数学建模简介及数学建模常用方法
- 格式:docx
- 大小:30.70 KB
- 文档页数:5
数学建模简介及数学建模常用方法数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题的过程。
它就像是一座桥梁,将现实世界中的复杂问题与数学的抽象世界连接起来,让我们能够借助数学的强大工具找到解决问题的有效途径。
在我们的日常生活中,数学建模无处不在。
比如,当我们规划一次旅行,考虑路线、时间和费用的最优组合时;当企业要决定生产多少产品才能实现利润最大化时;当交通部门设计道路规划以减少拥堵时,这些背后都有着数学建模的身影。
那么,数学建模具体是怎么一回事呢?数学建模首先要对实际问题进行观察和分析,明确问题的关键所在,确定需要考虑的因素和变量。
然后,根据这些因素和变量,运用数学知识建立相应的数学模型。
这个模型可以是一个方程、一个函数、一个图表,或者是一组数学关系。
接下来,通过对模型进行求解和分析,得到理论上的结果。
最后,将这些结果与实际情况进行对比和验证,如果结果不符合实际,就需要对模型进行修正和改进,直到得到满意的结果。
数学建模的过程并不是一帆风顺的,往往需要不断地尝试和调整。
但正是这种挑战,让数学建模充满了魅力和乐趣。
接下来,让我们了解一下数学建模中常用的一些方法。
第一种常用方法是线性规划。
线性规划是研究在一组线性约束条件下,如何使一个线性目标函数达到最优的数学方法。
比如说,一个工厂要生产两种产品,每种产品需要不同的资源和时间,而工厂的资源和时间是有限的,那么如何安排生产才能使利润最大呢?这时候就可以用线性规划来解决。
第二种方法是微分方程模型。
微分方程可以用来描述一些随时间变化的过程,比如人口的增长、传染病的传播、物体的运动等。
通过建立微分方程,并求解方程,我们可以预测未来的发展趋势,从而为决策提供依据。
第三种是概率统计方法。
在很多情况下,我们面临的问题具有不确定性,比如市场需求的波动、天气的变化等。
概率统计方法可以帮助我们处理这些不确定性,通过收集和分析数据,估计概率分布,进行假设检验等,为决策提供风险评估和可靠性分析。
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
数学建模知识及常用方法数学建模是一种综合运用数学知识和方法来解决实际问题的过程。
它涉及到多个学科领域,如数学、统计学、计算机科学等,并充分利用了数学模型的概念和数学方法的理论基础。
在实际应用中,数学建模被广泛应用于物理学、生物学、经济学、社会学等各个领域,为决策提供了重要的参考依据。
一、数学建模的基本步骤1.确定问题:明确问题的目标和需求,界定问题的范围和限制。
2.建立模型:根据问题需求,选择适当的数学模型,构建问题的数学描述。
3.求解模型:利用数学方法和计算工具,对模型进行求解,得到问题的解答。
4.模型验证:对解答进行分析和验证,评估模型的准确性和可靠性。
5.结果分析:根据解答结果,给出相应的结论和建议,提供决策参考。
二、数学建模的常用方法1.差分方程模型:差分方程是一类描述自然现象变化规律的数学方程,常用来建立动态系统的模型,如种群增长模型、股票价格预测模型等。
2.微分方程模型:微分方程是关于函数及其导数的方程,常用来描述变化率问题,如物理学中的牛顿第二定律、生物学中的生物变化过程等。
3.线性规划模型:线性规划是一种数学优化方法,用于解决线性约束条件下的最大化或最小化问题,广泛应用于生产计划、资源配置等方面。
4.整数规划模型:整数规划是一种将变量限制为整数的线性规划方法,主要应用于需要整数解决方案的问题,如项目选址、货物装载等。
5.动态规划模型:动态规划是一种将问题转化为一系列相互关联但具有较小规模的子问题的优化方法,通过求解子问题的最优解,得到原问题的最优解。
6.贝叶斯统计模型:贝叶斯统计是一种基于贝叶斯定理的推断统计方法,常用于根据已有的信息更新对未知情况的概率预测。
7.神经网络模型:神经网络是一种模拟人脑神经元连接方式的计算模型,通过模拟神经网络的学习和训练过程,实现对复杂模式的自动识别和预测。
8.时间序列模型:时间序列是一组按照时间顺序排列的数据,通过对时间序列数据的分析和建模,可以预测未来的趋势和变化规律,如股票市场预测、天气预报等。
数学建模模型和技巧数学建模是指将实际问题转化为数学问题,并利用数学方法进行分析和求解的过程。
数学建模模型是对问题进行抽象和形式化的表示,而数学建模技巧则是在建立数学模型和解决问题时的常用方法和技术。
以下是一些常用的数学建模模型和技巧。
一、常用数学建模模型1.优化模型:优化模型利用数学方法求解最优解,包括线性规划、整数规划、非线性规划等。
这种模型通常用于求解资源分配、生产调度、物流优化等问题。
2.统计模型:统计模型通过概率统计方法对问题进行分析和预测,包括回归分析、时间序列分析、假设检验等。
这种模型通常用于市场调研、风险评估、金融预测等问题。
3.动力学模型:动力学模型描述系统随时间变化的规律,包括微分方程模型、差分方程模型等。
这种模型通常用于研究物理过程、生态系统、经济波动等问题。
4.图论模型:图论模型利用图的概念和算法解决问题,包括最短路径、流网络、最小生成树等。
这种模型通常用于网络优化、交通规划、电路设计等问题。
5.随机模型:随机模型描述随机变量的分布和统计性质,包括随机过程、蒙特卡洛模拟等。
这种模型通常用于风险评估、信号处理、金融衍生品定价等问题。
二、常用数学建模技巧1.合理假设:在建立数学模型时,需要根据实际情况进行适当的简化和假设。
通过合理的假设,可以使模型更易求解,同时保持对原问题的关键特征进行准确描述。
2.变量选择:选择合适的变量是建立数学模型的重要一步。
需要根据问题的特点和求解的目标选择与问题相关的变量,并对它们进行合理的定义和界定。
3.数据处理:在数学建模中,经常需要处理大量的数据。
这包括数据的清洗、转换、归一化等操作,以便更好地与模型对接和求解。
4.模型求解:根据模型的数学特征,选择适当的方法和算法进行求解。
这包括常见的数值求解方法、优化算法、统计推断等技术。
5.模型评价:在得到数学模型的解后,需要对解的可行性和有效性进行评价。
通常可以利用灵敏度分析、稳定性分析等方法对模型进行评价和优化。
数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。
随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。
本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。
一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。
只有准确定义问题,才能制定合理的建模方法。
2. 收集信息:在开始建模之前,需要收集相关的信息和数据。
这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。
3. 建立模型:建立模型是数学建模的核心步骤。
根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。
4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。
通过数值计算、优化算法等方法,得到问题的解析结果或近似解。
5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。
如果模型与实际情况有出入,需要对模型进行修正和完善。
6. 结果分析:分析模型的结果,得出对问题的解释和结论。
根据结果进行决策,提出相应的对策和建议。
二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。
包括概率分布、假设检验、回归分析等技术。
2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。
