电化学原理-(李狄-著)北航出版社-课后5-9章习题参考答案
- 格式:docx
- 大小:550.57 KB
- 文档页数:15
电化学原理思考题答案-北航李荻版2.为什么不能测出电极的绝对电位?我们平常所用的电极电位是怎么得到的?答:电极电位是两类导体界面所形成的相间电位,相间电位中的内电位是无法直接测量的,故无法直接测出电极的绝对电位,我们平常所用的电极电位都是相对电极电位。
不对,虽然有电位差,但是没有电流通过,所以不能转化为电能。
17、描述腐蚀原电池的特点所在。
①阴、阳极区肉眼可分或不可分,或交替发生;②体系不稳定? 稳定,腐蚀过程是自发反应;③只要介质中存在氧化剂 (去极化剂),能获得电子使金属氧化,腐蚀就可发生;④腐蚀的二次产物对腐蚀影响很大;⑤电化学腐蚀离不开金属/电解质界面电迁移,电子由低电位金属或地区传荷到电位高的金属或地区,再转移给氧化剂;⑥腐蚀电池包括阴极、阳极、电解质溶液和电路四部分,缺一不可;⑦阴极、阳极反应相对独立,但又必须耦合,形成腐蚀电池;⑧ia=ic ,无净电荷积累;⑨腐蚀电池不对外作功,只导致金属腐蚀破坏的短路原电池。
原电池和电解池1.原电池和电解池的比较:装置实例原电池电解池原理形成条件使氧化还原反应中电子作定向移动,从而形成电流。
这种把化学能转变为电能的装置叫做原电池。
①电极:两种不同的导体相连;②电解质溶液:能与电极反应。
使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程叫做电解。
这种把电能转变为化学能的装置叫做电解池。
①电源;②电极(惰性或非惰性);③电解质(水溶液或熔化态)。
非自发的氧化还原反应由外电源决定:阳极:连电源的正极;阴极:连电源的负极;阴极:Cu2+ +2e- = Cu (还原反应)阳极:2Cl--2e-=Cl2↑ (氧化反应)电源负极→阴极;阳极→电源正极电源正极→阳极;阴极→电源负极电能→化学能①电解食盐水(氯碱工业);②电镀(镀铜);③电冶(冶炼Na、Mg、Al);④精炼(精铜)。
电化腐蚀不纯金属,表面潮湿因原电池反应而腐蚀有电流产生电化腐蚀>化学腐蚀使较活泼的金属腐蚀析氢腐蚀水膜酸性较强 2H+ + 2e-==H2↑ Fe -2e-==Fe2+ 发生在某些局部区域内电镀受直流电作用用电解的方法在金属表面镀上一层金属或合金阳极 Cu -2e- = Cu2+ 阴极Cu2++2e- = Cu 反应类型自发的氧化还原反应由电极本身性质决定:电极名称正极:性质较不活泼的电极;负极:性质较活泼的电极。
电化学原理第一章习题答案1、解:2266KCl KCl H O H O 0.001141.31.010142.31010001000c K K K K cm 11λ−−−−×=+=+=+×=×Ω溶液 2、解:E V Fi i =λ,FE V i i λ=,,, 10288.0−⋅=+s cm V H 10050.0−⋅=+s cm V K 10051.0−⋅=−s cm V Cl 3、解:,62.550121,,,,2−−⋅Ω=−+=eq cm KCl o HCl o KOH o O H o λλλλ2O c c c ,c 1.004H H +−====设故,2,811c5.510cm 1000o H O λκ−−−==×Ω4、(1)121,,Cl ,t t 1,t 76.33mol (KCl o KCl o Cl cm λλλλλ−−−−+−+−=++=∴==Ω⋅∵中)121121121,K ,Na ,Cl 73.49mol 50.14mol 76.31mol (NaCl o o o cm cm cm λλλ++−−−−−−−=Ω⋅=Ω⋅=Ω⋅同理:,,中)(2)由上述结果可知: 121Cl ,Na ,121Cl ,K ,mol 45.126mol 82.142−−−−⋅Ω=+⋅Ω=+−+−+cm cm o o o o λλλλ,在KCl 与NaCl 溶液中−Cl ,o λ相等,所以证明离子独立移动定律的正确性;(3) vs cm vs cm u vs cm u F u a o o l o l o i o /1020.5,/1062.7,/1091.7,/24N ,24K ,24C ,C ,,−−−×=×=×==++−−λλ5、解:Cu(OH)2== Cu 2++2OH -,设=y ;2Cu c +OH c −=2y 则K S =4y 3因为u=Σu i =KH 2O+10-3[y λCu 2++2y λOH -]以o λ代替λ(稀溶液)代入上式,求得y=1.36×10-4mol/dm 3所以Ks=4y 3=1.006×10-11 (mol/dm 3)36、解: ==+,令=y ,3AgIO +Ag −3IO Ag c +3IO c −=y ,则=y S K 2,K=i K ∑=+(y O H K 2310−+Ag λ+y −3IO λ)作为无限稀溶液处理,用0λ代替,=+y O H K 2310−3AgIO λ则:y=43651074.1104.68101.11030.1−−−×=××−×L mol /;∴= y S K 2=3.03810−×2)/(L mol 7、解:HAc o ,λ=HCl o ,λ+NaAc o ,λ-NaCl o ,λ=390.7,121−−⋅Ωeq cm HAc o ,λ=9.02121−−⋅Ωeq cm ∴α0/λλ==0.023,==1.69αK _2)1/(V αα−510−×8、解:由欧姆定律IR=iS KS l ⋅=K il,∵K=1000c