信息论基础试卷及详细答案
- 格式:pdf
- 大小:611.09 KB
- 文档页数:8
重庆邮电大学2007/2008学年2学期《信息论基础》试卷(期末)(B 卷)(半开卷)一、填空题(共20分,每空1分)1、通信系统中,编码的主要目的有两个,分别是 和 。
2、离散无记忆信源存在剩余度的原因是 。
3、当 时,信源熵为最大值。
八进制信源的最大熵为 ,最小熵为 。
4、无失真信源编码的平均码长最小理论极限制为 。
5、一个事件发生概率为0.125,则自相关量为 。
6、根据信原输出随机序列中随机变量前后之间有无统计依赖性,信原可以分为 和 。
7、噪声瞬时值的概率密度函数服从 分布,同时功率谱密度为 的噪声称为高斯白噪声。
8、当 时,信源与信道达到匹配。
9、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正 态分布或 时,信源具有最大熵,其值为值 。
9、在下面空格中选择填入数学符号“,,,=≥≤>”或“〈” (1)H(XY) H(Y)+H(X|Y) H(Y)+H(X)(2)假设信道输入用X 表示,信道输出用Y 表示。
在有噪无损信道中, H(X/Y) 0, H(Y/X) 0, I(X;Y) H(X)。
二、(6分)若连续信源输出的幅度被限定在【1,3】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。
三、(16分)已知信源12345S P 0.250.20.20.20.15s s s s s ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(4分) (2)计算平均码长—L ;(4分)(3)计算编码信息率R ';(4分)(4)计算编码后信息传输率R ;(2分)(5)计算编码效率η。
(2分)四、(12分)已知一个平均功率受限的连续信号,通过带宽W 10MHz =的高斯白噪声信道,试计算(1)若信噪比为10,信道容量为多少?(4分)(2)若信道容量不变,信噪比降为5,信道带宽为多少?(4分)(3)若信道通频带减为5MHz 时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多少?(4分)五、(16分)某个信息源发出符号的概率为:12()(),P a P a =3()0.4,P a =假设该信息源发出的符号前后有关联,其依赖关系为:112122321333312133(|);(|);(|);(|);(|);(|);443344P a a P a a P a a P a a P a a P a a ======(1) 画出状态转移图(4分) (2) 计算稳态概率(4分)(3) 计算信源的极限熵(4分)(4) 计算稳态下H1,H2及其对应的剩余度。
○?○?大学 2008-2009 学年第一学期2006级 信息与计算科学专业 本 科 卷 A 参考答案与评分标准课程名称 信息论基础课程号(???) 考试形式(闭卷笔试) 时间(120分钟))一、判断题:本题共10小题,每题2分,满分20分。
1、√;2、√;3、×;4、×;5、√;6、×;7、×;8、√;9、√;10、×。
二、填空题:本题共7小题,每空2分,满分20分。
1、码字的最小距离(min d );2、(减少)冗余,提高编码效率; 提高信息传递的可靠性;3、系统码;4、无失真信源编码定理,信道编码定理,限失真信源编码定理;5、信道和信源都是无记忆;6、香农编码;7、2a。
三、计算题:本题共4小题,满分50分。
(15分)解:1/21/201/21/41/4P ⎡⎤=⎢⎥⎣⎦联合概率(,)i p x y则Y(2分)(1)11+414()log 2log log 24141a a H Y a a -=+++- ------------------(2分) 211161log 2log log 24141a aa a -=++-+ 211111log 2log16log log 244141a aa a -=+++-+23111log 2log log 24141a aa a-=++-+;取2为底2223111()(log log )24141a aH Y bit a a-=++-+; ------------------(1分) (2)11111111(|)log log log log log 2222224444aa a a a H Y X ---⎡⎤=-++++⎢⎥⎣⎦3(1)log 2log 22a a -=-+3log 22a-=; 取2为底,3(|)2aH Y X bit -=; ------------------(2分) (3)[]2()()()111max (;)max ()(|)max log 2log log 24411i i i p x p x p x aa a C I X Y H Y H Y X a a -⎛⎫==-=++ ⎪+-⎝⎭。
