基于小波变换的阈值图像去噪
- 格式:pptx
- 大小:853.25 KB
- 文档页数:12
2008年2月第2期电子测试E LECTRON I C TESTFeb .2008No .2几种基于小波阈值去噪的改进方法朱艳芹,杨先麟(武汉工程大学 武汉 430074)摘 要:传统小波阈值去噪分为硬阈值去噪和软阈值去噪,而在其去噪过程中,硬阈值函数在一些不连续点处有时会产生伪吉布斯现象;软阈值函数中估计的小波系数与信号的小波信号之间存在恒定偏差。
为了去除这些现象,本文提出了几种新阈值函数的改进方案。
实验结果表明,新阈值函数消噪后的视觉特性较好,并且信噪比提高,均方根误差有所降低。
从而说明这些方法的有效性。
关键词:小波变换;阈值消噪;门限规则中图分类号:TP274 文献标识码:BSeveral ne w methods based on wavelet thresholding denoisingZhu Yanqin,Yang Xianlin(W uhan I nstitute of Technol ogy,W uhan 430074,China )Abstract:The typ ical method of threshold in de 2noising has t w o kinds of ways,one of the m is hard one and the other is s oft.I n s ome cases,such as on the discontinuities points,the Gibbs phenomenon will exhibit when we use hard thresholding functi on t o re move noise of signals and s oft hresholding method als o has disadvantages .I n order t o re move the shortings,s ome ne w thresholding functi ons are p resented .The results of the experi m ent show that the visi on of de 2noising is better and the R MSE of signal has been decreased a l ot while the S NR has been increased,which indicates the methods p resented in this paper are effective .Keywords:wavelet transf or m;thresholding denoising;method of threshold0 引 言近年来,小波理论得到了迅速发展,而且由于小波具有低熵性、多分辨特性、去相关性和选基灵活性等特点,所以它在处理非平稳信号、去除图像信号噪声方面表现出了强有力的优越性。
毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。
然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。
寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。
小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。
它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。
随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。
本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。
对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。
最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法L M S和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
最后,通过仿真实验结果可以看到,该方法去噪效果显著,与硬阈值、软阈值方法相比,信噪比提高较多,同时去噪后仍能较好地保留图像细节,是一种有效的图像去噪方法。
小波基函数选择可从以下3个方面考虑。
(1)复值与实值小波的选择复值小波作分析不仅可以得到幅度信息,也可以得到相位信息,所以复值小波适合于分析计算信号的正常特性。
而实值小波最好用来做峰值或者不连续性的检测。
(2)连续小波的有效支撑区域的选择连续小波基函数都在有效支撑区域之外快速衰减。
