初中七年级一元一次方程应用题典型例题
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米,然后甲、乙共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度×时间,可列方程:8x+6(x - (12)/(8))=285(这里x-(12)/(8)表示乙走的时间,因为甲先走了12米这段时间乙没走)。
- 化简方程得8x + 6x-9 = 285。
- 移项合并得14x=294。
- 解得x = 21。
- 所以甲出发21秒与乙相遇。
2. 一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
- 设船在静水中的速度为x千米/小时。
- 顺水速度 = 船在静水中的速度+水流速度,即(x + 3)千米/小时;逆水速度=船在静水中的速度 - 水流速度,即(x-3)千米/小时。
- 根据路程相等,可列方程2(x + 3)=3(x - 3)。
- 展开括号得2x+6 = 3x - 9。
- 移项得3x-2x=6 + 9。
- 两码头之间的距离为2×(15 + 3)=36千米。
3. 甲、乙两人在400米的环形跑道上练习跑步,甲每秒跑6米,乙每秒跑4米。
若两人同时同地同向出发,几秒后两人首次相遇?- 设x秒后两人首次相遇。
- 同向出发首次相遇时,甲比乙多跑一圈,即400米。
- 根据路程差 = 速度差×时间,可列方程(6 - 4)x=400。
- 化简得2x = 400。
- 解得x = 200。
- 所以200秒后两人首次相遇。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
【典型例题】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
二、比赛计分问题【典型例题】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
人教版七年级上册数学第3章一元一次方程应用题训练1.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价50元,乒乓球每盒定价10元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒)问:(1)用代数式表示两店购买所需的费用.(2)当需要40盒乒乓球时,通过计算,说明此时去哪家购买较为合算.(3)当购买乒乓球数为多少盒时,甲乙两家商店所需费用一样.2.某项工程,甲队单独干需10小时完成,乙队单独干则需20小时完成,丙队单独干则需30小时完成.开始时三队合作,一段时间后甲队有事离开,剩余工程由乙、丙两队合作完成,此项工程从开始到工作完成共用6小时,问甲队实际做了多少小时?3.如图,将1,2,3,…,40这40个数按照下表进行排列,现用一个Z字框(图中阴影部分)框住表中的4个数,移动该框,设框中最小的数为x.(1)请用含x的代数式表示框中4个数的和.(2)框中4个数的和可能是132吗?若能,请求出最小的数.4.将一段长为1.2千米河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24米,乙队每天整治16米,求甲、乙两队分别整治河道多少米?5.为了防治“新型冠状病毒”,学校决定为师生购买一批医用口罩.本周学校给七(1)班全体同学配备了一定数量的口罩,若每名同学发3个口罩,则多50个口罩.若每名同学发5个口罩,则少70个口罩.请问该班有多少名学生?6.某社区超市用2000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的2倍少4件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?7.在一条铁路上,有甲,乙两个站,相距408千米,一列慢车从甲站开出每小时行72千米,一列快车从乙站开出,每小时行96千米,若两车同向而行,几小时后两车相距60千米?8.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).(1)若经过这一周,该粮库存有大米88吨,求m的值,并说明星期五该粮库是运进还是运出大米,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨25元,求这一周该粮库需要支付的装卸总费用.9.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?10.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲组每天修理桌凳16套,乙组每天修理桌凳比甲多8套,甲组单独修完这些桌凳比乙组单独修完多用20天,问该中学库存多少套桌凳?11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元和40元,已知每台A型号的计算器的售价比每台B型号的计算器售价少14元,商场销售6台A型号和3台B型号计算器,可获利润120元;(1)求商场销售A种型号计算器的销售价格是多少元?(2)商场准备购进A、B两种型号计算器共70台,且所用资金为2500元,则需要购进B型号的计算器多少台?12.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?13.某公司给学校赠送了一批图书,学校决定将这批图书分发给七年级所有班级,如果每班分200本,则剩余120本,若每班分240本,则还缺120本,这个学校七年级有多少个班级?14.为了防治“新型冠状病毒”,学校决定为师生购买一批医用口罩.已知甲种口罩每盒180元,乙种口罩每盒210元,学校购买了这两种口罩共50盒,合计花费9600元,求甲、乙两种口罩各购买了多少盒?15.A,B两列火车的长分别为156m和180m,A车比B车每秒多行4m.(1)若两列火车相向而行,从相遇到全部错开,需要8s.问两车速度各是多少?(2)在(1)的条件下,若两列火车同向行驶,且B车行驶在A车前方,求A车的车头从B车的车尾开始追及到A车车尾超过B车车头需多少时间?16.聪聪同学到某校游玩时,看到运动场的宣传栏中的部分信息(如表):聪聪同学结合学习的知识设计了如下问题,请你帮忙解决:(1)从表中可以看出,负一场积分,胜一场积分;(2)某队在比完22场的前提下,胜场总积分能等于负场总积分吗?请说明理由.17.为了备战2021年体育中考,某校九年级(1)班想购买若干个篮球和排球.某文具店篮球和排球的单价之和为85元,篮球的单价是排球单价的2倍多10元.(1)求篮球和排球的单价;(2)现该文具店正在搞促销活动,所有商品均打m折销售,九年级(1)班在该文具店买了6个篮球和12个排球,共花了561元,求m的值.18.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,求两人第一次相遇的时间.19.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?20.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q 从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至点C需要多少时间?(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.。