λ,∴IR=1000il cλ⋅=V 79.05.0126101010533≈××××− 9、解:公式log ±γ=-0.5115||||+Z −Z I (设25)C °(1)±γ=0.9740,I=212i i z m ∑,I=212i i c z ∑,=()±m ++νm −−νm ν1(2)±γ=0.9101,(3)±γ=0.6487,(4)±γ=0.811410、解:=+H a ±γ+H m ,pH=-log =-log (0.209+H a 4.0×)=1.08电化学原理第二章习题答案1、 解:()+2326623Sb O H e Sb H O ++++ ,()−236H H +6e + ,电池:2322323Sb O H Sb H O ++解法一:00G E nF ∆=−83646F =0.0143V ≈,E=+0E 2.36RT F 2232323log H Sb O Sb H OP a a a ==0.0143V0E 解法二:0602.3 2.3log log 6Sb Sb H H RT RT a a F Fϕϕϕ+++=+=+; 2.3log H RTa Fϕ+−=∴000.0143Sb E E ϕϕϕ+−=−===V2解:⑴,(()+22442H O e H O +++ )−224H H +4e + ;电池:22222H O H O +2220022.3log 4H O H O P P RT E E E Fa =+= 查表:0ϕ+=1.229V ,0ϕ−=0.000V ,001.229E V ϕϕ+−∴=−= ⑵视为无限稀释溶液,以浓度代替活度计算()242Sn Sn e ++−+ ,(),电池:32222Fe e Fe ++++ 23422Sn Fe Sn Fe 2+++++ +23422022.3log 2Sn Fe Sn Fe C C RT E E F C C ++++=+=(0.771-0.15)+220.05910.001(0.01)log 20.01(0.001)××=0.6505V ⑶(),,(0.1)Ag Ag m e +−+ ()(1)Ag m e Ag +++ (1)(0.1)Ag m Ag m ++→电池:(1)0(0.1)2.3log Ag m Ag m a RT E E F a ++=+,(其中,=0) 0E 查表:1m 中3AgNO 0.4V γ±=,0.1m 中3AgNO 0.72V γ±=, 2.310.4log0.0440.10.72RT E V F×∴==× 3、 解:2222|(),()|(),Cl Hg Hg Cl s KCl m Cl P Pt ()2222Hg Cl Hg Cl e −−++ ,()222Cl e Cl −++ ,222Hg Cl Hg Cl 2+ 电池:222200002.3log 2Cl Hg Hg Cl P a RT E E E F a ϕϕ+−=+==−∵O 1.35950.2681 1.0914(25C)E V ,∴=−=设 由于E 与无关,故两种溶液中的电动势均为上值Cl a −其他解法:①E ϕϕ+=−−0,亦得出0E ϕϕ+=−−②按Cl a −计算ϕ+,查表得ϕ甘汞,则E ϕϕ+=−甘汞 4、 ⑴解法一:23,(1)|(1)()H Pt H atm HCl a AgNO m Ag +=()222H H e +−+ 222,()Ag e Ag +++ g ,2222H Ag H A ++++ 电池:有E ϕϕϕ+−=−=+,02.3log()AgAgAg RTE m Fϕγ++±∴=−。
电位法及永停滴定法思考题和习题1、解释下列名词:相界电位、液接电位、不对称电位、碱差和酸差。
相界电位:两个不同物相接触的界面上的电位差。
液接电位:两个组成或浓度不同的电解质溶液相接触的界面间所存在的微小电位差。
不对称电位:当玻璃膜内外溶液H +浓度或pH 值相等时,从前述公式可知,M =0,但实际上M 不为0,仍有1~3 mV 的电位差碱差:当测定较强碱性溶液pH 值(pH > 9)时,测得的pH 值小于真实值而产生的负误差。
酸差:当用pH 玻璃电极测定pH<1的强酸性溶液或高盐度溶液时,电极电位与pH 之间不呈线性关系,所测定的值比实际的偏高,这个误差叫做酸差2、金属基电极与膜电极有何区别?金属基电极是以金属为基体,共同特点是电极上有电子交换即氧化还原反应的存在。
膜电极即离子选择性电极是以敏感膜为基体,特点是薄膜不给出或得到电子,而是电极膜选择性地使离子渗透和离子交换。
3、什么叫盐桥?为什么说它能消除液接电位?盐桥:沟通两个半电池、消除液接电位、保持其电荷平衡、使反应顺利进行的一种装置,内充高浓度的电解质溶液。
用盐桥将两溶液连接后,盐桥两端有两个液接界面,扩散作用以高浓度电解质的阴阳离子为主,而其是盐桥中电解质阴阳离子迁移速率几乎相等,所以形成的液接电位极小,在整个电路上方向相反,可使液接电位相互抵消。
电极电极组成 电极反应 电极电位金属-金属离子电极 M∣M n+M ne M n ⇔+++++=n n M MMo a zlg 0592.0/ϕϕ 金属-金属难溶盐电极 M MX nnXM ne MX n +⇔+nX MX sp a K z n )(lg 0592.0,0+=ϕϕ惰性电极 Pt∣[Ox],[Red ] Ox + ne ===Red dOxa az Re 0lg 0592.0+=ϕϕ膜电极 电极膜等离子交换和扩散ia zK lg 0592.0±=ϕ标准氢电极 镀铂黑铂电极通氢气 )(22gas H e H ⇔++甘汞电极 Hg Hg 2Cl 2,KCl(xM) Hg 2Cl 2(s) +2e =2Hg(l) +2Cl - --=Cl a lg 059.0'0ϕϕAg/AgCl 电极AgAgCl,(xM)KClAgCl + e == Ag + Cl --+-=Cl oAgAga lg 059.0/ϕϕ5.简述玻璃电极的基本构造和作用机制。