有效支撑区域越长,频率分辨率越好;有效支撑区域越短,时间分辨率越好。
(3)小波形状的选择如果进行时频分析,则要选择光滑的连续小波,因为时域越光滑的基函数,在频域的局部化特性越好。
如果进行信号检测,则应尽量选择与信号波形相近似的小波。
小波变换与傅里叶变换的比较小波分析是傅里叶分析思想方法的发展和延拓。
自产生以来,就一直与傅里叶分析密切相关。
它的存在性证明,小波基的构造以及结果分析都依赖于傅里叶分析,二者是相辅相成的。
两者相比较主要有以下不同:(1)傅里叶变换的实质是把能量有限信号tf分解到以jwte为正交基的空间上去;而小波变换的实质是把能量有限的信号tf分解到由小波函数所构成的空间上去。
两者的离散化形式都可以实现正交变换,都满足时频域的能量守恒定律。
小波变换的硬阈值与软阈值去噪技术比较引言在数字信号处理领域,噪声是一个常见的问题,它会影响到信号的质量和可靠性。
因此,信号去噪技术一直是研究的热点之一。
小波变换是一种常用的信号分析工具,它在去噪领域有着广泛的应用。
其中,硬阈值和软阈值是两种常用的小波去噪方法。
本文将对这两种方法进行比较,并分析其优缺点。
1. 硬阈值去噪技术硬阈值去噪技术是一种基于小波变换的去噪方法。
其基本思想是将小波变换系数与一个给定的阈值进行比较,如果小波系数的绝对值小于阈值,则将其置为零,否则保留原值。
这种方法能够有效地去除信号中的噪声,但同时也会对信号的细节部分造成一定的损失。
硬阈值去噪技术的优点是简单易实现,计算速度快,适用于噪声较强的信号。
然而,由于其对信号细节的损失,可能会导致信号失真。
2. 软阈值去噪技术软阈值去噪技术是另一种基于小波变换的去噪方法。
与硬阈值不同的是,软阈值对小波系数的处理方式是将小波系数的绝对值减去一个给定的阈值,并保留正值。
这种方法能够更好地保留信号的细节信息,减少信号的失真。
软阈值去噪技术的优点是能够提供更好的去噪效果,适用于噪声较弱的信号。
然而,软阈值去噪技术的计算复杂度较高,需要更多的计算资源。
3. 硬阈值与软阈值的比较硬阈值和软阈值是两种常用的小波去噪方法,它们各有优缺点。
硬阈值去噪技术适用于噪声较强的信号,能够快速去除噪声,但可能会对信号的细节造成一定的损失。
软阈值去噪技术适用于噪声较弱的信号,能够更好地保留信号的细节信息,但计算复杂度较高。
因此,在选择使用哪种方法时,需要根据具体的应用场景和信号特点进行权衡。
4. 应用案例为了更好地说明硬阈值和软阈值的应用,我们以图像去噪为例进行分析。
在图像处理中,噪声往往会导致图像的模糊和失真。
通过对图像进行小波变换,并应用硬阈值或软阈值去噪技术,可以有效地去除图像中的噪声,并保留图像的细节信息。
在实际应用中,可以根据图像的噪声水平和需要保留的细节信息来选择合适的去噪方法。
小波阈值的图像去噪Lakhwinder Kaur Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaSavita Gupta Deptt.of CSE SLIET,Longowal Punjab(148106),IndiaR.C.Chauhan Deppt.of CSE SLIET,Longowal Punjab(148106),India摘要这篇论文提出了一种图像去噪的自适应阈值估计方法,该方法是基于小波域中子带系数的推广高斯分布(GGD)模型。
这种方法称为:NormalShrink,它的计算更加有效并且具有自适应性。
这是因为用来阈值估计的参数要求依赖于子带数据。
阈值通过下式获得,2/yβσσ,这里σ和yσ分别是噪声的标准差和相应的噪声图像的子带标准差数据。
β是参数规模,这个参数依赖于子带大小和分解的数量。
几幅测试图像的实验结果与各种去噪方法比如维纳滤波,BayesShrink和SureShrink做比较。
为了与可能最好的阈值估计性能基准做比较,我们的对比也加入了Oracleshrink方法。
实验结果表明提出的阈值能有效的去除噪声,运行时间上性能超过SureShrink ,BayesShrink以及维纳滤波。
关键字:小波阈值,图像去噪,离散小波变换1.介绍在图像的获取与传输中,经常受到噪声的污染。
图像去噪用于去除加性噪声,同时尽大可能的保留重要的信号特征。
在最近这几年,关于小波阈值,已经有了相当数量的研究,为信号去噪而选择阈值[1],[3]-[10],[12],因为将噪声信号从图像信号中分离,小波提供了合适的基。
小波变换有很好的能量紧支,小系数表示噪声,大系数表示重要的信号特征[8]。
这些小系数可能阈值化处理而不影响图像重要的特征。
阈值化是简单的非线性技术,它是在单个小波系数上执行。
在它的许多基形式上,通过与阈值比较,每个系数阈值化处理,如果系数小于阈值,将该系数设置为零;否则该系数保留或进行修改。
基于小波变换和神经网络的图像去噪算法研究图像去噪是数字图像处理中的重要任务之一,其目的是降低图像中存在的噪声对图像质量和信息的影响。