七年级一元一次方程经典应用题(较难)1.水是生命之源,为鼓励用户节约用水,市自来水公司制定了收费规定。
某用户在1月份共交了65元的水费,问他在1月份用了多少吨水?另外,该用户在2月份应该交多少元的水费?2.整理一批图书需要60小时,如果由一个人单独完成。
现在15个人共同完成了这项工作,其中有一部分人先用了一个小时整理,然后又增加了人手。
假设每个人的工作效率相同,问这些人一共有多少人?3.公园推出了集体购票优惠的门票价目表,其中包括不同人数的票价。
如果某用户的水表有故障,每次只有60%的用水量计入实际用水量。
在2月份该用户交了43.2元的水费。
现在两个班级准备一起去公园玩,其中七(1)、七(2)两班共104人,七(1)班人数多于七(2)班,但都不超过70人。
如果两个班级分别购票,一共要支付1140元。
请问:(1)如果两个班级联合起来作为一个团体购票,比分别购票能节约多少元?(2)七(1)、七(2)两班各有多少名学生?4.某家电商场计划用9万元从生产厂家购进50台电视机,该厂家生产三种不同型号的电视机,分别为A、B、C型,出厂价分别为每台1500元、2100元、2500元。
现在商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案。
如果商场销售一台A型电视机可获利150元,销售一台B型电视机可获利200元,销售一台C型电视机可获利250元。
在同时购进两种不同型号的电视机的方案中,为了使销售时获利最多,你会选择哪种方案?5.某车间有16名工人,每人每天可以加工甲种零件5个或乙种零件4个。
其中一部分人加工甲种零件,其余的加工乙种零件。
已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元。
如果该车间这一天一共获利1440元,求这一天有多少个工人加工甲种零件。
6.某工厂计划生产一种新型豆浆机,每台豆浆机需要3个A种零件和5个B种零件。
车间每天能生产A种零件4个或B种零件30个。
人教版七年级上册数学一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如7.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.甲、乙两工程队共同承包了一段长4600米的排污管道铺设工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成230米,乙队平均每天比甲队多完成115米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?9.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.(1)如果由这两个工程队从两端同时施工,需要多少天可以铺好这条管线?(2)如果先让甲乙工程队合作先施工(3)a +天,余下的工程再由甲工程队施工(42)+a 天,恰好完成该工程,求甲工程队一共参与了多少天?10.某项工程的承包合同规定:15天内完成这项工程,否则每超过1天罚款5000元.已知甲单独做30天完成,乙单独做20天完成,为此甲、乙两工程队商定共同承包这项工程.(1)若甲、乙两工程队全程合作,多少天能完成这项工程?(2)在两工程队合作完成这项工程的75%时,甲临时有其他任务被调走,余下的工程由乙单独完成,则这项工程能否在15天内完成?请说明理由.11.一段河道治理任务由A ,B 两个工程队完成.A 工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A 工程队单独做6天后,B 工程队加入合作完成剩下的工程,问B 工程队工作了多少天?17.某工厂有甲、乙两条加工相同原材料的生产线.甲生产线加工m吨原材料需要(2m+3)小时;乙生产线加工n吨原材料需要(3n+2)小时.(1)求甲生产线加工2吨原材料所需要的时间;(2)求乙生产线8小时能加工的原材料的吨数;(3)该企业把7吨原材料分配到甲、乙两条生产线,若两条生产线加工的时间相同,则分配到甲、乙生产线的吨数分别为多少?18.一项工程甲队单独做需要15天完成,乙队单独做需要30天完成.(1)求甲、乙两队合作完成该工程的天数;(2)现甲队先单独做3天,然后剩余工程由两个工程队合作完成.甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,求最终需要分别向甲、乙两队支付工程款的钱数.(要求利用一元一次方程解决问题)19.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要_____天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?20.某工厂要制作一块广告牌,请来三名工人,已知甲单独做12天可完成,乙单独做20天可完成,丙单独做15天可完成.现在甲和乙合做了4天,余下的工作乙和丙两人合作完成,(1)余下的工作乙和丙两人合作多少天才能完成?(2)完成后,工厂支付酬金4800元,如果按各人完成的工作量计算报酬,那么应如何分配?参考答案:(2)甲中途离开了10天16.原计划36天完成任务.17.(1)7小时(2)2吨(3)分配到甲、乙生产线的吨数分别为4吨和3吨.18.(1)10天(2)最终需要向甲队支付38.5万元工程款,向乙队支付16万元工程款19.(1)2.4(2)师傅和徒弟各分225元20.(1)余下的工作乙和丙两人合作4天才能完成;(2)甲的报酬为1600元,乙的报酬为1920元,丙的报酬为1280元.。
七年级上册数学专练一元一次方程应用题(20题)1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元?(3)某饭店9月份交水费1120元,求该饭店9月份的用水量.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:m≥第一步:分发左、中、右三堆牌,每堆牌都为m张,且10;第二步:从右边一堆拿出五张,放入中间一堆;第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆.(1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)9.(2020·武钢实验学校初一月考)双十一临近,武汉掀起购物狂潮,现有甲,乙、丙三个商场开展的促销活动如下表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成下表后就可以做出选择(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动,张先生买了一件标价为630元的上衣,张先生发现竟然比没打折多付了20元钱,问丙商场先打了多少折后再参加活动(结果精确到0.01)10.