微分方程Chapter-12-Differential-Equation_2_3
- 格式:ppt
- 大小:479.00 KB
- 文档页数:12
微积分英文词汇,高数名词中英文对照,高等数学术语英语翻译一览关键词:微积分英文,高等数学英文翻译,高数英语词汇来源:上海外教网| 发布日期:2008-05-16 17:12V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x 轴x-coordinate :x 坐标x-intercept :x 截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Lin ear approximati on:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分H:Higher mathematics 高等数学/高数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分C: Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch' sMean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coord in ate: s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cyli nder :圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simps on' Rule : Simps on 法贝U逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数微积分词汇第一章函数与极限Chapter1 Function and Limit 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mappingX 到Y 的映射mapping of X ontoY 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection 算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值函数absolute value 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if(iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 单调函数monotone function 函数的奇偶性parity(odevity) of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 反函数inverse function 直接函数direct function 复合函数composite function 中间变量intermediate variable 函数的运算operation of function 基本初等函数basic elementary function 初等函数elementary function 幂函数power function 指数函数exponential function 对数函数logarithmic function 三角函数trigonometric function 反三角函数inverse trigonometric function 常数函数constant function 双曲函数hyperbolic function 双曲正弦hyperbolic sine 双曲余弦hyperbolic cosine 双曲正切hyperbolic tangent 反双曲正弦inverse hyperbolic sine 反双曲余弦inverse hyperbolic cosine 反双曲正切inverse hyperbolic tangent 极限limit 数列sequence of number 收敛convergence 收敛于a converge to a 发散divergent 极限的唯一性uniqueness of limits 收敛数列的有界性boundedness of a convergent sequence 子列subsequence 函数的极限limits of functions函数当x 趋于x0 时的极限limit of functions as x approaches x0 左极限left limit 右极限right limit 单侧极限one-sided limits 水平渐近线horizontal asymptote 无穷小infinitesimal 无穷大infinity 铅直渐近线vertical asymptote 夹逼准则squeeze rule 单调数列monotonic sequence 高阶无穷小infinitesimal of higher order 低阶无穷小infinitesimal of lower order 同阶无穷小infinitesimal of the same order作者:新少年特工2007-10-8 18:37 回复此发言2 高等数学-翻译等阶无穷小equivalent infinitesimal 函数的连续性continuity of a function 增量increment函数在x0 连续the function is continuous at x0 左连续left continuous 右连续right continuous 区间上的连续函数continuous function 函数在该区间上连续function is continuous on an interval 不连续点discontinuity point 第一类间断点discontinuity point of the first kind 第二类间断点discontinuity point of the second kind 初等函数的连续性continuity of the elementary functions 定义区间defined interval 最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum) 零点定理the zero point theorem 介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential 速度velocity 匀速运动uniform motion 平均速度average velocity 瞬时速度instantaneous velocity 圆的切线tangent line of a circle 切线tangent line 切线的斜率slope of the tangent line 位置函数position function 导数derivative 可导derivable 函数的变化率问题problem of the change rate of a function 导函数derived function 左导数left-hand derivative 右导数right-hand derivative 单侧导数one-sided derivatives在闭区间【a,b】上可导is derivable on the closed interval [a,b] 切线方程tangent equation 角速度angular velocity 成本函数cost function 边际成本marginal cost 链式法则chain rule 隐函数implicit function 显函数explicit function 二阶函数second derivative 三阶导数third derivative 高阶导数nth derivative 莱布尼茨公式Leibniz