随着数字图像的广泛应用,图像质量要求越来越高,因此图像去噪算法的研究也变得非常重要。
本文将介绍一种基于小波变换和神经网络的图像去噪算法,并对其进行研究和分析。
小波变换是一种非常有效的信号分析工具,能够同时提供时域和频域的信息。
在图像去噪中,小波变换可以将噪声和信号分开,进而实现噪声的去除。
首先,将图像进行小波分解,得到图像在不同尺度和频率上的小波系数。
然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪的效果。
最后,将处理后的小波系数进行小波反变换,得到去噪后的图像。
然而,传统的小波去噪方法在实际应用中存在一些问题。
首先,阈值选择问题。
传统的小波去噪方法需要手动选择阈值,但这对于不同图像和不同噪声类型来说是困难的。
其次,传统的小波去噪方法对信号的局部结构和纹理信息的保护较为有限,容易导致去噪后的图像出现模糊和细节损失。
为了解决传统小波去噪算法的问题,近年来研究者们引入了神经网络的方法。
神经网络能够学习到图像中的特征和结构信息,从而更好地保护图像的细节。
基于小波变换和神经网络的图像去噪算法主要包括以下几个步骤。
首先,将图像进行小波分解,并将小波系数作为输入送入神经网络。
神经网络可以是传统的前馈神经网络,也可以是卷积神经网络(CNN)。
神经网络通过学习图像中的结构和纹理信息,得到去噪后的图像的近似结果。
然后,将神经网络输出的近似结果与小波系数进行融合。
可以采用简单的加权平均或者更复杂的方法进行融合。
融合后的系数再进行小波反变换,得到最终的去噪图像。
与传统的小波去噪算法相比,基于小波变换和神经网络的算法可以更好地保护图像的细节和结构信息。
此外,为了进一步提升算法的性能,研究者们还提出了一些改进和优化的方法。
例如,结合了多尺度小波分解和多层次神经网络的去噪算法,可以更好地处理图像中的不同尺度和频率的信号。
如何利用图像处理技术进行图像去噪图像去噪是图像处理领域中非常重要的一个任务。
在实际应用中,图像常常受到噪声的干扰,降低了图像的质量和信息的可读性。
因此,利用图像处理技术进行图像去噪是非常有必要的。
本文将介绍常用的图像去噪方法以及它们的优缺点。
在进行图像去噪之前,我们需要了解图像噪声的类型。
图像噪声常见的类型包括高斯噪声、椒盐噪声和泊松噪声等。
高斯噪声是指在图像中产生的随机噪声,给图像增加了随机的灰度值;椒盐噪声是指在图像中随机出现的黑白像素点;泊松噪声是指光子计数较低导致的光强起伏。
针对不同类型的噪声,我们可以采用不同的图像去噪方法进行处理。
第一种常用的图像去噪方法是基于滤波器的方法。
这类方法通过选择合适的滤波器对图像进行滤波处理,以去除噪声。
最常见的滤波器包括均值滤波器、中值滤波器和高斯滤波器等。
均值滤波器通过计算某一像素点周围邻域像素点的平均灰度值来替代当前像素的灰度值;中值滤波器则选择邻域像素点的中值作为当前像素的灰度值;高斯滤波器则根据高斯函数对邻域像素进行加权平均。
这些滤波器可以有效地去除高斯噪声和一些椒盐噪声,但对于其他类型的噪声效果较差。
第二种常用的图像去噪方法是基于小波变换的方法。
小波变换是一种多尺度分析的方法,可以将信号分解成不同频率的成分。
基于小波变换的图像去噪方法主要包括小波阈值去噪和小波包去噪。
小波阈值去噪方法通过对小波系数进行阈值处理,将较小幅度的小波系数置零,保留较大幅度的小波系数。
小波包去噪方法进一步改进了小波阈值去噪方法,可以更好地保留图像的细节信息。
基于小波变换的图像去噪方法在去除噪声的同时保持了图像的边缘和细节,具有较好的去噪效果。
第三种常用的图像去噪方法是基于深度学习的方法。
深度学习是近年来发展起来的一种强大的机器学习方法,通过构建深度神经网络模型,可以学习到图像中的噪声模式,并进行准确的去噪处理。
基于深度学习的图像去噪方法通常包括自编码器、卷积神经网络和生成对抗网络等。
基于小波变换的图像去噪算法研究第一章引言图像噪声是数字图像处理中的重要问题之一,对于特定应用,高质量的数字图像对应着一个低噪声的图像。
小波变换(Wavelet Transform)由于其时频分解和多分辨率性质,在数字图像处理领域中得到广泛使用,尤其在图像去噪领域中发挥了重要的作用。
本文主要对比分析了小波变换去噪算法的实现细节,并介绍了几种基于小波变换的图像去噪算法,包括基于阈值方法、基于局部统计和模型基础方法。
第二章小波变换的基本原理及实现2.1 小波变换的基本原理小波变换是一种将信号返回到时频域的变换方法。
相对于傅里叶变换(Fourier Transform)来说,小波变换能够提供更丰富的时间和频率变化信息,小波基函数能适应不同时间和频率的局部结构。
小波基函数的高频部分用于表示局部细节信息,而低频部分用于表示整体趋势信息。
2.2 小波变换的实现小波变换主要包括分解和重构两个过程。
在分解过程中,对于一幅大小为N×N的图像,首先将其沿着行和列进行变换,得到低频分量LL和三个高频分量LH、HL和HH。