(2020·江西初一期末)某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数11.(2020·山西初一期中)《夺冠》影片讲述了中国女排的奋斗历程和顽强拼搏、为国争光的感人故事.上映初期,某校为了对学生进行爱国主义教育及励志教育,计划组织所有学生及教师观看.经了解,甲、乙两家电影院的电影票单价都是30元,这两家电影院有两种不同的优惠方式.甲电影院,购买票数量不超过100张时,每张30元,超过100张时,超过的部分打八折.乙电影院,不论买多少张,每张打九折.(1)设该学校有教师学生共x人观看电影(每人买一张电影票),请用含x的式子分别表示在甲、乙两家电影院购票所需的费用.(2)若该学校有教师学生共500人观看电影(每人买一张电影票)选择哪家电影院购票更省钱,说明理由.12.(2020·内蒙古初一期末)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?13.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.14.(2020·南宁市第三十七中学初一期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示−10,点B表示10,点C表示15,我们称点A和点C在数轴上相距25个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2),P Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,,P O两点在数轴上相距的长度与,Q B两点在数轴上相距的长度相等.15.(2020·四川初一期中)小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)设中间的数为x,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.16.某市规定:每户每月用水不超过20立方米时,水费按“基本价”收费;超过20立方米时,不超过20立方米部分仍按“基本价”收费,超过20立方米部分按“调节价”收费小明今年一二月份的用水量和水费如表所示.(1)请你算一算该市水分的“基本价格”和“调节价”分别是每立方米多少钱?(2)若小明家3月份用水量为30立方米,请你算一算,3月份的水费是多少元?17.(2020·重庆巴蜀中学初一期中)列一元一次方程解应用题(两问均需用方程求解):10月14日iPhone12在各大电商平台预约销售,预售不到24小时,天猫、京东等平台的iPhone12就被抢完,显示无货.为了加快生产进度,郑州一富士康工厂连夜帮苹果手机生产iPhone12中的某AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200名工人.(1)据了解,在日常工作中,该工厂生产A型装置的人数比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需的AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?18.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.19.(2020·辉县市文昌中学初一期中)从2016年12月1日起某市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如下表所示):例:若某用户7月份的用水量为35吨,按三级计算则应交水费为:()⨯+⨯+--⨯=(元).20 1.910 2.9352010 5.996.5(1)如果小红家12月份的用水量为12吨,则需缴交水费________元;(2)如果小丽家12月份的用水量为27吨,求小丽家该月需缴交水费多少元?a ),求小明家该月应缴交水费多少元?(3)如果小明家12月份的用水量为a吨(30(用含a的代数式表示,并化简)(4)如果某月缴交水费126元,则该月的用水量为______吨.20.(2020·合肥实验学校初一期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?答案及解析1.(2020·台州市椒江区第二中学初一期中)某学校在12月份准备组织学生军训,现联系了甲、乙两家军训机构,两家军训机构报价均为200元/人,两家军训机构同时都对100 人以上的团体推出了优惠举措:甲军训机构对每位学生和20位带队老师七五折优惠:而乙军训机构是免去20位带队老师的费用,其余学生八折优惠.(1)如果设参加军训的学生共有x (x>100)人,则甲军训机构的总费用为元,乙军训机构的总费用为(用含x的代数式表示,并化简)(2)假如这个学校现组织包括20老师在内共800人,该学校选择哪一家军训机构比较优惠?请说明理由.(3)如果计划在12 月军训七天,设最中间一天的日期为x,则这七天的日期之和为(用含x的代数式表示,并化简)(4)假如这七天的日期之和为84的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)【答案】(1)150x+3000;160x;(2)甲优惠;理由见解析;(3)7x;(4)9号;21号.解:(1)甲军训机构的总费用为:200×75%×(x+20)=150x+3000;乙军训机构的总费用为:200×80%×x=160x;(2)甲优惠,利由如下:甲:150×780+3000=120000元乙:160×780=124800元∵甲<乙∴甲优惠;(3)设最中间一天的日期为x,则其余日期为x-3、x-2、x-1、x+1、x+2、x+3则这七天的日期和为:x-3+x-2+x-1+x+x+1+x+2+x+3=7x;(4)设这七天的日期之和为84a(a为正整数)令7x=84a,解得x=12a∵0<x<30∴x=12或x=24∴他们可能于12月9号或21号出发的.【点睛】本题主要考查了列代数式,弄清题意、列出相关代数式是解答本题的关键.2.(2020·辽宁大连·初一期中)某市自2020年1月起,对宾馆、饭店用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):(1)受疫情影响,某饭店7月份用水量为20立方米,则该饭店7月份需交的水费为______元;(2)某饭店8月份用水量为160立方米,则该饭店8月份应交的水费为多少元? (3)某饭店9月份交水费1120元,求该饭店9月份的用水量. 【答案】(1)92;(2)960元;(3)180立方米. (1)4.62092⨯=(元), 故答案为:92;(2)()()50 4.615050 6.51601508⨯+-⨯+-⨯,23065080=++,960=(元),答:该饭店8月份需交水费960元;(3)因为()50 4.615050 6.5880⨯+-⨯=(元),且1120880>, 所以9月份的用水量超过150立方米, 设该饭店9月份的用水量为x 立方米,由题意得:()()50 4.615050 6.581501120x ⨯+-⨯+-=, 解得180x =,答:该饭店9月份的用水量为180立方米. 