第七章 电化学(一)辅导:电化学定义: 研究电能和化学能之间的相互转化及转化过程中有关规律的科学.一 . 基本概念1.导(电)体: 能导电的物质.可分为两类:(1).电子导体(第一类导体): 靠自由电子的定向运动而导电的一类导体.特点: 升高温度,导电能力下降.(2).离子导体(第二类导体): 依靠离子的定向迁移而导电的一类导体.特点: A.发生化学反应.B.升高温度,导电能力增强.2.电极: 与电解质溶液相接触的第一类导体. (电化学中的电极还要包括第一类导体密切接触的电解质溶液)3.电解池: 将接有外电源的两支电极浸入电解质溶液中,迫使两极发生化学反应,将电能转变为化学能的装置.4.原电池: 将两支电极插入电解质溶液中形成的,能自发地在两极发生化学反应,使化学能转化为电能的装置.5.正极: 电势较高的极.6.负极: 电势较低的极.7.阳极: 发生氧化反应的电极. 8.阴极: 发生还原反应的电极.9.电极反应: 在电极上进行的有电子得失的化学反应.10.电极反应规律: 在阳极,电极电势愈负的愈先发生氧化反应,在阴极,电极电势愈正的愈先发生还原反应.11.离子迁移规律: 在电场作用下,阳(正)离子总是向阴极迁移;阴(负)离子总是向阳极迁移.12.电流传导规律: 整个电流在溶液中的传导是由阴阳离子的移动而共同承担的. 13.离子迁移数: 离子j 所运载的电流与总电流之比.14.摩尔电导率: 指把含有1mol 电解质的溶液置于相距为单位距离的电导池的两个平行电极之间时所具有的电导.15.离子强度: 溶液中各种离子的浓度与其价数的平方的乘积之和的一半. 16.可逆电池的必备条件:(1).电池反应可逆. 电池中,在两个电极上分别进行的反应都可以向正、反两个方向可逆的进行.(2).能量的转移可逆. 即通过电池的电流必须十分微小,电极反应是在接近化学平衡的条件下进行的.17.氢标还原电极电势: 规定标准氢电极的电极电势为0V.以标准氢电极为负极,指定电极为正极组成的电池的电动势.18.液体接界电势: 在两种不同溶液或溶液相同但浓度不同的两相界面上存在的电势差.产生的原因: 因溶液中离子的扩散速度不同而引起. 19.可逆电极分类:(1).第一类电极: 将金属置于含该金属元素离子的溶液中构成的电极,又称金属电极.气体电极、卤素电极、汞齐电极及金属-配合物电极也可归入此类.(2).第二类电极: 在金属上覆盖一层该金属的难溶盐后浸入含该难溶盐负离子的溶液中构成的电极.又称难溶盐电极.金属-难溶氧化物电极、难溶氧化物-难溶盐电极均属此类.如:)(|)()(2442m SO s PbSO s PbO -+(3).第三类电极: 将惰性电极插入含有同金属两种不同价态离子的溶液中构成的电极.又称为氧化-还原电极.20.分解电压: 使电解质在两极连续不断地进行分解时所需的最小外加电压. 21.极化: 有电流流过电极时,电极的电极电势偏离平衡电极电势的现象. 22.超电势: 某一电流密度下的电极电势与其平衡电极电势的差值.其值与电极材料、电流密度、电极表面状态、温度、电解质性质和浓度及其中杂质有关.二 . 基本定律1.法拉第第一定律: 通电于电解质溶液后,在电极的两相界面上发生化学变化的物质的物质的量与通入的电量成正比,与一式量该物质发生反应时,参加反应的电子数成反比.2.法拉第第二定律: 通电于串联电解池,在各电极上发生反应的物质的物质的量与其氧化数的变化值的乘积都相同;析出物质的质量与其摩尔质量成正比.3. 离子独立迁移定律: 在无限稀释时,每一种离子都是独立移动的,不受其它离子的影响,每一种离子对∞m Λ都有恒定的贡献. 电解质的∞m Λ是正、负离子的摩尔电导率之和.三 . 常用公式1. Fz Q n j j =和F Qz n z n z n j j ====...2211 任意条件2. dldEu r j j ≡ 3. ∑≡≡≡jj j j j Q Q I I t κκ ∞∞≈mjm j Λt ,λ 强电解质稀溶液 (类元电荷计量单元) mjm j j z t Λ,λ≈ 强电解质稀溶液 (化学计量单元)4. ∞-∞+∞+=,,m m mΛλλ (类元电荷计量单元) ∞--∞++∞+=,,m m m v v Λλλ (化学计量单元)5. -+-++=+=r r r u u u t j j j 单种电解质溶液6. ItVF c z t j j j = 界面移动法7. ∑=221jj z m I 电解质溶液 8. c V Λm m κκ=≡)(12-∙∙mol m S 电解质溶液9. RK GK cell cell==κ10.c A m m -=∞ΛΛ 强电解质稀溶液 11.∞=mma ΛΛ 弱电解质稀溶液 12.vB a a ±=θm m r a BBB = θm m r a ±±±= θmm r a jj j = m v v m vv v )(-+-+±=13.I Az r jj 2lg -= 强电解质稀溶液 I z z A r ||lg -+±-= 强电解质稀溶液IIz z A r +-=-+±1||lg 浓度不太大的电解质溶液14.zFE G m r -=∆ 和 θθzFE G m r -=∆15.p m r T EzF S )(∂∂=∆16.])