formula 对数求导法log- derivative 参数方程parametric equation 相关变化率correlative change rata 微分differential 可微的differentiable 函数的微分differential of function 自变量的微分differential of independent variable 微商differential quotient 间接测量误差indirect measurement error 绝对误差absolute error 相对误差relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle 's theorem 费马引理Fermat's lemma 拉格朗日中值定理Lagrange's mean value theorem 驻点stationary point 稳定点stable point 临界点critical point 辅助函数auxiliary function 拉格朗日中值公式Lagrange's mean value formula 柯西中值定理Cauchy's mean value theorem 洛必达法则L' Hospital ' s Rule 0/0 型不定式indeterminate form of type 0/0 不定式indeterminate form 泰勒中值定理Taylor 's mean value theorem 泰勒公式Taylor formula 余项remainder term 拉格朗日余项Lagrange remainder term 麦克劳林公式Maclaurin ' s formula 佩亚诺公式Peano remainder term 凹凸性concavity 凹向上的concave upward, cancave up 凹向下的,向上凸的concave downward' concave down 拐点inflection point 函数的极值extremum of function 极大值local(relative) maximum 最大值global(absolute) mximum 极小值local(relative) minimum 最小值global(absolute) minimum 目标函数objective function 曲率curvature 弧微分arc differential 平均曲率average curvature 曲率园circle of curvature 曲率中心center of curvature 曲率半径radius of curvature 渐屈线evolute 渐伸线involute 根的隔离isolation of root 隔离区间isolation interval 切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals 原函数primitive function(antiderivative) 积分号sign of integration 被积函数integrand 积分变量integral variable 积分曲线integral curve 积分表table of integrals 换元积分法integration by substitution 分部积分法integration by parts 分部积分公式formula of integration by parts 有理函数rational function 真分式proper fraction 假分式improper fraction第五章定积分Chapter5 Definite Integrals 曲边梯形trapezoid with 曲边curve edge 窄矩形narrow rectangle 曲边梯形的面积area of trapezoid with curved edge 积分下限lower limit of integral 积分上限upper limit of integral 积分区间integral interval 分割partition 积分和integral sum 可积integrable 矩形法rectangle method 积分中值定理mean value theorem of integrals 函数在区间上的平均值average value of a function on an integvals 牛顿-莱布尼茨公式Newton-Leibniz formula 微积分基本公式fundamental formula of calculus 换元公式formula for integration by substitution 递推公式recurrence formula 反常积分improper integral反常积分发散the improper integral is divergent 反常积分收敛the improper integral is convergent 无穷限的反常积分improper integral on an infinite interval 无界函数的反常积分improper integral of unbounded functions 绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals 元素法the element method面积元素element of area平面图形的面积area of a luane figure 直角坐标又称“笛卡儿坐标(Cartesian coordinates) 极坐标polar coordinates 抛物线parabola 椭圆ellipse旋转体的面积volume of a solid of rotation 旋转椭球体ellipsoid of revolution, ellipsoid of rotation 曲线的弧长arc length of acurve 可求长的rectifiable 光滑smooth 功work 水压力water pressure 引力gravitation 变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra 向量vector 自由向量free vector 单位向量unit vector 零向量zero vector 相等equal 平行parallel 向量的线性运算linear poeration of vector 三角法则triangle rule 平行四边形法则parallelogram rule 交换律commutative law 结合律associative law 负向量negative vector 差difference 分配律distributive law 空间直角坐标系space rectangular coordinates 坐标面coordinate plane 卦限octant 向量的模modulus of vector向量 a 与 b 的夹角angle between vector a and b 方向余弦direction cosine 方向角direction angle 向量在轴上的投影projection of a vector onto an axis 数量积,外积,叉积scalar product,dot product,inner product 曲面方程equation for a surface 球面sphere 旋转曲面surface of revolution 母线generating line轴axis 圆锥面cone 顶点vertex 旋转单叶双曲面revolution hyperboloids of one sheet 旋转双叶双曲面revolution hyperboloids of two sheets 柱面cylindricalsurface ,cylinder 圆柱面cylindrical surface 