物理竞赛1-35届真题分类03万有引力(无答案)
- 格式:pdf
- 大小:420.12 KB
- 文档页数:11
第35届全国中学生物理竞赛决赛训练试题第01套解答【第一题】40分如图所示,一均匀杆AB ,质量为m ,长为2b ,中点记为C . 初始时刻,杆静止,其两端点,A B 分别用一轻绳系在其竖直上方的固定悬点,P Q 上,=1AP l 、=2BQ l . 现突然给杆一绕C 的角速度ω(角速度矢量沿竖直方向),求两绳中的张力12,T T , (1)(15分)若==12l l l ;(2)(25分)若>12l l .解答:(1) 杆两端的线速度:v b ω= [1] 杆两端在竖直方向加速度为向心加速度:222A B v b a a l l ω=== [2]22C A B b a a a lω===[3]由对称性和竖直方向受力平衡:12T T = [4] 12C T T mg ma +-= [5]解得:22121()2b T T m g lω==+ [6][1][2][4][5]各2分 [3]3分 [6]4分(2) 同(1)的第一步:22211A v b a l l ω== [7]22222B v b a l l ω== [8]设:A C a a b β=- [9]BC a a b β=+[10]可解得:2212122C l l a b l l ω+=[11]212122l l b l l βω-=[12]平衡和牛顿第二定律:21T b T b I β-=[13] 2211(2)123I m b mb ==[14] 12C T T mg ma +-=[15]解得:221211221(b )23l l T m g l l ω+=+[16]221221221(b )23l l T m g l l ω+=+[17][7][8][11][12][13][15]各2分[9][10][14]各1分 [16][17]各5分【第二题】40分如图,这时是一种三角打孔机的结构。
其中持钻架A被限制平行运动,A中间有一个正三角形的内孔,边长为l。
竞赛题汇编1 万有引力定律一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时及太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球及太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 及SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向及SP 0的夹角表示)。
一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1)a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0(3)22c a b -= (4)由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-=(7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+(8)由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9)可以证明,彗星绕太阳作椭圆运动的机械能为图1s2Gmm E =a- (10)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v(11) 得P =v(12)代入有关数据得414.3910m s P -⨯⋅v = (13)设P 点速度方向及0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v(14)其中σ为面积速度,并有πab Tσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S 所在的焦点处,由S 引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r 、θ表示彗星的椭圆轨道方程为1cos p r e θ=+(1)其中,e 为椭圆偏心率,p 是过焦点的半正焦弦,若椭圆的半长轴为a ,根据解析几何可知()21p a e =-(2)将(2)式代入(1)式可得()θcos 112e e a r +-=(3)以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(4)在近日点0=θ,由(3)式可得1r e a=-(5)图2将P θ、a 、e 的数据代入(3)式即得0.895AUP r =(6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a- (7)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v(8) 可得P =v(9)代入有关数据得414.3910m s P -⨯⋅v = (10)设P 点速度方向及极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00(11)根据(8)式,同理可得21s Gm r a=⋅-00v (12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13) 评分标准:本题20分 解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.(25届)二、(21分)嫦娥1号奔月卫星及长征3号火箭分离后,进入绕地运行的椭圆轨道,近地点离地面高22.0510n H km =⨯,远地点离地面高45.093010f H km =⨯,周期约为16小时,称为16小时轨道(如图中曲线1所示)。
高中物理万有引力定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=3.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=-【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMGRmg =联立解得22gR rω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.6.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t =则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt =所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.7.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R = 对于嫦娥三号由万有引力等于向心力:2224GMm m rr Tπ= 联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R==可得月球的第一宇宙速度:2324r v gR T Rπ==8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h .【答案】(1)v =(2)h R = 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v =(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =,解得:h R =.9.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