([E TET zF H p m r -∂∂=∆ 17.p m r R TE zFT S T Q )(∂∂=∆= 18.∏-=j v j a zF RT E E ln θ19.θθa K RT zFE ln =20.阳阳析阳阳ηϕϕϕ+==,,,R I阴阴析阴阴ηϕϕϕ-==,,,R I21.j b a lg +=η例. 在298.15K 时,用铜电极电解铜氨溶液.已知溶液中每1000g 水中含CuSO 4 15.96g,NH 3 17.0g,当有0.01 mol 电子的电量通过以后,在103.66g 阳极部溶液中含有2.091gCuSO 4, 1.571gNH 3,试求: (M NH3=17.01g/mol,M CuSO4=159.6g/mol)(1).[Cu(NH 3)x ]2+中x 的值 (2).该配离子的迁移数 解.(1).阳极上的反应为:e m Cu s Cu 2)()(2+→+,阳极部Cu 2+在通电前后物质的量的变化为:)(01.06.1591000)571.1091.266.103(96.15mol n ≈⨯--⨯=原)(0131.06.159091.2mol n ≈=终)(005.0201.0mol n ≈=电因: 迁电原终n n n n -+=)(0019.00131.0005.001.0mol n n n n =-+=-+=终电原迁对NH 3而言:)(10.001.171000)571.1091.266.103(0.17mol n ≈⨯--⨯=原)(0924.001.17571.1mol n ≈=终 )(00764.00924.0100.0mol n n n =-=-=终原迁则:402.40019.000764.0)Cu ()(NH 23≈==+迁迁n n 即[Cu(NH 3)x ]2+中x 的值为4.(2).0.380.0050.0019243])([===+电迁n n t NH Cu例. 电池:)(|)(|)()(222s Cu m CuCl s Cl Hg l Hg s +298.15K 时的电动势为0.06444伏,电动势的温度系数p TE )(∂∂=3.2081410--⋅⨯K V .已知该温度下,2CuCl 的饱和溶解度为 44.01O gH g 2100/,其摩尔质量为134.45mol g /.及:V HgClCl Hg 2676.0/,22=-θϕ, V CuCu 3370.0/2=+θϕ (1).写出电池反应.(2).求该温度下,饱和2CuCl 溶液的活度及活度系数. (3).在该温度下可逆放电时的热.(4).电池反应在烧杯中进行时与环境交换的热. 解: (1).电池反应如下:)()()(2)(222s Cl Hg s Cu l Hg m CuCl s +===+(2).据能斯特公式得:±+-=--=-+-+a FRTa F RT E HgCl Cl Hg Cu Cu CuCl HgCl Cl Hg Cu Cu ln 231ln2/,//,/2222222θθθθϕϕϕϕ即: ±+-=a ln 96485*215.298*314.8*32676.03370.00922.0所以: =±a 0.8792据题,2CuCl 的饱和溶解度为:kg mol /27.345.13410*01.44≈所以: 13/121196.5)2*1(-±⋅==kg mol m m 由定义: θγm m a ±±±=,得: 1692.0196.51*8792.0===±±±m m a θγ(3).由: p m r R TEzFT S T Q )(∂∂=∆=得: )(10457.1810208.3*15.298*96485*2)(134--⋅⨯=⨯=∂∂=mol J TEzFT Q pR(4).当反应在烧杯中等温等压进行时,其交换的热即等压热p Q ,亦即该反应的焓变,而焓是状态函数,故计算电池反应的焓变即可.由: ])([E TE T zF H p m r -∂∂=∆ 得:)(10022.6)06444.010208.3*15.298(*96485*2134--⋅⨯=-⨯=∆m ol J H m r例2. p83.7-32.电池:)(|)(|)0.1(|||)100,(|2232l Hg s Cl Hg dm mol KCl pH kPa g H Pt -⋅的溶液待测在25℃时测得电动势为0.664伏,试计算待测溶液的pH 值. 解: 据题可得电池反应: )()0.1()()(21)(213222l Hg dm mol Cl a H s Cl Hg p H H +⋅+==+--++θ因摩尔电极电势在25℃下有定值0.2800伏,故电池的电动势为:)ln (2222/,/,++---=-=-+H H PtHH Hg Cl Cl Hg a a F RT E θϕϕϕϕ 得: ++=H a lg 43429.0*9648515.2998*314.82800.0664.0所以: 508.6lg =-=+H pH α例3.已知V AgAg 7994.0/=+θϕ,V Pt Fe Fe 770.0/,32=++θϕ, 计算25℃时反应Ag Fe Ag Fe +==++++32的平衡常数θa K .若将适量银粉加到浓度为0.053/dm mol 的33)(NO Fe 溶液中,试计算平衡时+Ag 的浓度.(设各离子活度系数均为1)解: (1).