【点睛】本题考查了有理数乘法与加减法的实际应用、一元一次方程的实际应用,依据题意,正确建立运算式子和方程是解题关键.3.(2020·辽宁大连·初一期中)用边长为0.5米的黑、白两种颜色的正方形瓷砖按如图所示的方式铺宽为1.5米的小路.(1)铺第5个图形用白色正方形瓷砖______块,黑色正方形瓷砖______块;(2)按照此方式铺下去,铺第n 个图形用白色正方形瓷砖______块,用黑色正方形瓷砖______块(用含n 的代数式表示);(3)若黑色正方形瓷砖每块价格25元,白色正方形瓷砖每块价格30元,若按照此方式恰好铺满12.5米长的小路,求铺满该段小路所需瓷砖的总费用.【答案】(1)12,21;(2)()22+n ,()41n +;(3)2005元. (1)第1个图形用白色正方形瓷砖的块数为()44211=+⨯-, 第2个图形用白色正方形瓷砖的块数为()64221=+⨯-, 第3个图形用白色正方形瓷砖的块数为()84231=+⨯-,归纳类推得:第n 个图形用白色正方形瓷砖的块数为()42122n n +-=+,其中n 为正整数;第1个图形用黑色正方形瓷砖的块数为()55411=+⨯-, 第2个图形用黑色正方形瓷砖的块数为()95421=+⨯-, 第3个图形用黑色正方形瓷砖的块数为()135431=+⨯-,归纳类推得:第n 个图形用黑色正方形瓷砖的块数为()54141n n +-=+,其中n 为正整数; 则铺第5个图形用白色正方形瓷砖的块数为25212⨯+=,黑色正方形瓷砖的块数为45121⨯+=,故答案为:12,21;(2)由(1)已知:铺第n 个图形用白色正方形瓷砖()22+n 块,用黑色正方形瓷砖()41n +块,故答案为:()22+n ,()41n +;(3)由题意得:()()410.50.5 1.512.522n n +⨯⨯=+⨯⎡⎤⎣⎦+, 解得12n =,铺满该段小路所需瓷砖的总费用为()()2541302216085n n n +++=+, 则当12n =时,1608516012852005n +=⨯+=(元), 答:铺满该段小路所需瓷砖的总费用为2005元. 【点睛】本题考查了列代数式表示图形的规律型问题、整式的化简求值、一元一次方程的应用等知识点,观察图形,正确归纳类推出一般规律是解题关键.4.阅读理解:若、、A B C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是,A B ()的好点.例如,如图1,点C 是,A B ()的好点:点B 是,D C ()的好点.(1)如图2,M N 、为数轴上两点,点M 所表示的数为2-,点N 所表示的数为4.在数轴上,N M ()的好点所表示的数是__________.(2)如图3,A B 、为数轴上两点,点A 所表示的数为20-,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以2个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P A 、和B 中恰有一个点为其余两点的好点?【答案】(1)0;(2)当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点.解:(1)设所求的数为x ,根据题意得:()422x x -=+,解得:0x =,∴所求的数为0; 故答案为0;(2)设点P 表示的数为y ,则有:①当点P 为,A B 【】的好点,由题意得:()20240y y +=-,解得:20y =,∴()4020210t =-÷=s ;②当P 为,B A 【】的好点,由题意得:()40220y y -=+,解得y=0,∴()400220t s =-÷=;③当B 为,A P 【】的好点,由题意得: ()()4020240y --=-,解得:10y =,∴()4010215t s =-÷=;④当A 为,B P 【】的好点,由题意得:()()4020220y --=+,解得:10y =,与③相同;综上所述:当t 的值为10或15或20时,P A 、和B 中恰有一个点为其余两点的好点. 【点睛】本题主要考查数轴上的动点问题及一元一次方程的应用,熟练掌握数轴上的动点问题及一元一次方程的应用是解题的关键.5.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数. 【答案】(1)15;(2)15或13;(3)点P 表示的数为18,点Q 表示的数为18. (1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒),故答案为:15;(2)由题意,分以下六种情况: ①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -, 点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去; ③当点P 在BO ,点Q 在CO 时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,不在BO上,不符题设,舍去;④当点P、Q相遇时,点P、Q均在BC上,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,4174t t∴-=-,解得215t=,此时点P表示的数为15,点Q表示的数为15,均符合题设;⑤当点P在OC,点Q在OB时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为4941742t t⎛⎫--=-⎪⎝⎭,点P、Q到原点的距离相同,()41740t t∴-+-=,解得133t=,此时点P表示的数为13,点Q表示的数为13-,均符合题设;⑥当点P在OC,点Q在BA时,点P表示的数为6142t t⎛⎫-+-=-⎪⎝⎭,点Q表示的数为410128224t t⎛⎫----=-⎪⎝⎭,点P、Q到原点的距离相同,()4820t t∴-+-=,解得4t=,此时点Q表示的数为0,不在BA上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=,∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18. 【点睛】本题考查了数轴、一元一次方程的几何应用等知识点,结合数轴的定义,正确分情况讨论,并建立一元一次方程是解题关键.6.(2020·安徽初一期中)李老师在课外活动中做了一个有趣的游戏小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌都为m 张,且10;m ≥ 第二步:从右边一堆拿出五张,放入中间一堆; 第三步:从左边一堆拿出7张,放人中间一堆;第四步:右边一堆有几张牌,就从中间一堆拿几张牌放入右边一堆. (1)填写下表中的空格:(2)如若第四步完成后,右边一堆牌的张数恰好是左边一堆牌的张数的3倍,试求第一步后,每堆牌各有多少张?