基于小波变换的阈值图像去噪
- 格式:pptx
- 大小:853.25 KB
- 文档页数:12
2008年2月第2期电子测试E LECTRON I C TESTFeb .2008No .2几种基于小波阈值去噪的改进方法朱艳芹,杨先麟(武汉工程大学 武汉 430074)摘 要:传统小波阈值去噪分为硬阈值去噪和软阈值去噪,而在其去噪过程中,硬阈值函数在一些不连续点处有时会产生伪吉布斯现象;软阈值函数中估计的小波系数与信号的小波信号之间存在恒定偏差。
为了去除这些现象,本文提出了几种新阈值函数的改进方案。
实验结果表明,新阈值函数消噪后的视觉特性较好,并且信噪比提高,均方根误差有所降低。
从而说明这些方法的有效性。
关键词:小波变换;阈值消噪;门限规则中图分类号:TP274 文献标识码:BSeveral ne w methods based on wavelet thresholding denoisingZhu Yanqin,Yang Xianlin(W uhan I nstitute of Technol ogy,W uhan 430074,China )Abstract:The typ ical method of threshold in de 2noising has t w o kinds of ways,one of the m is hard one and the other is s oft.I n s ome cases,such as on the discontinuities points,the Gibbs phenomenon will exhibit when we use hard thresholding functi on t o re move noise of signals and s oft hresholding method als o has disadvantages .I n order t o re move the shortings,s ome ne w thresholding functi ons are p resented .The results of the experi m ent show that the visi on of de 2noising is better and the R MSE of signal has been decreased a l ot while the S NR has been increased,which indicates the methods p resented in this paper are effective .Keywords:wavelet transf or m;thresholding denoising;method of threshold0 引 言近年来,小波理论得到了迅速发展,而且由于小波具有低熵性、多分辨特性、去相关性和选基灵活性等特点,所以它在处理非平稳信号、去除图像信号噪声方面表现出了强有力的优越性。
毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。
然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。
寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。
小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。
它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。
随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。
本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。
对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。
最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法L M S和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
最后,通过仿真实验结果可以看到,该方法去噪效果显著,与硬阈值、软阈值方法相比,信噪比提高较多,同时去噪后仍能较好地保留图像细节,是一种有效的图像去噪方法。
小波基函数选择可从以下3个方面考虑。
(1)复值与实值小波的选择复值小波作分析不仅可以得到幅度信息,也可以得到相位信息,所以复值小波适合于分析计算信号的正常特性。
而实值小波最好用来做峰值或者不连续性的检测。
(2)连续小波的有效支撑区域的选择连续小波基函数都在有效支撑区域之外快速衰减。
有效支撑区域越长,频率分辨率越好;有效支撑区域越短,时间分辨率越好。
(3)小波形状的选择如果进行时频分析,则要选择光滑的连续小波,因为时域越光滑的基函数,在频域的局部化特性越好。
如果进行信号检测,则应尽量选择与信号波形相近似的小波。
小波变换与傅里叶变换的比较小波分析是傅里叶分析思想方法的发展和延拓。
自产生以来,就一直与傅里叶分析密切相关。
它的存在性证明,小波基的构造以及结果分析都依赖于傅里叶分析,二者是相辅相成的。
两者相比较主要有以下不同:(1)傅里叶变换的实质是把能量有限信号tf分解到以jwte为正交基的空间上去;而小波变换的实质是把能量有限的信号tf分解到由小波函数所构成的空间上去。
两者的离散化形式都可以实现正交变换,都满足时频域的能量守恒定律。
小波变换的硬阈值与软阈值去噪技术比较引言在数字信号处理领域,噪声是一个常见的问题,它会影响到信号的质量和可靠性。
因此,信号去噪技术一直是研究的热点之一。