接着将LL分量沿着行和列再次进行分解,得到LL1和三个高频分量LH1、HL1和HH1,如此递归下去。
最终可以得到一组小波系数,其中每个系数代表了对应的子图像在各自尺度下的局部变化信息。
在重构过程中,可以通过将这些小波系数进行逆变换得到一幅与原图尺寸相等的处理后的图像。
小波变换的实现可以使用快速算法,例如离散小波变换(Discrete Wavelet Transform,DWT)和整数小波变换(Integer Wavelet Transform,IWT)等。
第三章基于小波变换的图像去噪算法3.1 基于阈值的小波去噪算法阈值方法是基于小波系数的幅度分布,将系数中小于一个阈值的系数设置为零,在保留较大的小波系数的同时实现噪声抑制。
传统的阈值分解方法包括硬阈值和软阈值两种方法。
硬阈值法将小于阈值的系数设置为零,而软阈值法则是使用了一个阈值函数,将小于阈值函数的部分系数值进行平滑处理。
基于小波分析的图像去噪算法研究一、引言图像处理是数字图像处理领域的重要分支,对于图像的去噪问题一直是研究的热点和难点。
在实际的应用中,图像去噪可以提升图像的清晰度和质量,使得图像更容易被有效使用。
将小波分析应用于图像去噪问题中,可以有效地去除噪声,提高图像质量。
本文将对基于小波分析的图像去噪算法进行研究和分析。
二、小波分析基础小波分析是一种新的信号分析方法,与传统的傅里叶分析方法相比,小波分析能更好地表示信号的局部特征。
小波分析中,使用小波基函数对信号进行多分辨率分解。
小波基函数具有有限时间和无限频率的性质,因此在图像处理领域中应用十分广泛。
三、基于小波分析的图像去噪算法小波变换将图像分解成不同的频带。
高频分量对应的是图像中的细节信息,而低频分量则表示图像大部分的基础结构。
根据这一性质,基于小波分析的图像去噪算法通常分为两个主要步骤:小波变换和阈值处理。
1.小波变换小波变换将图像分解成不同的频带,每个频带对应不同的尺度。
在小波分析中,离散小波变换(DWT)是最常用的方法。
DWT可以将图像分解成多个频带,其中LL用于表示图像基础信息,HL、LH 和 HH 分别用于表示图像的水平、垂直和对角线方向的频带。
2.阈值处理在小波变换的基础上,阈值处理是去噪算法的核心步骤。
不同的阈值处理方法会使用不同的阈值来抑制噪声和细节信息。
其中,软阈值和硬阈值是最常用的两种阈值处理方法。
硬阈值将小于某个阈值的系数都置为0,而大于这个阈值的保持不变。
软阈值的作用则是将小于某个阈值的系数都置为0,而对于大于这个阈值的部分,使用某个函数进行调整,以减少降噪过程中过多的数据丢失。
四、实验结果本文使用了8个测试图像进行了实验,比较了不同去噪算法的最终效果。
实验结果表明,基于小波分析的图像去噪算法比传统的傅里叶变换等其他方法有更好的去噪效果。
同时,软硬阈值处理也是影响去噪效果的重要因素。
其中,软阈值方法能够更加准确地去除图像中的噪声,保留更多的图像细节信息。
小波变换的阈值选取与去噪效果评估方法小波变换是一种常用的信号分析方法,可以将信号分解成不同频率的子信号,从而实现信号的去噪和特征提取。
在小波变换中,阈值选取是一个重要的步骤,它决定了去噪效果的好坏。
本文将介绍小波变换的阈值选取方法,并探讨如何评估去噪效果。
一、小波变换的阈值选取方法小波变换的阈值选取方法有很多种,常用的有固定阈值法、基于统计特性的阈值法和基于小波系数分布的阈值法。
1. 固定阈值法固定阈值法是最简单的阈值选取方法,它将小波系数的绝对值与一个固定阈值进行比较,大于阈值的系数保留,小于阈值的系数置零。
这种方法简单直观,但对于不同信号的去噪效果不一致,需要根据实际情况进行调整。
2. 基于统计特性的阈值法基于统计特性的阈值法是根据信号的统计特性来选择阈值。
常用的方法有均值绝对偏差(MAD)和中值绝对偏差(MAD)。
MAD方法是通过计算小波系数的平均值和标准差来确定阈值。
具体步骤是先计算小波系数的平均值和标准差,然后将平均值加减一个倍数的标准差作为阈值。
一般情况下,取倍数为2或3可以得到较好的去噪效果。
3. 基于小波系数分布的阈值法基于小波系数分布的阈值法是根据小波系数的分布特点来选择阈值。
常用的方法有软阈值和硬阈值。
软阈值将小于阈值的系数置零,并对大于阈值的系数进行缩放。
这种方法可以保留信号的主要特征,同时抑制噪声。
硬阈值将小于阈值的系数置零,而大于阈值的系数保留。
这种方法对于信号的边缘特征保留较好,但可能会导致一些细节信息的丢失。
二、去噪效果评估方法选择合适的阈值选取方法可以实现较好的去噪效果,但如何评估去噪效果也是一个关键问题。
下面介绍两种常用的评估方法。
1. 信噪比(SNR)信噪比是一种常用的评估指标,它可以衡量信号与噪声的相对强度。
计算公式为SNR = 10 * log10(信号能量 / 噪声能量)。
当SNR值越大,说明去噪效果越好。
2. 均方根误差(RMSE)均方根误差是评估去噪效果的另一种指标。