【答案】(1)5m +;12m +;17;210m -;见解析;(2)每堆牌分别是11张、16张、6张解:()1第二步后中间牌的张数为:5m + 第三步后中间牌的张数为: 5712m m ++=+ 第四步后中间的张数为:()()12 517m m +--= 右边的牌数为:()55)2(10m m m -+-=-,()2由题意可知:2103( 7)m m -=-解得:11m =,第二步后左边的牌数为: 11m =, 中间的牌数为:511516m +=+=, 右边的牌数为:51156m -=-=.答:第一步后,每堆牌分别是11张、16张、6张. 【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的加减是解题的关键. 7.(2020·江苏初一期中)如图,数轴上有三个点A ,B ,C ,表示的数分别是-7,-1,1.(1)若要使A ,B 两点的距离与C ,B 两点距离相等,则可将点B 向左移动______个单位长度;(2)若动点P ,Q 分别从点A 、点B 出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R 从点C 出发,以每秒1个单位长度的速度向右匀速运动,点P ,Q ,R 同时出发,设运动时间为t 秒.①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值:若不存在,请说明理由;②若动点Q 到达点A 后,速度变为每秒7个单位长度,继续向左运动,当t 为何值时,点P 与点Q 距离3个单位长度?【答案】(1)2;(2)①16d t =+,242d t =+,存在,4m =;②t 为113或173时,点P 与点Q 距离3个单位长度 解:(1)由题意得:AC=8. ∵AC=AB+BC , ∴当AB=BC 时,AB=4.设向左移动后的点B 表示的数为x , 则AB=x-(-7)=4,解得x=-3, ∵向左移动前点B 表示的数为-1, ∴点B 向左移动了2个单位长度. 故答案为:2.(2)①由题意得:经过时间t 秒点P 向左移动了4t 个单位长度,点Q 向左移动了3t 个单位长度,点R 向右移动了t 个单位长度,∴经过时间t 后点P 在数轴上表示的数为-7-4t ,点Q 在数轴上表示的数为-1-3t ,点R 在数轴上表示的数为1+t .∴113(74)6d t t t =-----=+21(13)42d t t t =+---=+.∴()()()12642462md d m t t m t m -=+-+=-+-.∴当40m -=,即4m =时,12md d -的值不随t 的变化而改变. (3)解:∵AB=6,∴点Q 到达A 点的时间为623t ==(秒). ∴当t>2时,点Q 向左移动了6+7(t-2)=7t-8个单位长度. ∴经过时间t 后点Q 在数轴上表示的数为-1-(7t-8)=-7t+7. 由(2)①可得:经过时间t 后点P 在数轴上表示的数为-7-4t . ∴ 777()1443P t t t Q -+--=-=- . 当PQ=3,即143t -=3时, 可得:14-3t=3或3t-14=3,解得113t =或173t =. 综上所述,t 为113或173时,点P 与点Q 距离3个单位长度.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把数和形结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想8.(2020·湖北初一期中)(问题背景)在数轴上,点A 表示数a 在原点O 的左边,点B 表示数b 在原点O 的右边,如图1所示,则有:①0a b <<;②线段AB 的长度b a =-(问题解决)点M 、点N ,点P 在数轴上的位置如图2所示,三点对应数分别为5,3,t t t +-①线段MN 的长度为②若点Q 为线段MN 的中点,则点Q 表示的数是 (用含t 的式子表示); ③化简535t t t t +++-+--(关联运用)①已知:点E 、点F 、点S 、点T 在数轴上的位置如图3所示,点T 对应数为m ,点S 对应数为3m -,若定长线段EF 沿数轴正方向以每秒x 个单位长度匀速运动,经过原点O 需要1秒,完全经过线段ST 需要2秒,求x 的值;②已知p q <,当式子33||x x p p x q x q -++-+-+--取最小值时,相应的x 的取值范围是 ,式子的最小值是 .(用含,p q 的式子表示)【答案】【问题解决】①8;②t+1;③13;【关联运用】①3;②,226p x q q p ≤≤-+ 解:【问题解决】①MN=(t+5)-(t -3)= t+5-t+3=8; 故答案为:8; ②点Q 表示的数是5312t t t ++-=+,故答案为:t+1;③由题意知:0t <,30t -<,50t +>, ∴30t ->,50t --<,∴原式()()()535t t t t =-+++-++535t t t t =-+++-++=13; 【关联运用】①点T 对应数为m 、点S 对应数为3m -,3ST ∴=,设EF n =个单位长度, 则有:312n n +=,解得3n =,31nx ∴==; ②当数x 在数p 与数q 之间时,=p x q x x p q x q p +-+-=---,当数x 在数p 的左边时,=22x p x q x q p q q x p p p x +-+-=-+-->--,。
《一元一次方程》应用题分类练习(三)一.销售问题1.某服装店购进A,B两种新式服装,按标价售出后可获得利润1600元,已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如表所示:(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润比按标价出售少收入多少元?2.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?3.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?4.武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?5.一种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件部分 2.6元/件超过100件不超过300件部分 2.2元/件超过300件部分2元/件(1)若买100件花元,买300件花元;买380件花元;(2)小明买这种商品花了568元,列方程求购买这种商品多少件?(3)若小明花了n元(n>260),恰好购买0.45n件这种商品,求n的值.二.配套问题6.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?7.星光服装厂接受生产一些某种型号的学生服的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?8.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?9.