dsp数字信号处理课件第1章离散时间信号与系统
- 格式:ppt
- 大小:1018.50 KB
- 文档页数:74
§7-1 概述一、 离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、 连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、 离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、 典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ下图表示了)(n k -δ的波形。
连续信号离散信号 数字信号 取样量化这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
4、 单边正弦序列:)()cos(0k k A εφω+(a) 0.9a = (d) 0.9a =-(b) 1a = (e) 1a =-(c) 1.1a = (f) 1.1a =-双边正弦序列:)cos(0φω+k A五、 离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
第1章认识DSP数字信号处理技术(Digital Signal Processing简称DSP)在日常生活中正发挥着越来越重要的作用,现代数学领域、网络理论、信号与系统、控制理论、通信理论、故障诊断等领域无一例外的都需要数字信号处理作为基础工具。
其技术已经广泛应用于多媒体信号处理、通信、工业控制、雷达、天气预报等领域,也正是有了数字信号处理器技术才使得诸多领域取得了革命性的变化,数字信号处理技术本身拥有两成含义:一方面指的完成数字信号处理工作的处理器器件,另一方面指专门针对数字信号处理而设计实现的特殊算法和结构。
数字信号处理器技术的学习在嵌入式领域也占了相当大的比重,但由于其放大而复杂的硬件结构和灵活多变的软件设计方法,数字信号处理的学习往往对于初学者来说是无从下手的,到底应该怎样去学习DSP呢?这本书正是为了解决这个问题而诞生的,作为开头序章,在本章当中先来了解一下DSP的一些基础知识,了解DSP的基本概念,现在就让为我们来认识一下到底什么是DSP!1.1 DSP基础知识数字信号处理器(DSP)由最初的作为玩具上面的一个控制芯片,经过二三十年的发展,已经成为了数字化信息时代的核心引擎,广发用于家电、航空航天、控制、生物工程以及军事等许许多多需要实时实现的领域当中。
在全球的半导体市场中,未来三年DSP将保持着最高的增长率。
据美国权威机构SIA 2006年6月的预测,从2006年~2008年,半导体平均年增长率为10%,而DSP的平均年增长率则近20%。
2007年DSP市场规模将首次超过100亿美元,创新的应用前景非常广阔。
事实上我们生活在一个模拟的世界,这个世界充满了颜色、影像、声音等和各种可以由线路或通过空气传输的信号。
数字技术提供这些真实世界现象与数字信号处理的接口。
数字服务者所提供的每一件事情都是以模拟数字转换A/D开始而以数字模拟转换D/A为结束,而其中所进行的就是各种各样复杂的数字运算处理。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理绪论1.模拟信号,离散信号,数字信号的定义;模拟信号:信号随时间(空间)连续变化,并且幅度值取自连续数据域。
自然界中大部分信号时模拟信号。
离散信号: 信号随时间(空间)以一定规律离散变化,幅度值取自连续数据域。
自然界中这样的信号很少,一般通过对模拟信号的采样形成,数字信号:信号随时间(空间)以一定规律离散变化,并且幅度值取自以二进制编码的离散数据域,一般通过对离散信号进行量化得到。
2.数字信号处理的组成;数字信号处理系统并不是孤立的数字系统,一般以数字处理系统为核心,结合A/D和D/A(数字-模拟)转换器、滤波器和放大器等子系统组成,前置低通滤波器将信号中大于1/2采样频率的高频分量过滤掉,防止采样是出现频谱混叠现象,A/D转换包含采样和量化,采样得倒离散信号,量化后每个离散信号将被数字编码形成数字信号,经过D/A转化后形成跳变的模拟信号必须通过拼花滤波器将信号变成平滑的连续信号。
3.数字信号处理的优点;1.软件可实现:纯粹的模拟信号必须完全通过硬件实现,而数字化处理则不仅可以通过微处理器、专用数字器件实现,而且可以通过程序的方式实现。
软件可实现特性带来的出处之一就是处理系统能进行大规模的复杂处理,而且暂用空间极小2.灵活性强:模拟信号处理系统调试和修改不便,而数字处理系统的系统参数一般保存在寄存器或存储器中,修改这些参数对系统进行调试非常简单,软件实现尤其如此。
由于数字器件以及软件的特点,数字信号处理系统的复制也非常容易,便于大规模生产。
3.可靠性高:模拟器件容易受电磁波、环境温度等因素影响,模拟信号连续变化,稍有干扰立即反映。
而数字器件是逻辑器件,一定范围的干扰不会引起数字值得变化,因此数字信号处理系统抗干扰性能强,可靠性高,数据也能永久保存。
4.精度高:模拟器件的数据表示精度低。
第一章.离散时间信号与系统1.奈奎斯特定理定义若要从采样后的信号频谱中不失真的恢复信号,则采样频率Ωs必须大于等于两倍的原信号频谱的最好截止频率Ωc,即Ωs≥2Ωc或f s≥2f c。
离散时间信号与系统离散时间信号与系统是数字信号处理领域中的重要概念。
离散时间信号是在离散时间点上取值的信号,而离散时间系统则是对离散时间信号进行处理或操作的系统。
在本文中,我们将详细探讨离散时间信号与系统的基本概念、特性和应用。
一、离散时间信号的定义和表示离散时间信号是在离散时间点上取值的信号,通常用序列表示。
离散时间序列可以用数学公式或图形方式表示。
其中,数学公式表示常用的形式是$x[n]$,而图形表示则可以通过绘制离散时间序列的点来展示。
离散时间信号可以分为有限长序列和无限长序列。
有限长序列在某一区间上有值,而在其他区间有值或为零。
无限长序列在整个时间轴上有值,通常会满足某些性质,如周期性或衰减性。
二、离散时间系统的定义和分类离散时间系统是对离散时间信号进行处理或操作的系统。
离散时间系统可以通过输入输出关系来定义。
输入为离散时间信号,输出为对输入信号进行处理或操作后得到的信号。
离散时间系统可以分为线性系统和非线性系统、时不变系统和时变系统、因果系统和非因果系统、稳定系统和非稳定系统等不同类别。
不同类别的系统具有不同的特性和性质,对信号的处理方式也会有所不同。
三、离散时间信号与系统的特性离散时间信号与系统具有许多特性。
其中一些重要的特性包括时域特性、频域特性和稳定性。
时域特性描述了信号或系统在时间上的行为,频域特性描述了信号或系统在频率上的行为,而稳定性则描述了系统的输出是否受到输入的限制。
离散时间信号的时域特性可以通过序列的幅值、相位和频率来描述。
离散时间系统的时域特性可以通过系统的冲激响应、单位样值响应和单位阶跃响应来描述。
频域特性则可以通过离散时间信号和系统的傅里叶变换来描述。
四、离散时间信号与系统的应用离散时间信号与系统在数字信号处理中有广泛的应用。
其中一些常见的应用包括音频处理、图像处理、通信系统和控制系统等。
在音频处理中,离散时间信号与系统用于音频信号的录制、编码和解码。
它可以通过滤波和均衡等方式改善音频信号的质量。