高中物理试卷分类汇编物理万有引力定律的应用(及答案)一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布均匀的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)如下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2( R h 2 )=m(Rh 2 )( 2 T) 2解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT 2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程能够筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽视不计),经过轨道上 P 点时点火加快,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地址为圆轨道Ⅰ上的P 点,远地址为同步圆轨道Ⅲ上的Q 点.抵达远地址 Q 时再次点火加快,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为 m ,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星构成的系统的引力势能为E pGMm(取无量远处的引力势能为r零),忽视地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运行时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能互相转变.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为v ,则经过 Q 点时的速率 v 多大?1 2( 3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器能够抵达离地心无量远处),则探测器走开飞船时的速度v 3 (有关于地心)起码是多少?(探测器走开地球的过程中只有引力做功,动能转变为引力势能)【答案】( 1)GMm( 2)v122GM2GM (3)2GM 2R R h R R【分析】【剖析】(1)万有引力供给向心力,求出速度,而后依据动能公式进行求解;(2)依据能量守恒进行求解即可;(3)将小探测器射出,并使它能离开地球引力范围,动能所有用来战胜引力做功转变为势能;【详解】(1)在近地轨道(离地高度忽视不计)Ⅰ 上运行时,在万有引力作用下做匀速圆周运动即:G mMm v2 R2R则飞船的动能为E k 1 mv2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能互相转变.由能量守恒可知动能的减少许等于势能的増加量:1mv121mv22GMm( GMm ) 22R h R若飞船在椭圆轨道上运行,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器离地心的距离无量远),动能所有用来战胜引力做功转变为势能即: G Mm1mv32 R2则探测器走开飞船时的速度(有关于地心)起码是:v32GM.R【点睛】此题考察了万有引力定律的应用,知道万有引力供给向心力,同时注意应用能量守恒定律进行求解.3.由三颗星体构成的系统,忽视其余星体对它们的影响,存在着一种运动形式:三颗星体在互相之间的万有引力作用下,分别位于等边三角形的三个极点上,绕某一共同的圆心O 在三角形所在的平面内做角速度同样的圆周运动(图示为A、B、 C 三颗星体质量不同样时的一般状况)若 A 星体的质量为 2m, B、 C 两星体的质量均为 m,三角形的边长为 a,求:(1) A 星体所受协力的大小 F A;(2) B 星体所受协力的大小 F B;(3) C 星体的轨道半径 R C;(4)三星体做圆周运动的周期T.【答案】(1)2 3Gm2( 2)7Gm2( 3)7a (4)T a2a24【分析】【剖析】【详解】(1)由万有引力定律, A 星体所受B、 C 星体引力大小为FR4G m A m B G 2m2F CA,r 2a2则协力大小为2m(2)同上, B 星体所受 A、 C 星体引力大小分别为FAB G mAmB G 2m2r 2a2FCB G mCmB G m2r 2a2则协力大小为FBx F AB cos60FCB2G m2a2FBy F AB sin 603G m2.a2可得22m2F B FBxFBy7Ga2(3)经过剖析可知,圆心O 在中垂线 AD 的中点,223 a 1 aR C7 a424πa3Gm(4)三星体运动周期同样,对 C 星体,由F B7G m2m22F C R Ca2T可得T a2Gm24.探究浩大宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
第35届全国中学生物理竞赛预赛试卷及详细解析本卷共16题,满分200分。
一、选择題,本题共5小题,每小题6分。
在毎小题给出的4个选项中,有的小题只有一项符合題意,有的小题有多项符合题意。
把符合题意的选项前面的英文字母写在每小題后面的方括号内全部,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分1.居里夫人发现了元家钋(Po), 其衰变的核反应方程式为Po b a αd c Pb +82206γf e 其中,a 、b 、c 、d 、e 、f 的值依次为A. 211、84、4、2、1、0B. 210、84、4、2、0、0C. 207、84、1、1、0、1D. 207、83、1、1、0、02.如图,一劲度系数为k 的轻弹簧上端固定在天花板上,下端连接一质量为m 的小球,以小球的平衡位置O 作为坐标原点,x 轴正方向朝下。