准线directrix 抛物柱面parabolic cylinder 二次曲面quadric surface 椭圆锥面dlliptic cone 椭球面ellipsoid 单叶双曲面hyperboloid of one sheet 双叶双曲面hyperboloid of two sheets 旋转椭球面ellipsoid of revolution 椭圆抛物面elliptic paraboloid 旋转抛物面paraboloid of revolution 双曲抛物面hyperbolic paraboloid 马鞍面saddle surface 椭圆柱面elliptic cylinder 双曲柱面hyperbolic cylinder 抛物柱面parabolic cylinder 空间曲线space curve 空间曲线的一般方程general form equations of a space curve 空间曲线的参数方程parametric equations of a space curve 螺转线spiral 螺矩pitch 投影柱面projecting cylinder 投影projection 平面的点法式方程pointnorm form eqyation of a plane 法向量normal vector 平面的一般方程general form equation of a plane 两平面的夹角angle between twoplanes 点到平面的距离distance from a point to a plane 空间直线的一般方程general equation of a line in space 方向向量direction vector 直线的点向式方程pointdirection form equations of a line 方向数direction number 直线的参数方程parametric equations of a line 两直线的夹角angle between two lines 垂直perpendicular 直线与平面的夹角angle between a line and a planes 平面束pencil of planes 平面束的方程equation of a pencil of planes行列式determinant 系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数function of one variable 多元函数function of several variables 内点interior point 外点exterior point 边界点frontier point,boundary point 聚点point of accumulation 开集openset 闭集closed set 连通集connected set 开区域open region 闭区域closed region 有界集bounded set 无界集unbounded set n 维空间n-dimentional space 二重极限double limit 多元函数的连续性continuity of function of seveal 连续函数continuous function 不连续点discontinuity point 一致连续uniformly continuous 偏导数partial derivative对自变量x 的偏导数partial derivative with respect to independent variable x 高阶偏导数partial derivative of higher order 二阶偏导数second order partial derivative 混合偏导数hybrid partial derivative全微分total differential 偏增量oartial increment 偏微分partial differential 全增量total increment 可微分differentiable 必要条件necessary condition 充分条件sufficient condition 叠加原理superpostition principle 全导数total derivative 中间变量intermediate variable 隐函数存在定理theorem of the existence of implicit function 曲线的切向量tangent vector of a curve法平面normal plane 向量方程vector equation向量值函数vector-valued function 切平面tangent plane 法线normal line 方向导数directional derivative 梯度gradient 数量场scalar field 梯度场gradient field 向量场vector field 势场potential field 引力场gravitational field 引力势gravitational potential 曲面在一点的切平面tangent plane to a surface at a point 曲线在一点的法线normal line to a surface at a point 无条件极值unconditional extreme values 条件极值conditional extreme values 拉格朗日乘数法Lagrange multiplier method 拉格朗日乘子Lagrange multiplier 经验公式empirical formula 最小二乘法method of least squares 均方误差mean square error第九章重积分Chapter9 Multiple Integrals 二重积分double integral 可加性additivity 累次积分iterated integral 体积元素volume element 三重积分triple integral 直角坐标系中的体积元素volume element in rectangular coordinate system 柱面坐标cylindrical coordinates 柱面坐标系中的体积元素volume element in cylindrical coordinate system 球面坐标spherical coordinates 球面坐标系中的体积元素volume element in spherical coordinate system 反常二重积分improper double integral 曲面的面积area of a surface 质心centre of mass 静矩static moment 密度density 形心centroid 转动惯量moment of inertia 参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals 对弧长的曲线积分line integrals with respect to arc hength 第一类曲线积分line integrals of the first type 对坐标的曲线积分line integrals with respect to x,y,and z 第二类曲线积分line integrals of the second type 有向曲线弧directed arc 单连通区域simple connected region 复连通区域complex connected region 格林公式Green formula 第一类曲面积分surface integrals of the first type 对面的曲面积分surface integrals with respect to area 有向曲面directed surface 对坐标的曲面积分surface integrals