信息论考试卷及答案考试科⽬名称:信息论⼀. 单选(每空2分,共20分)1.信道编码的⽬的是(C ),加密编码的⽬的是(D )。
A.保证⽆失真传输B.压缩信源的冗余度,提⾼通信有效性C.提⾼信息传输的可靠性D.提⾼通信系统的安全性2.下列各量不⼀定为正值的是(D )A.信源熵B.⾃信息量C.信宿熵D.互信息量3.下列各图所⽰信道是有噪⽆损信道的是(B )A.B.C.D.4.下表中符合等长编码的是( A )5.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系正确的是(A )A.H(XY)=H(X)+H(Y/X)B.H(XY)=H(X)+H(X/Y)C.H(XY)=H(Y)+H(X)D.若X和Y相互独⽴,H(Y)=H(YX)6.⼀个n位的⼆进制数,该数的每⼀位可从等概率出现的⼆进制码元(0,1)中任取⼀个,这个n位的⼆进制数的⾃信息量为(C )A.n2B.1 bitC.n bitnD.27.已知发送26个英⽂字母和空格,其最⼤信源熵为H0 = log27 = 4.76⽐特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03⽐特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32⽐特/符号;以此类推,极限熵H=1.5⽐特/符号。
问若⽤⼀般传送⽅式,冗余度为( B )∞A.0.32B.0.68C .0.63D .0.378. 某对称离散信道的信道矩阵为,信道容量为( B )A .)61,61,31,31(24log H C -= B .)61,61,31,31(4log H C -= C .)61,61,31,31(2log H C -= D .)61,31(2log H C -= 9. 下⾯不属于最佳变长编码的是( D )A .⾹农编码和哈夫曼编码B .费诺编码和哈夫曼编码C .费诺编码和⾹农编码D .算术编码和游程编码⼆. 综合(共80分)1. (10分)试写出信源编码的分类,并叙述各种分类编码的概念和特性。
试题编号:重庆邮电大学2009/2010学年2学期《信息论基础》试卷(期末)(A卷)(开卷)一、填空题(共15分,每空1分)1、当时,信源与信道达到匹配。
2、若高斯白噪声的平均功率为6 W,则噪声熵为。
如果一个平均功率为9 W的连续信源的熵等于该噪声熵,则该连续信源的熵功率为。
3、信源符号的相关程度越大,信源的符号熵越,信源的剩余度越。
4、离散无记忆信源在进行无失真变长信源编码时,码字长度是变化的。
根据信源符号的统计特性,对概率的符号用短码,对概率的符号用长码,从而减少平均码长,提高编码效率。
8、香农第一编码定理指出平均码长的理论极限值为,《信息论基础》试卷第1页《信息论基础》试卷第2页此时编码效率为 。
4、在下面空格中选择填入数学符号“=,≥,≤,>”或“<” (1)()()2212X X H H =X ()X 3H = ()3321X X X H (2)()XY H ()()Y X H Y H |+ ()()X H Y H +。
9、有一信源X ,其概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡818141214321xx x x P X ,若对该信源进行100次扩展,则每扩展符号的平均信息量是 。
11、当 时,信源熵为最大值。
8进制信源的最大熵为 。
二、判断题(正确打√,错误打×)(共5分,每小题1分)1)噪声功率相同的加性噪声信道中以高斯噪声信道的容量为最大。
( )2)即时码可以在一个码字后面添上一些码元构成另一个码字。
( ) 3)连续信源的熵可正、可负、可为零, ( ) 4)平均互信息始终是非负的。
( ) 5) 信道容量C 只与信道的统计特性有关,而与输入信源的概率分布无关。
( )《信息论基础》试卷第3页三、(10分)计算机终端发出A 、B 、C 、D 、E 五种符号,出现概率分别为1/16,1/16,1/8,1/4,1/2。
通过一条带宽为18kHz 的信道传输数据,假设信道输出信噪比为2047,试计算:1) 香农信道容量;2) 无误码传输的最高符号速率。