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?10.用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?三.相遇与追击问题11.甲、乙两人同时从A地出发去25km远的B地,甲骑车,乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3h.(1)若设乙的速度为xkm/h,则甲的速度为km/h,甲遇见乙时,乙走的路程可以表示为km,甲走的路程可以表示为km.(2)两人的速度分别是多少?(请用方程来解决问题)12.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?13.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?14.已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置;(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?15.小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B 地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?四.年龄问题16.古希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)儿子死时丢番图的年龄.17.今年小李的年龄是他爷爷年龄的五分之一,小李发现:12年之后,他的年龄变成爷爷的年龄三分之一.求小李爷爷今年的年龄.参考答案1.解:(1)设A种服装购进x件,则B种服装购进2x件,(100﹣60)x+2x(160﹣100)=1600,解得:x=10,∴2x=20,答:A种服装购进10件,B种服装购进20件;(2)打折后利润为:10×(100×0.8﹣60)+20×(160×0.7﹣100)=200+240=440(元),少收入金额为:1600﹣440=1160(元),答:服装店的利润比按标价出售少收入1160元.2.解:(1)设第一次购进乙种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第一次购进甲种商品200件,乙种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元.(3)方法一:设第二次乙种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第二次乙商品是按原价打9折销售.方法二:设第二次乙种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第二次乙商品是按原价打9折销售.方法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第二次乙商品是按原价打9折销售.3.解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.4.解:(1)∵甲种服装每件进价500元,售价800元,∴每件甲种服装利润率为=60%.∵乙种服装商品每件售价1200元,可盈利50%.∴乙种服装每件进价为=800(元),故答案为:60%,800;(2)设甲种服装进了x件,则乙种服装进了(40﹣x)件,由题意得,500x+800(40﹣x)=27500,解得:x=15.商场销售完这批服装,共盈利15×(800﹣500)+25×(1200﹣800)=14500(元).答:商场销售完这批服装,共盈利14500元.(3)设打了y折之后再参加活动.①打折后价格满2000元少于3000元=3200﹣3×500+20.解得:y=8.5.②打折后价格满1000元少于2000元,解得y=6.9(不合题意,舍去).③打折后价格不满1000元3200×,解得y=5.3(不合题意,舍去).答:先打八五折再参加活动.5.解:(1)买100件花:2.6×100=260(元)买300件花:2.6×100+2.2×200=700(元)买380件花:2.6×100+2.2×200+2×80=860(元)故答案为:260,700,860(2)设购买这种商品x件因为花费568<700,所以购买的件数少于300件.260+2.2(x﹣100)=568解得:x=240答:购买这种商品240件(3)①当260<n≤700时260+2.2(0.45n﹣100)=n解得:n=4000(不符合题意,舍去)②当n>700时700+2(0.45n﹣300)=n解得:n=1000综上所述:n的值为10006.解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.7.解:设做上衣需要xm,则做裤子为(750﹣x)m,故可做上衣×2,做裤子×3,由题意得,=750﹣x,解得:x=450,答:用450m做上衣,300m做裤子恰好配套.=300(套),因此共做300套.8.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.9.解:设安排x人生产长方形铁片,则生产圆形铁片的人数为(42﹣x)人,由题意得:120(42﹣x)=2×80x,去括号,得5040﹣120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42﹣18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.10.解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.11.解:(1)若设乙的速度为xkm/h,则甲的速度为3xkm/h,甲遇见乙时,乙走的路程可以表示为3xkm,甲走的路程可以表示为(3﹣)×3x=7xkm.(2)7x+3x=25×2,10x=50,x=5,3x=15.答:甲的速度是15千米/小时,乙的速度是5千米/小时.故答案为:3x,3x,7x.12.解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.13.解:设快车开出后x小时与慢车相遇.由题意得:50(1+x)+75x=275,解得:.答:快车开出后小时与慢车相遇.14.解:(1)设x秒后两人首次相遇,依题意得到方程4x+6x=100.解得x=10.甲跑的路程=4×10=40米,答:10秒后两人首次相遇,此时他们在直道AB上,且离B点10米的位置;(2)设y秒后两人再次相遇,依题意得到方程4y+6y=200.解得y=20.答:20秒后两人再次相遇;(3)第1次相遇,总用时10秒,第2次相遇,总用时10+20×1,即30秒,第3次相遇,总用时10+20×2,即50秒,第100次相遇,总用时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160米,此时甲在AD弯道上.15.解:设小刚的速度为xkm/h,则相遇时小刚走了2xkm,小强走了(2x﹣24)km,由题意得,2x﹣24=0.5x,解得:x=16,则小强的速度为:(2×16﹣24)÷2=4(km/h),2×16÷4=8(h).答:两人的行进速度分别是16km/h,4km/h,相遇后经过8h小强到达A地.16.解:设丢番图的寿命为x岁,由题意得:x+x+x+5+x+4=x,解得:x=84,而×84+×84+×84+5=38,即他38岁时有了儿子.他儿子活了x=42岁.84﹣4=80岁.答:丢番图的寿命是84岁;丢番图开始当爸爸时的年龄是38;儿子死时丢番图的年龄是80岁.17.解:设爷爷今年的年龄是x岁,则今年小李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.。