with respect to coordinate elements 第二类曲面积分surface integrals of the second type 有向曲面元element of directed surface 高斯公式gauss formula 拉普拉斯算子Laplace operator 格林第一公式Green's first formula 通量flux 散度divergence 斯托克斯公式Stokes formula 环流量circulation 旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series 一般项general term 部分和partial sum 余项remainder term 等比级数geometric series 几何级数geometric series 公比common ratio 调和级数harmonic series 柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D'Alembert test 柯西判别法Cauchy test 交错级数alternating series 绝对收敛absolutely convergent 条件收敛conditionally convergent 柯西乘积Cauchy product 函数项级数series of functions 发散点point of divergence 收敛点point of convergence 收敛域convergence domain和函数sum function 幂级数power series 幂级数的系数coeffcients of power series 阿贝尔定理Abel Theorem 收敛半径radius of convergence 收敛区间interval of convergence 泰勒级数Taylor series 麦克劳林级数Maclaurin series 二项展开式binomial expansion 近似计算approximate calculation 舍入误差round-offerror,rounding error 欧拉公式Euler 's formula 魏尔斯特拉丝判别法Weierstrass test 三角级数trigonometric series 振幅amplitude 角频率angular frequency 初相initial phase 矩形波square wave 谐波分析harmonic analysis 直流分量direct component 基波fundamental wave 二次谐波second harmonic 三角函数系trigonometric function system 傅立叶系数Fourier coefficient 傅立叶级数Forrier series 周期延拓periodic prolongation 正弦级数sine series 余弦级数cosine series 奇延拓odd prolongation 偶延拓even prolongation 傅立叶级数的复数形式complex form of Fourier series 第十二章微分方程Chapter12 Differential Equation 解微分方程solve a dirrerential equation 常微分方程ordinary differential equation 偏微分方程partial differential equation,PDE 微分方程的阶order of a differential equation 微分方程的解solution of a differential equation 微分方程的通解general solution of a differential equation 初始条件initial condition 微分方程的特解particular solution of a differential equation 初值问题initial value problem 微分方程的积分曲线integral curve of a differential equation 可分离变量的微分方程variable separable differential equation 隐式解implicit solution 隐式通解inplicit general solution 衰变系数decay coefficient 衰变decay 齐次方程homogeneous equation 一阶线性方程linear differential equation of first order 非齐次non-homogeneous 齐次线性方程homogeneous linear equation 非齐次线性方程non-homogeneous linear equation 常数变易法method of variation of constant 暂态电流transient stata current 稳态电流steady state current 伯努利方程Bernoulli equation全微分方程total differential equation 积分因子integrating factor 高阶微分方程differential equation of higher order 悬链线catenary高阶线性微分方程linera differential equation of higher order 自由振动的微分方程differential equation of free vibration 强迫振动的微分方程differential equation of forced oscillation 串联电路的振荡方程oscillation equation of series circuit 二阶线性微分方程second order linera differential equation 线性相关linearly dependence 线性无关linearly independce 二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient 特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration 微分算子differential operator 待定系数法method of undetermined coefficient 共振现象resonance phenomenon 欧拉方程Euler equation 幂级数解法power series solution 数值解法numerial solution 勒让德方程Legendre equation 微分方程组system of differential equations 常系数线性微分方程组system of linera differential equations with constant coefficientV、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x 轴x-coordinate :x 坐标x-intercept :x 截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M 、N 、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation :线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分H:Higher mathematics 高等数学/高数E、F、G、H: Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面D: Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coord