第四章 习题解答4-1、某一信源以概率1/2、1/4、1/8、1/16、1/32和1/32产生6种不同的符号1x 、2x 、3x 、4x 、5x 和6x ,每个符号出现是独立的,符号速率为1000(符号)/秒。
(1)请计算每个符号所含的信息量;(2)求信源的熵;(3)求单位时间内输出的平均信息量。
解:(1)按定义,各符号所含的信息量分别为()()()12121log log 12I x p x bit =-=-= ()()()22221log log 24I x p x bit =-=-= ()()()32321log log 38I x p x bit =-=-= ()()()42421log log 416I x p x bit =-=-= ()()()52521log log 532I x p x bit =-=-= ()()()62621log log 532I x p x bit =-=-=(2)信源的熵()()()()521222222log 111111111111log log log log log log 22448816163232323211345516168555025228163232323216i i i H X p x p x ==-=------++++=+++++===∑比特符号(3)单位时间内输出的平均信息量()()2510001562.516S I H X R ==⨯=比特4-2 一个离散信号源每毫秒发出4种符号中的一个,各相互独立符号出现的概率分别为0.4、0.3、0.2和0.1,求该信号源的平均信息量与信息速率。
解:信号源的平均信息量,即熵为:()()()()5212222log 0.4log 0.40.4log 0.40.4log 0.40.4log 0.41.864i i i H X p x p x ==-=----=∑比特 因为符号速率R S =1/10-3=103,信息速率R b()()31.86410b S R H X R ==⨯比特秒4-3 设有4个消息符号,其出现的概率分别是1/8、1/8、1/4和1/2,各消息符号的出现是相对独立的,求该符号集的平均信息量。
《信息论基础》试卷三一、判断题(正确打√,错误打×)(每题1分,共6分)1.并联信道的容量是各子信道容量之和。
( ⨯ )2.互信息是非负的。
( ⨯ )3.相同功率的噪声中,高斯噪声使信道容量最小。
( √ )4.最大后验概率准则与最大似然准则是等价的。
( ⨯ )5.如果信息传输速率大于信道容量,就不存在使传输差错率任意小的信道编码。
( √ )6.离散无记忆信源N次扩展源的熵是原信源熵的N倍。
( √ )二、填空题(每空2分,共20分)1.信源符号的相关程度越大,信源的符号熵越小,信源的剩余度越大。
2.若信道的输入为X,输出为Y,信道疑义度H(X|Y)表示,在无噪情况下,H(X|Y)= 0 。
3.信道输入与输出间的平均互信息是信道转移概率的下凸函数,是输入概率的上凸函数。
4.R(D)是满足D准则下平均传送每信源符号的所需的最少比特数,它是定义域上的严格递减函数。
6. AWGN 信道下实现可靠通信的信噪比下界为 -1.59 dB ,此时对应的频谱利用率为.0 。
三、计算题(共74分)1.(16分)设信源X 的符号集为{0,1,2},其概率分布为1014P P==,122P =,每信源符号通过两个信道同时传输,输出分别为Y ,Z ,两信道转移概率如图所示:XY1201XZ121求(1)H (Y ),H (Z ); (各2分共4分) (2)H (XY ),H (XZ ),H (XYZ ); (各2分共6分) (3)I (X;Y ),I (X;Z ), I (Y;Z ); (各2分共6分)2. (共18分)一个离散无记忆信源发出M 个等概率消息,每个消息编成长度为n 的码字通过一个离散无记忆二元对称信道传输。
设信道的输入为X ,输出为 Y , 错误率为0.1;n 长编码序列的每一个符号按达到信道容量的概率选择,共选择M 个码字,n 选得足够大。
1) 求该信道的信道容量;(5分)2) 当传输速率达到容量时,确定M 与n 的关系。
信息论基础试题一、选择题1.下列哪个选项可以正确解释信息论的基本思想?•[ ] A. 信息交流的过程中,信息可以通过信道传递。
•[ ] B. 信息的传递不受噪声的影响。
•[ ] C. 信息的度量可以基于信息内容和概率分布。
•[ ] D. 信息的传输速率与信道带宽成反比例关系。
2.假设信源A生成的符号集X有5个元素,概率分布为P(X)=[0.1, 0.2, 0.4, 0.15, 0.15]。