列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该对战平机场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
则甲仓原有大米多少t?5.甲、乙两人各有钱若干元,若甲给乙5元,则甲、乙两人的钱数相等;若乙给甲40元.则甲的钱数是乙剩下的4倍,甲原有的钱数多少?6.41人参加运土劳动,有30根扁担,要安排多少人抬、多少人挑,可使扁担和人数相配不多不少?7.某旅行团外出旅行,如果每辆汽车坐45人,那么有10人没有座位;如果每辆汽车坐60人,那么空出一辆车,求有多少辆汽车?8.某工地调来72人挖土和运土,已知3人挖的土1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工.9.用绳量井深,三折而量,绳长比井深多2 m,四折而量,绳长比井深少1 m,求绳子长?井深?10.有两根绳子,第一根长110m,第二根绳长80m,两根绳子剪去相同的长度后,第一根绳子的长度是第二根绳子的3倍,求每根绳子剪掉多少米?11.一辆翻斗车向工地运送一堆石子,第一天运了这对石子的1/3还多2吨,第二天运了剩下的1/2少1吨,这时还剩下38吨石子没运完,这对石子原有多少吨?12.某企业原来管理人员与营销人数之比为3:2,总人数为180人,为了扩大市场,从管理人员中抽调多少人参加营销工作,就能使营销人员人数是管理人员人数的2倍?13.把一些图书分给某班学生阅读,如果每人分3本,则余20本;如果每人分4本,则还缺25本,这个班有多少学生?14.甲、乙、丙三队合修一条公路,计划出280人,如果甲队人数是乙队人数的一半,丙队人数是乙队的2倍,问三队各有多少人?15.某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓15个或螺帽10个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽配套?(每个螺栓配两个螺帽)16.爷爷与孙子下棋,爷爷赢1盘记1分,孙子赢1盘记3分,下了8盘后两人得分相等,他们各赢了多少盘?17.某校七年级选出男生的和12名女生参加数学竞赛,余下的男生人数恰好是所余下的女生人数的2倍.已知该年级共有学生156人,问男生、女生各有多少人?18.甲工厂有某种原料120t,乙工厂有同样原料96t,甲厂每天用原料15t,乙厂每天用原料90 t,问多少天后,两厂剩下的原料相等?19.有桔子、梨、苹果三种水果若干,梨的个数是桔子个数的4/5,苹果个数是桔子个数的2/3,梨的个数比苹果多2个,问筐内三种水果共有多少个?20.某沿海发达镇2006年的人均收人是16000元,比2004年的人均收入翻两番还多2000元,该镇2004年人均收人多少元?21.李大爷到商店购鞋,仅知道自己的老尺码是43码,而不知道自己应穿多大的新鞋号,他记得老尺码加上一个数后折半计算即为新鞋号,由于他儿子鞋号的新老尺码都是整数且容易记住,因而他知道儿子穿鞋的老尺码是40号,新鞋号是25号,现在请你帮助李大爷计算一下他的新鞋号是多少?22.某种中药含有甲、乙、丙、丁四种草药成分,这四种成分的质量比为0.7:1:2:4.7,现要配制这种中药2100 g,四种草药分别要多少克?23.阅读下列材料,并交流体会.诗仙李白本性嗜酒,豪放、旷达,向有斗酒诗百篇的美誉,为唐代‘饮中八仙’之一,民间流传李白买酒歌谣,是一道有趣的数学问题:李白街上走,提壶去买酒;遇店加一倍,见花喝一斗;三遇店和花,喝完壶中酒,试问壶中原有多少酒?24.小明和小颍同学在课多外学习中,用20张白卡纸做包装盒,,每张白卡纸可以做盒身2个或者做盒底盖3个。
用一元一次方程解应用题典型例题荟萃1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:(1)甲每天生产某种零件80个,3天能生产个零件。
《一元一次方程:销售问题》应用题【基本知识】(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.(6)利润额=成本价×利润率;售价=成本价+利润额;新售价=原售价×折扣1、小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.图641--【解】设小明上次购买书籍的原价是x元,由题意,得0.82012x x+=-,解得160x=.因此,小明上次所买书籍的原价是160元,2、某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[分析]通过列表分析已知条件,找到等量关系式【解】设标价是x 元,80%604060100x -=解之:x =105 优惠价为),(8410510080%80元=⨯=x 3、 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元【解】设进价为x 元,80%x (1+40%)—x =15,x =125 答:进价是125元。
4、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 【解】设至多打x 折,根据题意有1200800800x -×100%=5% 解得x =0.7=70%答:至多打7折出售.5、一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?【解】设成本为x元,则售价为x(1+50%)×80%,(获利28元,即售价-成本=28元),则x(1+50%)×80%-x=28解得x=140元。
一元一次方程解应用题典型例题
1、分配问题:
例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?
变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?
变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?
2、匹配问题:
例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?
3、利润问题
(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.
变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.