若取坐标原点为系统势能的零点,则当小球位于坐标为x 0的位置时,系统的总势能为 A. 12kx 02-m g x 0 B. 12k(x 0+mg k )2−mgx 0 C. 12k(x 0+mg k )2 D. 12kx 023.库伦扭摆装置如图所示,在细银丝下悬挂一根绝缘棒,捧水平静止;棒的两端各固定一相同的金属小球a 和b ,另一相同的金属小球c 固定在插入的竖直杆上,三个小球位于同一水平圆周上,圆心为棒的悬点O 。
细银丝自然悬挂时,a 、c 球对O 点的张角θ=4°。
现在使a 和c 带相同电荷,库伦力使细银丝扭转,张角α增大,反向转动细银丝上端的旋钮可使张角α变小;若将旋钮缓慢反向转过角度β=30°,可使小球a 最终回到原来位置,这时细银丝的扭力矩与球a 所受球c 的静电力的力矩平衡。
设细银丝的扭转回复力矩与银丝的转角β成正比。
为使最后a 、c 对O 点的张角α=2°,旋钮相对于原自然状态反向转过的角度应为A.β=45°B. β=60°C.β=90°D.β = 120°4.霍尔传感器的结构如图所示,图中H 为一块长方体半导体薄片,外加磁场的磁感应强度B 和外加电流I 的方向如相应箭头所示(B 与长方体的前后两个表面及电流I 均重直),电压表(可判断直流电压的正负)按图中方式与H 的上下表面相连。
1、关于万有引力定律,下列说法正确的是:A. 万有引力定律只适用于天体之间B. 两个物体之间的万有引力与它们质量的乘积成正比C. 两个物体之间的万有引力与它们距离的平方成反比D. 万有引力定律是牛顿在伽利略和开普勒研究基础上提出的2、关于电磁感应现象,下列说法错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向总是与磁场方向相同C. 感应电流的方向与导体切割磁感线的方向有关D. 感应电动势的大小与磁通量的变化率成正比3、关于牛顿第二定律,下列说法正确的是:A. 物体的加速度与它所受合外力成正比,与它的质量成反比B. 物体的加速度方向总是与它所受合外力的方向相同C. 牛顿第二定律只适用于宏观低速物体,不适用于微观高速粒子D. 物体所受合外力为零时,加速度一定为零,但速度不一定为零4、关于光的干涉现象,下列说法正确的是:A. 干涉现象是光波叠加的结果B. 任何两束光都能发生干涉现象C. 干涉条纹的间距与光的波长成正比D. 干涉现象说明光具有波动性5、在双缝干涉实验中,若将其中一缝挡住,则屏幕上:A. 出现一条亮纹B. 出现等间距的明暗相间的条纹C. 出现不等间距的明暗相间的条纹D. 出现一片黑暗6、关于热力学第二定律,下列说法正确的是:A. 热量不能自发地从低温物体传向高温物体B. 在一定条件下,热量可以从低温物体传向高温物体C. 热量不能从低温物体传向高温物体,但内能可以D. 第二定律的微观意义是“一切自然过程总是沿着分子热运动无序性增大的方向进行”7、关于光的折射现象,下列说法错误的是:A. 光从一种介质进入另一种介质时,传播方向一定会发生改变B. 折射光线、入射光线和法线都在同一平面内C. 折射角的大小与入射角的大小和两种介质的性质都有关D. 在折射现象中,光路是可逆的8、关于电磁波谱,下列说法错误的是:A. 电磁波谱按照波长从长到短排列包括无线电波、红外线、可见光、紫外线、X射线和γ射线B. 紫外线的波长比可见光的波长短,所以它的热效应显著C. X射线具有较强的穿透能力,医学上常用它进行人体透视D. γ射线是原子核内部发生衰变时放出的射线,它的电离本领很强9、关于动量守恒定律,下列说法正确的是:A. 系统不受外力作用时,系统动量一定守恒B. 系统所受合外力为零时,系统动量一定守恒C. 系统所受合外力不为零,但内力远大于外力时,系统动量近似守恒D. 动量守恒定律是自然界最普遍的定律之一,它适用于低速、宏观物体,也适用于高速、微观粒子10、关于原子物理,下列说法正确的是:A. 氢原子从高能级向低能级跃迁时,会放出光子,且原子电势能减小B. 汤姆生发现了电子,并提出了原子的核式结构模型C. 原子核发生衰变时,会同时放出三种射线:α射线、β射线和γ射线,其中α射线穿透能力最强D. 根据玻尔理论,氢原子从高能级向低能级跃迁时,会放出光子,且电子的轨道半径减小。
高中物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤(2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为(Δg′)max =2G Vdρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k V G k k δρ==--3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)2Rv v h =【解析】 【分析】【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得202v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h= (3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得02R v v h =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算5.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。
真题分类----万有引力(26届初赛)16.(20分)一个质量为m1的废弃人造地球卫星在离地面h=800km 高空作圆周运动,在某处和一个质量为m2=m1/9的太空碎片发生迎头正碰,碰撞时间极短,碰后二者结合成一个物体并作椭圆运动.碰撞前太空碎片作椭圆运动,椭圆轨道的半长轴为7500km ,其轨道和卫星轨道在同一平面内.已知质量为m 的物体绕地球作椭圆运动时,其总能量即动能与引力势能之和2Mm E G a=-,式中G 是引力常量,M 是地球的质量,a 为椭圆轨道的半长轴.设地球是半径R=6371km 的质量均匀分布的球体,不计空气阻力.(i )试定量论证碰后二者结合成的物体会不会落到地球上.(ii )如果此事件是发生在北级上空(地心和北极的连线方向上),碰后二者结合成的物体与地球相碰处的纬度是多少?(23届初赛)(25分)从赤道上的C 点发射洲际导弹,使之精确地击中北极点N ,要求发射所用的能量最少。
假定地球是一质量均匀分布的半径为R 的球体,R=6400km 。
已知质量为m 的物体在地球引力作用下作椭圆运动时,其能量E 与椭圆半长轴a 的关系为E=-G aMm2式中M 为地球质量,G 为引力常量。
(1)假定地球没有自转,求最小发射速度的大小和方向(用速度方向与从地心O 到发射点C 的连线之间的夹角表示)。
(2)若考虑地球的自转,则最小发射速度的大小为多少?(3)试导出E=-G aMm 2。