则信源A的熵为多少?•[ ] A. 1.52•[ ] B. 1.75•[ ] C. 1.97•[ ] D. 2.323.在信息论中,互信息表示什么意思?•[ ] A. 两个随机变量的相关程度。
•[ ] B. 从一个随机变量中获得的信息量。
•[ ] C. 两个随机变量之间的信息交流量。
•[ ] D. 两个随机变量之间的互相依赖程度。
二、填空题1.在信息论中,熵是用来衡量信源的______。
2.信源的熵可以通过概率分布计算,公式为______。
3.信道容量是指在给定的信道条件下,单位时间内可以传输的最大______。
三、简答题1.请简要解释信息熵的概念,并与不确定性联系起来。
答:信息熵是信息论中对信源不确定性的度量。
它衡量了一组符号的平均不确定性,也可以理解为平均信息量。
熵越大,表示源符号的不确定性越大,每个符号所携带的信息量就越多;熵越小,表示源符号的不确定性越小,每个符号所携带的信息量就越少。
通过熵的计算,我们可以衡量一个信源的不确定性,并基于不同的概率分布对不同信源进行比较。
不确定性是指在一个具体的情境中,我们对于某个事件的发生没有确切的判断。
信息熵与不确定性有密切的联系,熵值越高,表示我们对于事件发生的不确定性也越高。
2.什么是信道容量?在实际通信中,如何提高信道的传输容量?答:信道容量是指在给定的信道条件下,单位时间内可以传输的最大信息量。
信道容量受到信道的带宽和信道的噪声水平的影响。
要提高信道的传输容量,可以采取以下几个方法:–扩展信道带宽:增加信道的频率范围,可以提高信道的传输速率和容量。
《信息论基础》模拟试题一、填空题(本大题共10小空,每小空2分,共20分)1.按信源发出符号所对应的随机变量之间有无统计依赖关系,可将离散信源分为和O2.—个八进制信源的最大炳为-3.信源冗余度存在的原因是。
4.设有一连续随机变量X表示信号x(t)的幅度,其幅值在[-4V, 4V]均匀分布,那么该信源的炳h(x)=,则该信源的绝对炳是_____________________ 」5.若某一连续信源X,其平均功率受限为8W,其概率密度函数是高斯分布时,差炳的最大值为,与其炳相等的非高斯分布信源的功率为>6.对称离散信道的转移概率矩阵P的特点是二、掷两粒骰子,各面出现的概率都是1/6,计算信息量:1.两骰子面朝上点数之和为2,该消息包含的信息量是多少?(3分)2.两骰子而朝上点数之和为8时,该消息包含的信息量是多少?(3分)3.两骰子血朝上点数是3和4,该消息包含的信息量是多少?(3分)三、设X,Y是二个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z,取Z=X+Y。
试计算:1.H(Y)、H(Z); (6 分)2.H (XY) ; (3 分)3.I (X;Y), I (Y;Z). (8 分) 四、一阶马尔可夫链信源有3个符号{a,b.c),转移概率为:P (a/a)二1/2, p (b/a)=1/4, p (c/a) =1 /4, p (a/b) =1 /2, p (b/b)二0, p (c/b) =1/2, p (a/c) =1/2, p (b/c) =1/2, p (c/c)=0。
1.画出状态图;写出转移概率矩阵;(6分)2.求出各符号稳态概率;(6分)3.计算其极限滴;(4分)五、在干扰离散对称信道上传输符号1和0,已知p(0)=1/4,p(1)=3/4,试求:1该信道的转移概率矩阵P(3分)2该信道的信道容量及其输入概率分布(7分)0.6六、某信道的转移矩阵p().50.30.30.2().5 00.2试求:该信道的信道容量及最佳输入概率分布o (6分)七、设在平均功率受限高斯可加波形信道中,信道宽带为5KH 乙乂设信 噪比为20db 1 肖H •耸'该隹1首的隹1首恣晶.分)2若功率信嬴比降或lOdbi 达到相同的最大信息传输率,信道带宽应是 多少? (3分)八、信源符号 X 有 6 种字母,概率为 0.25 , 0.2, 0.16, 0.15 , 0.1, 0.07 , 0.04 , 0.03. 用霍夫曼编码法编成二进制变长码,写出编程过程并计算:(共16分)1. 编码前信源X 的信源剩余度,2. 平均码长3. 编码效率。
信息论基础试题信息论是研究信息传输和处理的一门学科,它最初被应用于通信领域,但现在已广泛应用于各个领域。
信息论的基础概念包括信息、熵、信源、信道以及编码等概念。
以下是信息论基础试题。
1. 简述信息论的基本概念?信息论的基本概念包括信息、熵、信源、信道以及编码等概念。