小波变换是一种常用的信号分析工具,它在去噪领域有着广泛的应用。
其中,硬阈值和软阈值是两种常用的小波去噪方法。
本文将对这两种方法进行比较,并分析其优缺点。
1. 硬阈值去噪技术硬阈值去噪技术是一种基于小波变换的去噪方法。
其基本思想是将小波变换系数与一个给定的阈值进行比较,如果小波系数的绝对值小于阈值,则将其置为零,否则保留原值。
这种方法能够有效地去除信号中的噪声,但同时也会对信号的细节部分造成一定的损失。
硬阈值去噪技术的优点是简单易实现,计算速度快,适用于噪声较强的信号。
然而,由于其对信号细节的损失,可能会导致信号失真。
2. 软阈值去噪技术软阈值去噪技术是另一种基于小波变换的去噪方法。
与硬阈值不同的是,软阈值对小波系数的处理方式是将小波系数的绝对值减去一个给定的阈值,并保留正值。
这种方法能够更好地保留信号的细节信息,减少信号的失真。
软阈值去噪技术的优点是能够提供更好的去噪效果,适用于噪声较弱的信号。
然而,软阈值去噪技术的计算复杂度较高,需要更多的计算资源。
3. 硬阈值与软阈值的比较硬阈值和软阈值是两种常用的小波去噪方法,它们各有优缺点。
硬阈值去噪技术适用于噪声较强的信号,能够快速去除噪声,但可能会对信号的细节造成一定的损失。
软阈值去噪技术适用于噪声较弱的信号,能够更好地保留信号的细节信息,但计算复杂度较高。
因此,在选择使用哪种方法时,需要根据具体的应用场景和信号特点进行权衡。
4. 应用案例为了更好地说明硬阈值和软阈值的应用,我们以图像去噪为例进行分析。
在图像处理中,噪声往往会导致图像的模糊和失真。
通过对图像进行小波变换,并应用硬阈值或软阈值去噪技术,可以有效地去除图像中的噪声,并保留图像的细节信息。
在实际应用中,可以根据图像的噪声水平和需要保留的细节信息来选择合适的去噪方法。
小波阈值的图像去噪Lakhwinder Kaur Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaSavita Gupta Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaR.C.Chauhan Deppt.of CSE SLIET,Longowal Punjab(148106),India摘要这篇论文提出了一种图像去噪的自适应阈值估计方法,该方法是基于小波域中子带系数的推广高斯分布(GGD)模型。
这种方法称为:NormalShrink,它的计算更加有效并且具有自适应性。
这是因为用来阈值估计的参数要求依赖于子带数据。
阈值通过下式获得,2/yβσσ,这里σ和yσ分别是噪声的标准差和相应的噪声图像的子带标准差数据。
β是参数规模,这个参数依赖于子带大小和分解的数量。
几幅测试图像的实验结果与各种去噪方法比如维纳滤波,BayesShrink和SureShrink做比较。
为了与可能最好的阈值估计性能基准做比较,我们的对比也加入了Oracleshrink方法。
实验结果表明提出的阈值能有效的去除噪声,运行时间上性能超过SureShrink ,BayesShrink以及维纳滤波。
关键字:小波阈值,图像去噪,离散小波变换1.介绍在图像的获取与传输中,经常受到噪声的污染。
图像去噪用于去除加性噪声,同时尽大可能的保留重要的信号特征。
在最近这几年,关于小波阈值,已经有了相当数量的研究,为信号去噪而选择阈值[1],[3]-[10],[12],因为将噪声信号从图像信号中分离,小波提供了合适的基。
小波变换有很好的能量紧支,小系数表示噪声,大系数表示重要的信号特征[8]。
这些小系数可能阈值化处理而不影响图像重要的特征。
阈值化是简单的非线性技术,它是在单个小波系数上执行。
在它的许多基形式上,通过与阈值比较,每个系数阈值化处理,如果系数小于阈值,将该系数设置为零;否则该系数保留或进行修改。
基于小波变换和神经网络的图像去噪算法研究图像去噪是数字图像处理中的重要任务之一,其目的是降低图像中存在的噪声对图像质量和信息的影响。
随着数字图像的广泛应用,图像质量要求越来越高,因此图像去噪算法的研究也变得非常重要。
本文将介绍一种基于小波变换和神经网络的图像去噪算法,并对其进行研究和分析。
小波变换是一种非常有效的信号分析工具,能够同时提供时域和频域的信息。
在图像去噪中,小波变换可以将噪声和信号分开,进而实现噪声的去除。
首先,将图像进行小波分解,得到图像在不同尺度和频率上的小波系数。
然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪的效果。
最后,将处理后的小波系数进行小波反变换,得到去噪后的图像。
然而,传统的小波去噪方法在实际应用中存在一些问题。
首先,阈值选择问题。
传统的小波去噪方法需要手动选择阈值,但这对于不同图像和不同噪声类型来说是困难的。
其次,传统的小波去噪方法对信号的局部结构和纹理信息的保护较为有限,容易导致去噪后的图像出现模糊和细节损失。
为了解决传统小波去噪算法的问题,近年来研究者们引入了神经网络的方法。
神经网络能够学习到图像中的特征和结构信息,从而更好地保护图像的细节。
基于小波变换和神经网络的图像去噪算法主要包括以下几个步骤。
首先,将图像进行小波分解,并将小波系数作为输入送入神经网络。
神经网络可以是传统的前馈神经网络,也可以是卷积神经网络(CNN)。
神经网络通过学习图像中的结构和纹理信息,得到去噪后的图像的近似结果。
然后,将神经网络输出的近似结果与小波系数进行融合。
可以采用简单的加权平均或者更复杂的方法进行融合。
融合后的系数再进行小波反变换,得到最终的去噪图像。
与传统的小波去噪算法相比,基于小波变换和神经网络的算法可以更好地保护图像的细节和结构信息。
此外,为了进一步提升算法的性能,研究者们还提出了一些改进和优化的方法。
例如,结合了多尺度小波分解和多层次神经网络的去噪算法,可以更好地处理图像中的不同尺度和频率的信号。