设计电池:)(|)(||)(),(|32312s Ag m Ag m Fe m Fe Pt +++)(0294.0770.07994.0/,/32V E PtFe Fe Ag Ag =-=-=+++θθθϕϕ 因: θθθa m r K RT zFE G ln -=-=∆所以:140.3)15.298*314.80294.0*96485*1exp()exp(===RT zFE K a θθ(2). 设平衡时+Ag 的浓度为c ,则:Ag Fe Ag Fe +==++++32 c c 0.05-c则有: 140.305.0223=-≈=+++c c a a a K Ag Fe Fe a θ即: 3.1402c +c -0.05=0解之得: c =0.043943/dm mol例4.已知电池: Pt p H m HCl p H Pt ),(|)(|)(,2212中,氢气遵从状态方程: ap RT pV m +=,式中1351048.1--⋅⨯=mol m a ,且与温度无关.当氢气的压力θp p 201=,θp p =1时,试: (1).写出电极反应和电池反应. (2).电池在293.15K 时的电动势.(3).当电池放电时,是吸热还是放热? 为什么? 解: (1).负极反应:e m H p H 2)(2)(12+→+正极反应:)(2)(222p H e m H →++ 电池反应:)()(2212p H p H ==(2).据能斯特公式有:θθθp f p f F RT a a F RT a a F RT E E H H H H //ln2ln 2ln 2212,1,1,2,2222==-= 21ln 2f f F RT=由: f RTd dp V d m ln ==μ得: dp a pRTf RTd )(ln += 积分: ⎰⎰+=1212)(ln pp f f dp a pRT f RTd得: )(ln ln 212121p p a p p RT f f RT -+= 所以:)(03780.096485*2101325*)120(1048.120ln 96485*215.293*314.8)(2ln 252121V p p p p Fap p F RT E =-⨯+=-+=-θθ (2).由前术结果得: 21ln 2)(p p F RT E p =∂∂ 所以:)/(10301.720ln 15.293*314.8ln )(321>⨯===∂∂=∆=m ol J pp p p RT TEzFT S T Q p m r r θθ可见,是吸热的.例5. 将两个电极相同但电解质溶液浓度不同的两个电池反向串联如下: --+)()(|)(|))((1s Ag s AgCl m KCl a Hg K m))((|)(|)()(2m a Hg K m KCl s AgCl s Ag +--试: (1).写出该电池的电池反应.(2).要使该电池反应能自发进行,应满足何种条件?解:(1).显然,该电池是由两个电池反向串联而成,其电池反应即为该二电池反应的总各和. 左侧电池的电池反应为:)()()())((1s Ag m KCl s AgCl a Hg K m +==+ 右侧电池反应为:)())(()()(2s AgCl a Hg K s Ag m KCl m +==+则总反应为: )()(12m KCl m KCl ==(2).要使反应能自发进行,即要求:0ln 12>=a a F RT E ,即必须满足: 12a a >或12m m >.例6.设计合适的电池,以便用电动势法测定其指定的热力学函数(要求写出电池表达式和相应函数的计算式):(1).)()()()(22133m Fe m Ag m Fe s Ag ++++=+(2).(s)Cl Hg 22的溶度积sp K(3).)/1.0(kg mol HBr 溶液的离子平均活度系数±r (4).求)(2s O Ag 的分解压(5).)(2l O H 的标准生成吉布斯自由能 (6).)(2l O H 的离子积常数W K(7).求弱酸HA 的离解常数θa K设计电池:)()(|)(),(),(|)(,2s Ag s AgCl m NaCl m NaA m HA p H Pt Cl A H A +--θ 电池反应为:)()()()(21)(2-+-+++=+Cl H a Cl a H s Ag p H s AgCl θ 设各物质的活度系数均为1,则:θm m a H H ++=,θmm a Cl Cl --= 则: )ln(ln 2/12-+-+-=-=Cl H H Cl H m m F RTE a a aF RT E E θθ式中,-Cl m E E ,,θ均为已知,故+H m 可求.对弱酸HA 有:-++======A H HA+-H HA m m +H m +-+H A m m则: )()(++-+++-+-⨯+⨯=-+⨯=H HA H A H H HA H A H a m m m m m m m m m m m m m m K θθθθθ故θa K 可求.例: 电解池: ⊕⋅=Θ-Pt kg mol m CuSO Pt |)0.1(|104已知在电流密度为1002-⋅m A 时氢在铜上的超电势为0.6V,氧在铂上的超电势为0.85V.试求:(1).当Cu 开始析出时的外加电压(2).当外加电压为2.0V 时,溶液中+2Cu 的浓度(3).当2H 开始析出时,溶液中+2Cu 的浓度及外加电压. 解:(1).