求解线性规划的一种Mehrotra型预估-矫正内点算法
- 格式:pdf
- 大小:186.22 KB
- 文档页数:3
第四章 线性规划的求解法当线性规划的变量和约束条件比较多,而初始基本可行解又不知道时,是不容易用尝试的方法得到初始基本可行解的,何况有可能基本可行解根本就不存在。
在此时,大M 法可能是应付此类情况的一个行之有效的算法。
§4.1 大M 法的原理当初始基本可行解不知道时,则1.,2.两个特点不能兼得,即下列两条件不能兼得: 1. 中心部位具有单位子块; 2. 右列元素非负;这时可以先用容许的运算使由列为非负,然后在中心部位人为添加一个单位子块。
如下例所述: 例4.1123123123123min 32..323624,,0z x x x s tx x x x x x x x x =-+++-=-+-=-≥ (4.1.1)列成表格:上述第三张表中人工增加了两个变量45,x x ,称为人工变量,即把原来的约束条件改为:1234123512345..323624,,,,0s tx x x x x x x x x x x x x +-+=-++=≥ (4.1.2) 式(4.1)和(4.2)的约束方程组并不同解,但(4.1)的解和(4.2)中450x x ==的解是相对应的。
只要找到以(4.2)为约束条件,且人工变量45,x x 均为自由变量的基本可行解,也就找到了(4.1)的基本可行解,于是,要设法迫使450x x ==。
以上途径通过修改(4.1)的目标函数来实现。
具体修改为:12345min 32z x x x Mx Mx =-++++ (4.1.3)其中M 为足够大的正数,然后以(4.2)为约束条件,求(4.3)的最小值。
只要45,x x 不为零,就一定为正数,于是目标函数的值就会增加它们和的M 倍。
由于M 为足够大的正数,所以只要原问题有基本可行解,就不会在45,x x 取正值时达到最小值。
本例中把表改为:通过运算使它具备第三个特点:底行相应于单位子块位置的元素为0,然后再严格按照单纯形法的步骤求解:由于M 为足够大的正数,所以-3-4M 应视为负数,故选它。
线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。
二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。
线性规划的求解算法 线性规划(linear programming )是运筹学中的一个重要分支,在现代工业、农业、商业、交通运输、国防军事及经济管理等诸多领域都有着广泛重要的应用。
在数学系的竞赛数学建模中,也多次应用线性规划来建模从而解决实际问题。
在这里介绍单纯性法和对偶单纯形法两种求解线性规划的方法。
一、单纯形法算法主体思想标准线性规划简记如下:LP-max LP-mins.t {0Ax b x =≥ s.t {0Ax b x =≥ 这里只以LP-min 为例。
1、算法思想单纯形法是在已知一个可行基的前提下采用的解决线性规划的算法。
步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。
用R (i )记录单位矩阵I 中元素1的位置。
(2)求{}0min |0,1j j a j n t >≤≤@若t 不存在,则得到最优解;(i),1R i n x a += (i=1,2,...m ).其他j x =0,停。
否则,转到(3)。
(3)求,1min{|0,1}i n it it a a i m a λ+>≤≤@。
若λ不存在,则LP-min 无下届,所以无最优解,停;否则,求,1min (i)|,0,1(s)i n it it a R a i m R a λ+⎧⎫=>≤≤⎨⎬⎩⎭@,转到(4)。
(4)sjsj sta a a ⇐,(j=1,2....n+1) ij ij sj it a a a a ⇐-,(i=0,1,2...m;i ≠s;j=1,2,....,n+1), (s)t R ⇐,转到(2).二、对偶单纯形法对偶单纯形法是在已知一个正则基的条件下的求解线性规划的方法。
步骤如下:(1)输入初始矩阵:01020,111121,112,1n n m m m n a a a a a a a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦K L M M O M K ,并化为典则形式。
线性规划问题的算法综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。
现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。
线性规划就是在满足线性约束下,求线性函数的极值。
毋庸置疑,数学规划领域的重大突破总是始于线形规划。
提到线性规划算法,人们最先想到的是单纯形法和内点法。
单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。
把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。
显然不属于前者,即两者都有需要改进之处。
几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。
1数学模型线性规划问题通常表示成如下两种形式:标准型、规范型。
设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数;线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。
在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。
摘要本文研究的是线性规划的可行点算法,一个由线性规划的内点算法衍生而来的算法.线性规划的内点算法是一个在线性规划的可行域内部迭代前进的算法.有各种各样的内点算法,但所有的内点算法都有一个共同点,就是在解的迭代改进过程中,要保持所有迭代点在可行域的内部,不能到达边界.当内点算法中的迭代点到达边界时,现行解至少有一个分量取零值.根据线性规划的灵敏度分析理论,对线性规划问题的现行解的某些分量做轻微的扰动不会改变线性规划问题的最优解.故我们可以用一个很小的正数赋值于现行锯中等于零的分量,继续计算,就可以解出线陛规划问题的最优解.这种对内点算法的迭代点到达边界情况的处理就得到了线性规划的可行点算法.它是一个在可行域的内部迭代前进求得线性规划的最优解的算法.在此算法中,只要迭代点保持为可行点.本文具体以仿射尺度算法和原始一对偶内点算法为研究对象,考虑这两种算法中迭代点到达边界的情况,得到相对应的’仿射尺度可行点算法’和’原始.对偶可行点算法,.在用理论证明线性规划的可行点算法的可行性的同时,我们还用数值实验验正了可行点算法在实际计算中的可行性和计算效果.关键词:线性规划,仿射尺度算法,原始一对偶内点算法,内点,可行点算法,步长可行点.AbstractderivedThisDaperfocusesonafeasiblepointalgorithmforlinearprogramming,analgorithmfromtheinteriorpointalgorithmsforlineza"programming.TheinteriorpointalgorithmsfindtheoptimalsolutionofthelinearprogrammingbysearchingwithinthefeasmleTe譬ionofthelinearprogramming.ThereareaUkindsofinteriorpointalgorithlrmalltheforlinearprogramnfing.Butalltheseinteriorpointalgorithmsshareaspeciality,whichissolution|terativeDointscannotreachtheboundsAccordingtothesensitivitytheory,theoptimalofthelinearprogrammingwillnotbechangedbylittledisturbancesofthepresentsolution·SoWeletthe{xjIzJ=o,J=1,2,-··)n)equalaverysmallpositivenunlber,goonwiththecomputatio“一andthenwegettheoptimalsolutionofthelinearprogramming.Alltheseleadtothedevelopment。