信息指的是用来描述某个事件或情况的不确定性程度的量。
信息通常用比特(bit)来表示,比特表示信息的最小单位,它可以取0或1两种状态。
熵指的是信息的度量,它表示一个随机变量的平均信息量。
熵的单位通常用比特或纳特(nat)表示,比特是以2为底的对数单位,而纳特是以自然常数e为底的对数单位。
信源指的是产生信息的源头,它可以是物理信号,也可以是逻辑信号。
信道指的是传输信息的媒介,它可以是有线媒介,也可以是无线媒介。
编码指的是将原始的信源信息转化为经过压缩、纠错等处理后的编码信号的过程。
编码可以分为有损编码和无损编码。
2. 什么是熵?熵是信息量的一种度量方式,它反映一个随机变量的信息的不确定性,也称为信息熵。
熵的物理意义可以理解为,如果我们要表达一个随机变量的状态,那么需要用多少位来表示,这个位数就是熵。
比如,如果有一个硬币,正反两面的概率相等,那么这个硬币的熵是1比特,因为我们只需要1位来表示它的状态。
熵的单位通常用比特或纳特表示,比特是以2为底的对数单位,而纳特是以自然常数e为底的对数单位。
熵有以下特点:(1)熵越大,表示信息的不确定性越高;(2)熵越小,表示信息的不确定性越低。
3. 什么是信源?信源指的是产生信息的源头,它可以是物理信号,也可以是逻辑信号。
物理信号是指来自实际物理系统的信号,比如声音、图像、温度等信息。
逻辑信号是指来自逻辑系统的信号,比如计算机中的数字信号、电路中的布尔逻辑信号等。
信源可以是离散的或连续的。
离散信源的输出是一个个离散的符号序列,比如二进制序列。
连续信源的输出是一个连续的信号,比如模拟信号或数字信号。
4. 什么是信道?信道指的是传输信息的媒介,它可以是有线媒介,也可以是无线媒介。
期终练习一、某地区的人群中,10%是胖子,80%不胖不瘦,10%是瘦子。
已知胖子得高血压的概率是15%,不胖不瘦者得高血压的概率是10%,瘦子得高血压的概率是5%,则“该地区的某一位高血压者是胖子”这句话包含了多少信息量。
解:设事件A :某人是胖子; B :某人是不胖不瘦 C :某人是瘦子 D :某人是高血压者根据题意,可知:P (A )=0.1 P (B )=0.8 P (C )=0.1 P (D|A )=0.15 P (D|B )=0.1 P (D|C )=0.05而“该地区的某一位高血压者是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P (A|D )根据贝叶斯定律,可得:P (D )=P (A )* P (D|A )+P (B )* P (D|B )+P (C )* P (D|C )=0.1 P (A|D )=P (AD )/P (D )=P (D|A )*P (A )/ P (D )=0.15*0.1/0.1=0.15 故得知“该地区的某一位高血压者是胖子”这一消息获得的多少信息量为: I (A|D ) = - logP (A|D )=log (0.15)≈2.73 (bit ) 二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率是(|)k i p a s (i ,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H (X ),H (X|Y )和I (X ;Y )(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈0.811(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.6+0.25*0.4=0.55 2121222()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.4+0.25*0.6=0.45()0.55log0.550.45log0.45H Y =--=≈0.992(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+-≈0.811+0.971-0.992=0.79 (比特/符号)I(X;Y)=H(X)-H(X|Y)=0.811-0.79=0.021(比特/符号) (2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H(0.6)=1-0.971=0.029(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240 p pp pεεεεεε⎡⎤--⎢⎥--⎢⎥⎣⎦的信道容量,其中1p p=-。