据题知其电极反应为:正极反应:e mH p O l O H H 2)(2)(21)(22++→++θ负极反应:)(2)(2s Cu e m Cu →++因正极反应与溶液中+H 浓度有关,若设电解刚开始时溶液为中性,即)(100.117--+⋅⨯≈kg mol H ,由能斯特公式可得:Pt O H PtO H HOa F RT /2/,,2221ln 2ηϕϕθ+-=++阳 )(665.185.0)101(1ln 2229.127V F RT =+⨯-=- )(337.011ln 2337.01ln 222/V F RT a F RT Cu CuCu=-=-=++θϕϕ阴 故其分解电压为:)(328.1337.0665.1V E =-=-=阴阳分解ϕϕ(2).当外加电压为2伏时,已大大高于初始外加电压,故认为溶液中的+2Cu 绝大部分已还原析出.但因硫酸的二级电离是弱酸,其电离度仅为1%,若设其水解消耗的+H 浓度为x ,剩余+2Cu 浓度为1m ,则随着电解反应的进行,同时也进行着下列反应(注: 括号内为该离子的平衡浓度):)(])(2[)(410024x HSO x m m H x m SO -+-⇔--+- 故有: x x m x m m K a /)(])(2[0102-⨯--=因溶液中的+2Cu绝大部分已还原析出, 故可近似地有010m m m ≈-, 所以:02)3(20022=++-m x m K x a将01.02=a K 1-⋅kg mol ,0.10=m 1-⋅kg mol 代入解之可得 )(990.01-⋅=kg mol x 平衡时+H 浓度:)(01.1990.00.2)(2110-⋅=-≈--kg mol x m m 则当外加电压为2.0伏时,有:)1ln 2()1ln 2(0.222222//2/,,++++--+-=Cu Cu Cu Pt O H Pt O H H O a F RT a F RT θθϕηϕ 12101ln 2337.085.0])(2[1ln 2229.1m F RT x m m F RT +-+---=201)2(ln 2742.1x m m F RT --≈ 解之得: )(1089.1191kg mol m ⋅⨯≈-(3).设开始析2H 时, +2Cu 的浓度为2m ,当开始析2H 时,必有: Cu Cu PtH H //,22++=ϕϕ,即:22201ln 2337.060.0])(2[1ln 2m F RT x m m F RT -=----显然,此时+2Cu 的浓度比上节条件下的浓度更小,将: )/(01.1990.00.220kg mol x m m H =-=-≈+代入上式可得: 3221010.2-⨯=m )/(kg mol由于在阳极析出氧气,在阴极析出氢气,故此时的电解池实际上为电解水,相应分解电压应为:)(679.2)60.00()85.0229.1()()(//,//,,22222V E Cu H PtHH Pt O Pt O H H O =--+=--+=-=++ηϕηϕϕϕ阴,析阳,析分解(二)习题及答案:一、思考题1. 原电池和电解池有什么不同?2. 测定一个电池的电动势时,为什么要在通过的电流趋于零的情况下进行?否则会产生什么问题?3. 电化学装置中为什么常用KC1饱和溶液做盐桥?4. 下列反应的计算方程写法不同时其MF E 及m r G ∆值是否相同?为什么?)1(Cu Zn 2=++a ====Cu )1(Zn 2+=+a)1(Cu 21Zn 212=++a ====Cu 21)1(Zn 212+=+a 5. 试说明Zn 、Ag 两电极插入HC1溶液中所构成的原电池是不是可逆可池? 6. 凡 E 为正数的电极必为原电池的正极, E 为负数的电极必为负极,这种说法对不对?为什么?7. 如果按某化学反应设计的原电池所算出的电动势为负值时,说明什么问题? 8. 超电势的存在是否都有害?为什么?9. HNO 3、H 2SO 4、NaOH 及KOH 溶液的实际分解电压数据为何很接近? 10. 试比较和说明化学腐蚀与电化学腐蚀的不同特征。
电化学原理思考题部分答案(前六章)北航版第⼀章1.第⼀类导体和第⼆类导体有什么区别?凡是依靠物体内部⾃由电⼦的定向运动⽽导电的物体,即载流⼦为⾃由电⼦(或空⽳)的导体,叫做电⼦导体,也称为第⼀类导体。
凡是依靠物体内的离⼦运动⽽导电的导体叫做离⼦导体,也称为第⼆类导体。
第⼀类导体载流⼦为⾃由电⼦(或空⽳)。
第⼆类导体载流⼦为离⼦。
2.什么是电化学体系?你能举出两、三个实例加以说明吗?电化学体系:两类导体串联组成的,在电荷转移时不可避免地伴随有物质变化的体系。
电解池体系原电池体系3.有⼈说∶"像阳离⼦是正离⼦、阴离⼦是负离⼦⼀样,阳极就是正极,阴极就是负极"。
这种说法对吗?为什么?说法是错误的。
⽆论在原电池还是电解池中,正极:电势较⾼的电极;负极:电势较低的电极;阳极:发⽣氧化反应的电极;阴极:发⽣还原反应的电极。
阴离⼦总是移向阳极阳离⼦总是移向阴极。
原电池中,正极是阴极,负极是阳极;电解池中正极是阳极,负极是阴极。
4.能不能说电化学反应就是氧化还原反应?为什么?不能。
因为电化学反应是发⽣在电化学体系中的,并伴随有电荷的转移的化学反应。
⽽氧化还原反应则是指在反应前后元素的化合价具有相应的升降变化的化学反应。
电化学反应要在两类导体组成的体系中发⽣反应。
⽽氧化还原反应则没有导体类型的限制。
6.影响电解质溶液导电性的因素有哪些?为什么?(1)电解质溶液的⼏何因素。
对单位体积溶液,电解质溶液的导电性与离⼦在电场作⽤下迁移的路程和通过的溶液截⾯积有关,这同单位体积⾦属导体受其长度和横截⾯积的影响类似。
(2)离⼦运动速度。
离⼦运动速度越⼤,传递电量就越快,导电能⼒就越强。