(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________。
变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.
变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.
变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15。
2%,这种商品每件标价是多少?
变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?
变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?
变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?
4、工程问题:
(1)甲每天生产某种零件80个,3天能生产个零件。
(2)甲每天生产某种零件80个,乙每天生产某种零件x个.他们5天一共生产个零件。
(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产个零件。
(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的。
变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。
甲乙合做,需几小时完成这件工作?
变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成.若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?
变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
变式4:整理一批数据,有一人做需要80小时完成。
现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?
5、计分问题:
在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?
变式:在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛。
竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分。
⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?
⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.
6、收费问题:
例题1、某航空公司规定:一名乘客最多可免费携带20kg的行李,超过部分每千克按飞机票价的1。
5%购买行李票,一名乘客带了35kg的行李乘机,机票连同行李票共计1323元,求这名乘客的机票价格。
例题2
(1
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
小明家9
例题3、某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠.
(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)7、有关数的问题:
例题1、有一列数,按一定规律排列成1,—3,9,—27,81,-243,···.其中某三个相邻数的和是—1701,这三个数各是多少?
例题2、三个连续奇数的和是327,求这三个奇数.
变式1:三个连续偶数的和是516,求这三个偶数。
变式2:如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?
例题3、一个两位数,十位上的数字与个位上的数字之和是7,如果把这个两位数加上45,那么恰好成为个位上数字与十位上数字对调后组成的两位数,试求这个两位数。
8、日历问题:
例题1、在某张月历中,一个竖列上相邻的三个数的和是60,求出这三个数。
变式1:在某张月历中,一个竖列上相邻的四个数的和是50,求出这四个数.
变式2:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?
变式3:爷爷的生日那天的上、下、左、右4个日期的和为80,你能说出我爷爷的生日是几号吗?
9、行程问题:
例题1、(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/小时,乙的速度为45千米/小时。
(1)经过多少时间两人相遇?
(2)相遇后经过多少时间乙到达A地?
变式:甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
出发后经3 小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地。
问甲、乙行驶的速度分别是多少?
例题2、(追及问题)市实验中学学生步行到郊外旅行.(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。
前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)两队何时相距3千米?
(4)两队何时相距8千米?
变式1:甲,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。
甲用多少时间登山?这座山有多高?
变式2:甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人均匀速前进.已知两人上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。
求A,B两地之间的距离.
例题3、(环型跑道问题)一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。
(1)若两人同时同地背向而行,几分钟后两人首次相遇?变式:几分钟后两人二次相遇?
(2)若两人同时同地同向而行,几分钟后两人首次相遇?又经过几分钟两人二次相遇?
例题4、(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?
变式:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。
例题5、(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?
变式1:一列火车匀速行驶,经过一条长300m的隧道需要20秒的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,根据以上数据,你能求出火车的长度?
变式2:在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?。