 KB
- 文档页数:15
级数的认识知识点总结一、级数的定义1.1 级数的概念级数是指由一组数相加而成的和,通常用符号∑来表示。
如果给定一个数列{an},则和S=∑an可以表示为级数的概念。
级数是数学分析中一个非常重要的概念,它允许我们将无穷多个数相加而得到一个和。
1.2 级数的部分和级数的部分和是指级数的前n项和,通常用Sn表示。
级数的部分和可以帮助我们判断级数的收敛性。
1.3 收敛级数和发散级数如果级数的部分和序列{Sn}有一个有限的极限,则称该级数为收敛级数;如果级数的部分和序列{Sn}没有有限的极限,则称该级数为发散级数。
二、级数的收敛性2.1 收敛级数的定义级数∑an收敛的充分必要条件是,对于任意给定的ε>0,存在正整数N,当n>N时,使得|Sn-S|<ε成立。
其中,S表示级数的和。
2.2 收敛级数的性质(1)收敛级数的和的性质:如果级数∑an和∑bn都收敛,则它们的和∑(an+bn)也收敛,并且有∑(an+bn)=∑an+∑bn。
(2)收敛级数的定理:如果级数∑an收敛,则其任一子级数也收敛。
2.3 级数的收敛判定级数的收敛性通常通过不同的方法进行判断,常用的方法有:(1)比较判别法:用一个已知级数的性质来推导出所求级数的性质;(2)比值判别法:通过级数的比值来判断级数的收敛性;(3)根值判别法:通过级数的根值来判断级数的收敛性;(4)绝对收敛级数和条件收敛级数。
2.4 发散级数的性质对于发散级数,常见的性质有:(1)级数部分和的性质:如果级数发散,则它的任一子级数也发散。
(2)级数的极限值为正无穷或负无穷。
三、级数的应用级数在数学分析、微积分等领域有着广泛的应用,其常见的应用包括:3.1 泰勒级数泰勒级数是一种数学分析中的级数,它描述了一个函数在某一点附近的性质。
泰勒级数可以帮助我们近似计算复杂函数的值,求解微分方程等问题。
3.2 幂级数幂级数是一种特殊的级数,其中每一项都是x的非负整数次幂。
幂级数和泰勒级数的区别数学知识点泰勒级数(1)区别幂级数和泰勒级数相比,泰勒级数的表示形式不仅更加简洁明了,而且还可以运用幂级数来研究函数的性质。
(2)掌握方法一个级数,如果它的幂级数展开式中,除了第一项以外,其余各项都有积分,并且它在其他各项都成立,那么就称这个级数是幂级数,否则就称为普通级数。
如果我们把这个级数按照通常的方法进行展开,则会发现每一项都不含有任何积分,所以它们都是无穷级数。
幂级数就是展开为幂级数的那些级数,在每项上都可以取的函数值为0。
从这里可以看出,“求导数”是求幂级数的和,而不是要求幂级数的和。
这里还要注意“泰勒定理”是给出的是泰勒级数的和而不是要求它们的和,它只说明我们用泰勒级数可以去求哪些值,而没有说明在什么情况下它们才成立,或者对于什么样的函数才有效。
(3)应用要点在实际问题中,如果我们要计算或推断函数的性质,往往需要先根据已知条件求出幂级数的和,然后利用幂级数和进行计算或推断。
一般地,幂级数和都可以由解析式求得。
(其实,已经求得的幂级数和也可以直接用)。
第二步:计算。
第三步:化简:先将a、 b分别表示成和的形式,再求和。
注意:我们只需要考虑积分的项,不需要考虑常数项,所以第一项的积分只须将括号内的变为括号外的即可。
第四步:积分,将a、 b的积分带入(即:再展开成级数形式),即可得到原函数f(x)。
(4)归纳小结一个幂级数,如果它在某项上存在积分,则该级数一定收敛;如果它在某项上不存在积分,则该级数一定发散。
若有n 项,且各项都不存在积分,则称该级数为无穷级数。
幂级数就是收敛的,但级数的发散问题不好研究。
总之,无论是什么级数,都可以用它的和除以它的各项来估计它的精确值,而不必把积分的结果写出来。
第五步:例题1.1:已知f(x)为幂级数,且x>3,试证: x=1.(1)(2)试探: x=2。
(1)分析:①(2)(3)可见,当x=2时,则可得到与f(x)=4和5的关系,便可知x=1.(2)化简: a=-1/5, b=-1/2。