常见的最优化算法包括线性规划、整数规划、动态规划等。
3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。
通过建立微分方程模型,可以预测系统的未来发展趋势。
4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。
通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。
5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。
通过图论和网络模型,可以分析复杂系统的结构和性质。
数学建模基础引言数学建模是一种将现实中的问题转化为数学形式,通过数学模型来研究和解决问题的方法。
在现代科学和工程领域中,数学建模被广泛应用于各种领域,例如经济学、物理学、生物学、工程学等等。
本文将介绍数学建模的基础知识,包括数学建模的步骤、数学模型的分类、以及常用的数学建模方法和技巧。
数学建模的步骤数学建模的步骤通常分为以下几个阶段:1.理解问题:首先需要明确问题的背景和目标,了解问题的约束条件和限制,确保对问题的理解准确和全面。
2.建立数学模型:根据问题的特点和所需求解的内容,选择合适的数学模型来描述问题。
常见的数学模型包括方程模型、优化模型、概率模型等等。
3.分析模型:对建立的数学模型进行分析,探索模型的性质和特点。
可以通过数学理论、数值方法、计算机模拟等手段来进行模型的分析。
4.模型求解:根据所选的模型和分析的结果,求解模型并得到问题的解答。
求解方法可以是解析求解、数值求解或者结合两者的混合求解方法。
5.模型验证和评估:验证所建立的数学模型是否合理和可信,并评估模型的准确性和可用性。
可以通过实际数据的比对、模型的稳定性测试等手段来验证和评估模型。
6.结果解释和应用:根据所得的模型解答,解释结果的意义和影响,并探讨解答对实际问题的应用价值。
重要的是将数学模型的结果与实际问题相对应,确保解答的可行性和可操作性。
数学模型的分类数学模型可以按照多种方式进行分类。
常见的分类方式包括:1.静态模型和动态模型:静态模型是对问题在一个特定时刻或时间段内进行分析,不考虑时间的变化;动态模型则对问题随时间的变化进行建模和分析。
2.离散模型和连续模型:离散模型是对问题中离散事件或对象进行建模,通常使用离散数学工具进行分析;连续模型则对问题中连续的变量或对象进行建模,通常使用微积分和微分方程等连续数学工具进行分析。
3.硬性约束模型和软性约束模型:硬性约束模型是对问题中严格的限制条件进行建模,不允许违反;软性约束模型则对问题中某些条件进行宽松处理,允许有一定的违反程度。
数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。
常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。
1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。
常见的线性规划问题包括生产调度问题、资源分配问题等。
2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。
非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。
3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。
动态规划广泛应用于计划调度、资源配置、路径优化等领域。
4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。
整数规划常用于离散变量的问题,如设备配置、路径优化等。
5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。
常见的图论方法包括最短路径算法、最小生成树算法等。
6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。
最优化理论在优化问题建模中起到了重要的作用。
7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。
离散数学方法在计算机科学、工程管理等领域应用广泛。
8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。
概率统计方法在决策分析、风险评估等领域起到了重要的作用。
数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。
它是数学与实际问题相结合的一种科学研究方法。
在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。
下面将介绍这些常用的数学建模方法。
1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。
线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。
线性规划常用的算法有单纯形法、内点法等。
2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。
与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。
非线性规划的求解方法包括梯度下降法、牛顿法等。
3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。
动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。
动态规划常用于求解最短路径问题、背包问题等。
4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。
数值模拟在现代科学和工程中得到广泛应用。
数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。
5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。
统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。
统计分析方法包括假设检验、方差分析、回归分析等。
除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。
不同的问题需要选用不同的数学建模方法。
为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。
数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。
在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待人们去研究、去解决。
但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。
他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。
而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。
特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。
可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。
你所能遇到的都是数学和其他东西混杂在一起的问题,不是“干净的”数学,而是“脏”的数学。
其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。