离⼦运动速度⼜受到离⼦本性、溶液总浓度、温度、溶剂粘度等的影响。
(3)离⼦浓度。
离⼦浓度越⼤,则单位体积内传递的电量就越⼤,导电能⼒越强。
但如果离⼦浓度过⼤,离⼦间距离减少,其相互作⽤就加强,致使离⼦运动的阻⼒增⼤,这反⽽能降低电解质的导电性能。
第五章1、在电极界面附近的液层中,是否总存在三种传质方式?为什么?每种传质方式的传质速度如何表示?答:电极界面附近的液层通常是指扩散层,可以同时存在着三种传质方式(电迁移、对流和 扩散),但当溶液中含有大量局外电解质时,反应离子的迁移数很小,电迁移传质作用可以忽略不计,而且根据流体力学,电极界面附近液层的对流速度非常小,因此电极界面附近液 层主要传质方式是扩散。
三种传质方式的传质速度可用各自的电流密度J 来表示。
电迁移: 对流:扩散:2. 在什么条件下才能实现稳态扩散过程?实际稳态扩散过程的规律与理想稳态扩散过程有 什么区别?答:一定强度的对流的存在是稳态扩散过程的前提。
区别:在理想稳态扩散条件下,扩散层有确定的厚度,其厚度等于毛细管的长度l ;而在真实体系中,由于对流作用与扩散作用的重叠,只能根据一定的理论来近似求得扩散层的厚度。
理想稳态扩散: 实际稳态扩散: 3. 旋转圆盘电极和旋转圆环圆盘电极有什么优点?它们在电化学测量中有什么重要用途? 答: 旋转圆盘电极和旋转圆环圆盘电极上各点的扩散层厚度是均匀的,因此电极表面各处的电流密度分布均匀。
这克服了平面电极表面受对流作用影响不均匀的缺点。
它们可以测量并分析极化曲线,研究反应中间产物的组成及其电极过程动力学规律。
4. 试比较扩散层、分散层和边界层的区别。
扩散层中有没有剩余电荷?答:紧靠电极表面附近,有一薄层,此层内存在反应粒子的浓度梯度,这层叫做扩散层;电极表面的荷电粒子由于热运动而倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成所谓分散层;靠近电极表面附近的液流层叫做边界层,越接近电极表面,其液流流速越小。
电极/溶液界面存在着离子双电层时,金属一侧的剩余电荷来源于电子的过剩或缺贫。
双电层一侧区可以认为各种离子浓度分布只受双电层电场影响,不受其它传质(包括扩散)过程的影响。
因此扩散层中没有剩余电荷。
5. 假定一个稳态电极过程受传质步骤控制,并假设该电极过程为阴离子在阴极还原。
试问 在电解液中加入大量局外电解质后,稳态电流密度应增大还是减小?为什么?答:当电解液中没有加入大量局外电解质,电迁移作用不能忽略,而该电极过程为阴离子在阴极还原,此时电迁移与扩散两者作用方向相反,起互相抵消的作用。
因此在电解液中加入大量局外电解质后,扩散作用增大,稳态电流密度应增大。
6. 稳态扩散和非稳态扩散有什么区别?是不是出现稳态扩散之前都一定存在非稳态扩散阶段?为什么?答:稳态扩散与非稳态扩散的区别,主要看反应粒子的浓度分布是否为时间的函数,即稳态扩散时c=f(x),非稳态扩散时c= f(x,t)。
稳态扩散出现之前都一定存在非稳态扩散阶段,因为反应初期扩散的速度比较慢,扩散层中Eu C J i i i ⋅⋅±=xi i V C J =dx dc D J i i i -=l c c nFD J nF i s i i i i -=-=0)(δs i i ic c nFD i -=0210216131-≈u y D νδ()s i c c y u nFD i -=--021*******ν各点的反应粒子是时间和距离的函数;而随着时间的推移,扩散的速度不断提高,扩散补充的反应粒子数与反应所消耗的反应粒子数相等,反应粒子在扩散层中各点的浓度分布不再随时间变化而变化,达到一种动态平衡状态。
7. 为什么在浓差极化条件下,当电极表面附近的反应粒子浓度为零时,稳态电流并不为零,反而得到极大值(极限扩散电流)?答:当电极表面反应粒子浓度下降到零,则反应粒子的浓度梯度达到最大值,扩散速度也最大,整个电极过程由扩散步骤来控制,这时的浓差极化称为完全浓差极化。
意味着扩散过来一个反应粒子,立刻就消耗在电极反应上了,扩散电流也就达到了极大值。
8. 试用数学表达式和极化曲线说明稳态浓差极化的规律。
答:当反应产物不可溶时,此时浓差极化的动力学方程式为:浓差极化的极化值为: 当j 很小时,由于 ,从公式可以看出,当j 较大时,和 之间含有对数关系;当j 较小时,与 之间是线性关 系。
其极化曲线如图所示:从图中可以看出,随着电流密度的增加,阴极电位越来越负,当电流密度达到时,扩散电流不随电极电位的变化而变化,达到极大值(要对图稍做文字说明)。
9. 什么是半波电位?它在电化学应用中有什么意义?答:当电流密度等于极限扩散电流密度的二分之一时的电极电位,叫做半波电位。
半波电位代表指定氧化-还原系统之特征性质,可以用来作为定性分析的依据。
10. 对于一个稳态电极过程,如何判断它是否受扩散步骤控制?答:可以根据是否出现浓差极化的动力学特征,来判别电极过程是否由扩散步骤控制。
浓差极化的动力学特征如下:①当电极过程受扩散步骤控制时,在一定的电极电位范围内,出现一个不受电极电位变化影响的极限扩散电流密度j d ,而且j d 受温度变化的影响较小。
②浓差极化的动力学公式。
③电流密度j 和极限电流密度j d 随着溶液搅拌强度的增大而增大。
④扩散电流密度与电极表面的真实表面积无关,而与电极表面的表观面积有关。
11. 什么是过渡时间?它在电化学应用中有什么用途?答:在恒电流极化条件下使电极表面反应粒子浓度降为零所需要的时间,称为过渡时间。