本章节基本考点以及解题方法1.基本考点:● 级数的敛散性;● 幂级数的收敛半径和收敛区间; ● 函数展开成幂级数; ● 求幂级数的和函数;●给出其中一个级数的敛散性,判断另一个级数的敛散性;(逻辑思维比较强,需要多多总结)2.解题方法归纳:● 级数的敛散性此考点分为3种题型: (1)正项级数 比较审敛法:nn n n )12(1∑∞=+ 比较审敛法的极限形式: ))10(1(32∑∞=-+n n n n∑∞=+1)11ln(n n 分析:比值审敛法: ∑∞=•1!2n nn n n 分析:(2)交错项级数 莱布——尼兹定理:∑∞=+-111)1(n nn(3)任意项级数绝对收敛与相对收敛: 分析:注意:要学会这三种方法的综合运用!● 幂级数的收敛半径和收敛区间 此考点分为三种题型:(1)∑∞=-1)1(n n nn x (2)∑∞=--1)21(2)1(n n n n x n (3)∑∞=-11221n n n x对于(1)有:a. 利用定理2得收敛半径;b. 分析区间端点的敛散性得收敛区间; 对于(2)有: a. 令t ;b. 利用定理2得t 的收敛半径;c. 将t 的范围转化为了x 的范围,并分析区间端点的敛散性得收敛区间; 对于(3)有:只能通过“比值审敛法&绝对收敛”求其收敛区间;● 函数展开成幂级数; 此考点分为两种题型:(1)展开成x 的幂级数 (1))4(1)(x x f +=(2)x e x x f 22)(=(2)展开成)(0x x -幂级数● 求幂级数的和函数;大都是建立在7个常用函数展开式的基础之上进行分析的,通过恒等变换(变量代换,四则运算,逐项求导,逐项积分)等方法,求得展开式或和函数;难点体现在“恒等变换(变量代换,四则运算,逐项求导,逐项积分)”这个问题上,故重点讨论之;以“典型例题在恒等变换时设计到的问题”为讨论的基础:附:7个常用的函数展开式① ),(.....!1+∞-∞∈=∑∞=x x n e n nx② ),(.....!121)1(/)!12(1)1(sin 0121121+∞-∞∈+---=∑∑∞=+∞=--x x n x n x n n n n n n )(③ ),(.....)!2(1)1(cos 02+∞-∞∈-=∑∞=x x n x n n n④)1,1( (11)0-∈=-∑∞=x x x n n ⑤)1,1(......)1(11-∈-=+∑∞=x x x n n n ⑥ ]1,1(......11)1(/1)1()1ln(0111-∈+--=+∑∑∞=+∞=-x x n x n x n n n n n n ⑦ ]1,1(......11/1)1ln(101-∈+=-∑∑∞=∞=+x x n x n x n n n n● 给出其中一个级数的敛散性,判断另一个级数的敛散性;(逻辑思维比较强,需要多多总结,多以选择题为主!)做这些题目之前一定要知道的一些知识:(1)与“级数收敛的必要条件”有关的几个问题【2组4项】 对于级数∑∞=1n nu,有以下分析:若级数∑∞=1n nu收敛,则必有0lim =∞→n n u ; 若级数∑∞=1n nu发散,则k u n n =∞→lim (k 可以为0);若0lim =∞→n n u ,则∑∞=1n nu 的敛散性不确定; 若0lim ≠=∞→k u n n ,则必发散;分析:这种类型题的考点在于“正项级数”与“不确定是否为正项级数”两种情况● 对于“正项级数”,只需要以以上两种为基础进行分析,问题即可解决;对于“不确定是否为正项级数”,以上两种分析是基础,另外还需结合——“交错项级数、任意项级数”的分析方法,并结合“P-级数(很重要,它在选择题中起到的作用很”;(2)与“级数的基本性质3、4”有关的几个问题【3组】① 在两个级数∑∞=1n nu与∑∞=1n nv中,有以下分析:若一个收敛,一个发散,则有)(1∑∞=±n n nv u发散;若两者都收敛,则)(1∑∞=±n n nv u收敛;若两者都发散,则)(1∑∞=±n n nv u的敛散性不确定;② 对①反过来有:若∑∞=1n nv收敛,则∑∞=1n nu必收敛;若级数)(1∑∞=±n n nv u收敛若∑∞=1n nv发散,则∑∞=1n nu必发散;若∑∞=1n nv收敛,则∑∞=1n nu必发散;若级数)(1∑∞=±n n nv u发散若∑∞=1n nv发散,则∑∞=1n nu不确定;③ 对两个级数的乘积分析 a. 两个级数收敛 乘: nn1)1(-(收敛) / 211)1(n n -(发散) 除: 41)1(n n-与21)1(n n -(收敛) / n n 1)1(-(发散)b. 两个级数发散乘:n1(收敛) / 211n (发散) 除: n 1与211n (收敛) / n1(发散) c.一个收敛、一个发散乘:n 1与21n(收敛) / 321n 与231n (发散) 除: n 1与31n (收敛) / n 1与21n(发散)综上所述有:两个级数相乘、相除,结果的敛散性不能确定;(极限中无穷小的概念要深刻体会!) (3)级数的“绝对值、次方”产生的问题∑∞=1)(n k nu(其中0>k ,k 奇偶不分)收敛;∑∞=1n nu收敛;这是很多问题分析的基础!(4)只有当两个级数收敛时,才可以比较其和的大小! 如:若),3,2,1( =<n v u n n ,则∑∑∞=∞=≤11n n n nv u.............(错误)(5)级数的收敛域问题“收敛域的端点值是否收敛?”这个问题要好好考虑!考点体现在:通过四则运算,得到其收敛半径相同,但是这个四则运算有可能会改变端点值的敛散性,因此收敛域有可能会不同。