o c(17初赛)七、当质量为m 的质点距离—个质量为M 、半径为R 的质量均匀分布的致密天体中心的距离为r (r ≥R ) 时,其引力势能为P /E GMm r =-,其中11226.6710N m kg G =⨯⋅⋅--为万有引力常量.设致密天体是中子星,其半径10km R =,质量 1.5M M =⊙(301 2.010kg M ⨯⊙=,为太阳的质量).1.1Kg 的物质从无限远处被吸引到中子星的表面时所释放的引力势能为多少?2.在氢核聚变反应中,若参加核反应的原料的质量为m ,则反应中的质量亏损为0.0072 m ,问1kg 的原料通过核聚变提供的能量与第1问中所释放的引力势能之比是多少?3.天文学家认为:脉冲星是旋转的中子星,中子星的电磁辐射是连续的,沿其磁轴方向最强,磁轴与中子星的自转轴方向有一夹角(如图预17-7所示),在地球上的接收器所接收到的一连串周期出现的脉冲是脉冲星的电磁辐射。
试由上述看法估算地球上接收到的两个脉冲之间的时间间隔的下限.(15届复赛)五、(26分)从地球表面向火星发射火星探测器。
设地球和火星都在同一平面上绕太阳做圆周运动。
火星轨道半径R m 为地球轨道半径R 0的1.500倍。
简单而又比较节省能量的发射过程可分为两步进行:第一步,在地球表面用火箭对探测器进加速,使之获得足够的动能,从而是脱离地球引力作用成为一个沿地球轨道运行的人造行星。
第二步是在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当什,从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上,如图7所示。
问:1、为使探测器成为沿地球轨道运行的人造行星,必须加速探测器,使之在地面附近获得多大的速度(相对于地球)?2、当探测脱离地球并沿地球公转轨道稳定运行后,在某年3月1日零时测得探测器与火星之 间的角距离为600,如图8所示,问应在何年何月何日点燃探测器上的火箭发动机方能使探测器恰好落在火星表面?(时间计算仅需精确到日)。
已知地球半径为R e =6.4×106m ,重力加速度g 可取9.8m/s 2.(16届初赛)四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。
双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统处理。
现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。
他们正绕两者连线的中点作圆周运动。
1. 试计算该双星系统的运动周期T 计算。
2. 若实验上观测到的运动周期为T 观测,且:1:1)T T =>观测计算。
为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。
作为一种简化模型,我们假定在这两个星体连线为直径的球体内均匀分布着这种暗物质,而不考虑其它暗物质的影响。
试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
(17届复赛)四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? (20届复赛)一、(15分)图中a 为一固定放置的半径为R 的均匀带电球体,O 为其球心.己知取无限远处的电势为零时,球表面处的电势为U =1000 V .在离球心O 很远的O ′点附近有一质子b ,它以 E k =2000 eV 的动能沿与O 'O 平行的方向射向a .以l 表示b 与O 'O 线之间的垂直距离,要使质子b 能够与带电球体a 的表面相碰,试求l 的最大值.把质子换成电子,再求l 的最大值.(20届复赛)三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A 和B ,分别将质量为M 的物体和质量为m 的待发射卫星同时自由释放,只要M 比m 足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B 冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B 时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M =20m ,地球半径0R =6400 km .假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.(21届复赛)二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度R GM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示)(26届复赛)三、(15分)1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。
试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。
2.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。
若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。
学生甲以地心为参考系,利用牛顿第二定律和万有引力定律,得到月球相对于地心参考系的加速度为2RM Ga m =;学生乙以月心为参考系,同样利用牛顿第二定律和万有引力定律,得到地球相对于月心参考系的加速度为2R m G a e =。
这二位学生求出的地-月间的相对加速度明显矛盾,请指出其中的错误,并分别以地心参考系(以地心速度作平动的参考系)和月心参考系(以月心速度作平动的参考系)求出正确结果。
(27届复赛)二、( 20 分)距离我们为 L 处有一恒星,其质量为 M ,观测发现其位置呈周期性摆动,周期为 T ,摆动范围的最大张角为 △θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m 所满足的方程.若 L=10 光年, T =10 年, △θ = 3 毫角秒, M = Ms (Ms 为太阳质量),则此行星的质量和它运动的轨道半径r 各为多少?分别用太阳质量 Ms 和国际单位 AU (平均日地距离)作为单位,只保留一位有效数字.已知 1 毫角秒= 1 1000 角秒,1角秒= 1 3600度,1AU=1.5×108km,光速 c = 3.0 ×105km/s.(28届复赛)一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
(28届复赛)三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m 的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。