通)1ln()1ln(ln 00d d O O j j nF RT j j nF RT c nF RT -+=-++=平ϕγϕϕ)1ln(nF RT d j j-=-=∆平ϕϕϕd j j <<d j j nF RT -=∆ϕϕ∆ϕ∆平ϕd j ϕ-j常也把过渡时间定义为:从开始恒电流极化到电极电位发生突跃所经历的时间。
利用过渡时间,可以测定电极体系的动力学参数。
12. 小结平面电极在不同极化条件下非稳态扩散过程的特点。
答:①在完全浓差极化条件下,反应粒子表面浓度、扩散层有效厚度和扩散电流密度都随着时间而不断变化;②产物不溶时恒电位阴极极化下,反应粒子表面浓度不变,扩散层有效厚度和扩散电流密度都随着时间而不断变化;③在恒电流阴极极化下,电流密度恒定,反应粒子和产物粒子的表面浓度都是与√呈线性关系;电极电位随时间变负;13. 从理论上分析平面电极上的非稳态扩散不能达到稳态,而实际情况下却经过一定时间后可以达到稳态。
这是为什么?答:在理论上,当仅存在扩散作用时,反应粒子浓度随时间不断发生变化,始终不能建立稳态扩散。
然而在实际情况下,由于液相中不可避免地存在对流作用,非稳态扩散过程不会持续很长的时间,当非稳态扩散层的有效厚度接近或等于由于对流作用形成的对流扩散层厚度时,电极表面的液相传质过程就可以转入稳态。
14. 球形电极表面上的非稳态扩散过程与平面电极有什么不同?答:平面电极只考虑了垂直于电极表面一维方向上的浓度分布,而对于球形电极,当扩散层的有效厚度大体上与电极表面曲率半径相当时,就要考虑三维空间的非稳态扩散。
15. 滴汞电极有哪些优点?它在电化学领域中都有什么重要用途?答:滴汞电极属微电极,面积很小,具有均匀的表面性质,减少杂质粒子的吸附,因此在滴汞电极上进行的电极过程有较好的重现性;利用滴汞电极可以进行有关电极反应历程的研究,测定双电层结构及电极表面吸附行为等。
16. 在使用滴汞电极时,应了解它的哪些基本性质?答:流汞速度、滴下时间、汞滴面积、瞬间电流、平均电流。
17. 什么是依科维奇公式?为什么在推导该公式过程中要引入修正系数(7/3)1/2答:依科维奇公式是用于计算滴汞电极的瞬间电流的公式。
推导该公式时由于要考虑到汞滴膨胀而引起的扩散层的减薄效应,所以要引入修正系数(7/3)1/218. 什么叫极谱波?它在电化学领域中有什么重要用途?答:在滴汞电极上把非稳态扩散性质平均化了的极化曲线,叫做极谱波。
利用极谱波,可以判断参加反应的是何种物质,还可以进行定性的电化学分析并判断电极反应的进程。
第五章习题第六章1. 人们从实验中总结出的电化学极化规律是什么?电化学极化值的大小受哪些因素的影响?答:人们从实验中总结出的最重要的电化学极化规律经验公式——塔菲尔公式η=a+blogj 。
极化值的大小和电极材料的性质、电极表面状态、溶液组成及温度等因素有关。
2.试用位能图分析电极电位对电极反应Cu 2++2e⇌Cu (一次转移两个电子)的反应速度的影响。
3. 从理论上推导电化学极化方程式(巴特勒-伏尔摩方程),并说明该理论公式与经验公式的一致性。
答:电化学极化处于稳定状态时,外电流密度必定等于(j j ),也就是等于电子转移步骤的净反应速度(即净电流密度j 净)。
由于电子转移步骤是控制步骤,因而j 净也应是整个电极反应的净反应速度。
这样,根据电子转移步骤基本公式,易得稳态电化学极化时电极反应的速度与电极电位之间关系。
即j=j 净。
将公式 j 净=0F F RT RT j e e 代入上式,则 0F F RT RT j j e e (1)式(1)就是单电子电极反应的稳态电化学方程式,也称巴特勒-伏尔摩方程。
若电极反应净速度预用正值表示时,可用jc 代表阴极反应速度,用ja 表示阳极反应速度,将式(1)分别改写为0c c F F RT RT c j j j j e e (2)0a a F F RT RT a j j j j e e (3) 当过电位很大时,相当于双曲线函数x 值很大,即式(2)中有如下关系c c F F RT RT e e 可以忽略(2)中右边第二个指数项,即 0cFRT c j j e (4) 两边取对数 02.3 2.3log c c RT RT j j F F (5)同理,对于阳极极化为0a F RT aj j e (6) 02.3 2.3log a a RT RT j j F F (7)式(5)和式(7)即为高过电位时巴特勒-伏尔摩方程近似公式。
与电化学极化的经验公式——塔菲尔公式(log a b j )相比,可看出两者是完全一致的。
这表明电子转移步骤的基本动力学公式和巴特勒-伏尔摩方程的正确性得到了实践的验证。
4. 电化学反应的基本动力学参数有哪些?说明它们的物理意义。
答:传递系数、交换电流密度和电极反应速度常数通常被认为是基本的动力学参数。
传递系数α和β的物理意义是电极电位对还原反应活化能和氧化反应活化能影响的程度。
交换电流密度表示平衡电位下氧化反应和还原反应的绝对速度,也是平衡状态下,氧化态粒子和还原态粒子在电极/溶液界面的交换速度。
电极反应速度常数是交换电流密度的一个特例,是指定条件(电极电位为标准电极电位和反应粒子浓度为单位浓度)下的交换电流密度。
5. 既然平衡电位和交换电流密度都是描述电极反应平衡状态的特征参数,为什么交换电流密度能说明电极反应的动力学特征?答:处于平衡态的电极反应通过平衡电位描述热力学性质,交换电流密度描述动力学特性,交换电流密度表示平衡电位下氧化反应和还原反应的绝对速度,所以,交换电流密度本身就表征了电极反应在平衡状态下的动力学特性。