也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型。
数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。
通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究。
数学模型的另一个特征是经济性。
用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。
但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真。
所谓“模型就是模型”(而不是原型),即是该性质。
数学建模是利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
简而言之,建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模拟。
陈列在橱窗中的飞机模型外形应当像真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再像飞机,也不能算是一个好的模型。
模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号、文字和数字来反映出该地区的地质结构。
数学模型也是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。
实际问题中有许多因素,在建立数学模型时你不可能、也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。
数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具、数学方法去解答这个实际问题。
如果有现成的数学工具当然好。
如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展。
例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明。
求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的。
因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。
而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。
而在现在,要真正解决一个实际问题,离了计算机几乎是不行的。
数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢?不是。
既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的。
因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等。
如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施。
但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进。
应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型。
从这一意义上讲,可以说数学建模是一切科学研究的基础。
没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。
1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
(1)比例分析法--建立变量之间函数关系的最基本最常用的方法。
(2)代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律。
2.测试分析方法测试分析方法就是将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。
3.仿真和其他方法计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
离散系统仿真--有一组状态变量。
连续系统仿真--有解析表达式或系统结构图。
因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
12.模型假设。
在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼、简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面。
一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解。
不同的简化假设会得到不同的模型。
假设作得不合理或过分简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作。
通常,作假设的依据,一是出于对问题内在规律的认识。
二是来自对数据或现象的分析,也可以是二者的综合。
作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化,经验在这里也常起重要作用。
写出假设时,语言要精确,就象做习题时写出已知条件那样。
3.模型构成。
根据所作的假设以及事物之间的联系,利用适当的数学工具去刻画各变量之间的关系,建立相应的数学结构——即建立数学模型。
把问题化为数学问题。
要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用。
4.模型求解。
利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要做出进一步的简化或假设。
在难以得出解析解时,也应当借助计算机求出数值解。
5.模型分析。
对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等。
6.模型检验。
分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改、补充假设或重新建模,有些模型需要经过几次反复,不断完善。
7.模型应用。
所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善。
应用的方式自然取决于问题的性质和建模的目的。
1.美国大学生数学建模竞赛简介1985年在美国出现了一种叫做MCM的一年一度的大学生数学模型竞赛(1987年全称是Mathematical Competition in Modeling,1988年改全称为Mathe--matical Contest in Modeling,其缩写均为MCM)。
这并不是偶然的,在1985年以前美国只有一种大学生数学竞赛(The William Lowell Putnam mathema tical Competition,简称Putman或普特南数学竞赛),这是由美国数学协会(MAA--Mathematical Association of A merica的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。
在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。
该竞赛每年2月或3月进行。
我国自1989年首次参加这一竞赛,历届均取得优异成绩。
经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。
为使这一赛事更广泛地展开,1990年先与“中国工业与应用数学学会”后与“国家教委”联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。