高数基础知识的简明总结与归纳
高数,作为数学的一个分支,是许多学科的基础。
本文将简要概述和总结高数中的一些基本概念和定理,以帮助读者更好地理解和掌握这一学科。
一、极限论
极限论是高等数学的基础,它涉及到函数的变化趋势和无穷小量的概念。
极限的定义是:对于任意给定的正数ε,总存在一个正数δ,使得当x满足|x-a|<δ时,|f(x)-A|<ε成立,其中a是x的某一取值,A是f(x)在a处的极限。
二、导数与微分
导数是函数在某一点的切线的斜率,表示函数在该点的变化率。
微分则是函数值变化的近似值。
导数在几何上可以表示曲线在某一点处的切线,也可以用于求解函数的极值。
微分法则提供了计算近似值的方法,例如计算函数的增减性、极值等。
三、积分学
积分学包括不定积分和定积分。
不定积分是求函数的原函数的过程,而定积分则是计算曲线与x轴所夹的面积。
定积分的应用非常广泛,例如计算物体的重心、求解变速直线运动的位移等。
四、多元函数微积分
多元函数微积分是高数的又一重要分支,它涉及到多个变量的函数及其极限、连续、可微、可积等概念。
其中,方向导数和梯度表示
函数在多维空间中的变化率,而多元函数的积分则涉及到重积分、曲线积分和曲面积分等。
五、无穷级数与幂级数
无穷级数是无穷多个数相加的结果,它可以用来表示数学中的一些公式和定理。
幂级数是无穷级数的一种特殊形式,它可以用来近似表示一些复杂的函数。
幂级数的收敛性和函数性质是研究幂级数的重要内容。
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
无穷级数知识点总结专升本一、概念无穷级数是由无限多个项组成的级数,其中每个项都是一个数字或者变量的表达式。
无穷级数通常用符号∑表示,其中∑表示总和,表示对所有项进行求和。
无穷级数可以是收敛的,也可以是发散的。
对于收敛的无穷级数,其和可以用极限来表示;对于发散的无穷级数,其和不存在。
二、级数的性质1.级数的部分和级数的部分和是指级数前n项的和,用Sn表示。
当n趋向无穷大时,级数的部分和就是级数的和。
当级数的部分和的极限存在时,级数收敛;当级数的部分和的极限不存在时,级数发散。
2.级数的收敛与发散级数的收敛指的是级数的部分和的极限存在,也就是级数的和存在;级数的发散指的是级数的部分和的极限不存在,也就是级数的和不存在。
3.级数的敛散性级数敛散性指的是级数的收敛性或发散性。
级数的敛散性可以通过级数的部分和的极限是否存在来判断。
4.级数的比较性级数的比较性是指通过级数的部分和与其他级数的部分和进行比较来判断级数的敛散性。
可以通过比较原则、比值原则、根值原则等方法来比较级数的敛散性。
5.级数的运算性质级数满足加法、数乘、绝对收敛、收敛性与级数重新排列等运算性质。
三、收敛级数1.正项级数对于所有项均为非负数的级数,称为正项级数。
正项级数通常采用单调有界数列的性质来判断是否收敛。
2.幂级数幂级数是形式为∑an*x^n的无穷级数,其中an为常数系数,x为自变量。
幂级数通常需要通过收敛半径来判断其收敛性。
3.级数的收敛判别法级数的收敛判别法是用来判断级数是否收敛的方法,包括比较法、审敛法、根值法、比值法、积分法等。
4.级数收敛性的应用无穷级数的收敛性可以应用于数学和物理等领域,如泰勒级数、傅立叶级数等。
四、发散级数1.发散级数的定义对于发散级数而言,其和不存在,无法通过有限项之和来表示。
发散级数可能是几何级数、调和级数、交错级数等。
2.级数的发散判别法级数的发散判别法是用来判断级数是否发散的方法,例如:项数发散法、数值发散法、微分法等。
幂级数展开式常用公式一、概述幂级数展开是微积分中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。
在实际问题中,往往需要根据实际情况来拟定幂级数展开式,以便进行进一步的分析和计算。
本文将介绍一些幂级数展开式的常用公式,以帮助读者更好地理解和应用这一重要的数学工具。
二、常见的幂级数展开式1. $e^x$的幂级数展开式可以利用泰勒公式得到$e^x$的幂级数展开式:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$这个幂级数在实际计算中有着广泛的应用,特别是在微积分和概率论中。
2. $\sin x$的幂级数展开式$\sin x$函数的幂级数展开式为:$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$3. $\cos x$的幂级数展开式$\cos x$函数的幂级数展开式为:$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$4. $\ln(1 + x)$的幂级数展开式$\ln(1 + x)$函数的幂级数展开式为:$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$5. $(1 + x)^\alpha$的幂级数展开式当$\alpha$为实数时,$(1 + x)^\alpha$的幂级数展开式为:$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots$$这个幂级数展开式在概率论和统计学中有着广泛的应用。
幂级数收敛的判别方法幂级数是数学中一个非常重要的概念,它可以用来表示很多函数。
在实际应用中,我们经常需要判断一个幂级数是否收敛。
本文将介绍几种常用的幂级数收敛的判别方法。
一、幂级数的收敛性幂级数是指形如$sum_{n=0}^{infty}a_nx^n$的无穷级数,其中$a_n$是常数,$x$是自变量。
当$x=0$时,幂级数的和为$a_0$。
当$x eq 0$时,幂级数的和可以通过求解极限$lim_{ntoinfty}S_n$来确定。
其中,$S_n=sum_{k=0}^{n}a_kx^k$是幂级数的第$n$项部分和。
如果$lim_{ntoinfty}S_n$存在,则幂级数收敛;如果不存在,则幂级数发散。
二、比值判别法比值判别法是判断幂级数收敛性的一种常用方法。
具体做法如下:首先,计算相邻两项的比值:$frac{a_{n+1}}{a_n}$。
如果这个比值的极限$lim_{ntoinfty}frac{a_{n+1}}{a_n}$存在,且小于1,则幂级数收敛;如果大于1,则幂级数发散;如果等于1,则无法确定幂级数的收敛性。
比值判别法的证明可以用到极限定义和夹逼定理,这里不再赘述。
三、根值判别法根值判别法也是判断幂级数收敛性的一种常用方法。
具体做法如下:首先,计算幂级数的通项公式的绝对值的$n$次方根:$sqrt[n]{|a_nx^n|}$。
如果这个根的极限$lim_{ntoinfty}sqrt[n]{|a_nx^n|}$存在,且小于1,则幂级数收敛;如果大于1,则幂级数发散;如果等于1,则无法确定幂级数的收敛性。
根值判别法的证明也可以用到极限定义和夹逼定理。
四、幂级数的收敛半径比值判别法和根值判别法都只能判断幂级数的收敛性,无法确定幂级数的收敛区间。
为了确定幂级数的收敛区间,我们需要引入收敛半径的概念。
幂级数的收敛半径$r$定义为使得幂级数在$x$的绝对值小于$r$时收敛,在$x$的绝对值大于$r$时发散的最大正实数$r$。
凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学:高数重要公式总结(幂级数和三角级数)考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。
凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。
斯托克斯公式凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。
考研生加油哦!凯程考研:凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。
扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。
如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。