in ates :极坐标二重积分C:Calculus :微积分differe ntial :微分学integral :积分学Cartesian coordinates :笛卡儿坐标■ 一般指直角坐标Cartesia n coord in ates system :笛卡儿坐标系Cauch'sMeanValue Theorem :柯西均值定理Cha in Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :圭寸闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复禾UCon cavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Contin uity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Conv erge nee :收敛interval of :收敛区间radius of :收敛半径Convergent sequenee : 收敛数歹U series :收敛级数Coord in ate : s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar : 极坐标rectangular :直角坐标spherical : 球面坐标Coord in ate axes :坐标轴Coord in ate pla nes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder :圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson's Rule :Simpson 法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数微积分专有名词中英文对照absolutely convergent 绝对收敛absolute value 绝对值algebraic function 代数函数analytic geometry 解析几何antiderivative 不定积分approximate integration 近似积分approximation 近似法、逼近法arbitrary constant 任意常数arithmetic series/progressi on (AP算数级数asymptotes (vertical and horiz on tai)垂直/ 水平)渐近线average rate of cha nge 平均变化率base 基数binomial theorem 二项式定理,二项展开式Cartesian coordinates 笛卡儿坐标(一般指直角坐标) Cartesia n coord in ates system 笛卡儿坐标系Cauch' s Mea n Value Theore柯西均值定理chain rule 链式求导法则calculus 微积分学closed interval integral 闭区间积分coefficient 系数composite function 复合函数conchoid 蚌线continuity (函数的)连续性concavity (函数的)凹凸性conditionally convergent 有条件收敛continuity 连续性critical point 临界点cubic function 三次函数cylindrical coordinates 圆柱坐标decreasing function 递减函数decreas ing seque nee递减数歹U definite integral 定积分derivative 导数determinant 行歹式differential coefficient 微分系数differential equation 微分方程。
Chapter 1 First-order ordinary differential equations (ODE)一階常微分方程1.1 基本概念()x f y =或()t f y =,y 是x 或t 的函數,y 是因變數(dependent variable ),x 或t 是自變數(independent variable )◎ 微分方程(differential equations):一方程式包含有因變數y 關於自變數x 或t的導數(derivatives)y y ′ ,&或微分(differentials)dy 。
◎ 常微分方程(ordinary differential equations, ODE):一微分方程包含有一個或數個因變數(通常為()x y )關於僅有一個自變數x 的導數。
Ex. 222)2(2 ,09 ,cos y x y e y y x y y x y x +=′′+′′′′=+′′=′◎ 偏微分方程(partial differential equations, PDE):一微分方程包含至少有一個因變數關於兩個以上自變數的部分導數。
Ex. 02222=∂∂+∂∂yux u◎ 微分方程的階數:在微分方程式中所出現最高階導數的階數。
◎ 線性微分方程:在微分方程式中所出現的因變數因變數因變數或其導數僅有一次式(first degree)而無二次以上的乘積(自變數可以有二次以上的乘積)。
Ex. x y y x y cos 24=+′+′′ 因變數:y ,自變數:x ,二階線性常微分方程 x y y y y cos 24=+′+′′ 因變數:y ,自變數:x ,二階非線性常微分方程 222)2(2 y x y e y y x x +=′′+′′′′ 因變數:y ,自變數:x ,三階非線性常微分方程□ 一階常微分方程(first-order ordinary differential equations)隱式形式(implicit form) 表示 0),,(=′y y x F (4)顯式形式(explicit form) 表示 ),(y x f y =′Ex. 隱式形式ODE 0423=−′−y y x ,當0≠x 時,可表示為顯式形式234y x y =′□ 解的概念(concept of solution)在某些開放間隔區間b x a <<,一函數)(x h y =是常微分方程常微分方程0),,(=′y y x F 的解,其函數)(x h 在此區間b x a <<是明確(defined)且可微分的(differentiable),其)(x h 的曲線(或圖形)是被稱為解答曲線(solution curve)。
圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve空间曲线的参数方程parametric equations of a space curve螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角anglebetween two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Severa l Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order二阶偏导数second order partial derivative混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a dirrerential equation常微分方程ordinary differential equation偏微分方程partial differential equation,PDE微分方程的阶order of a differential equation微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation初值问题initial value problem微分方程的积分曲线integral curve of a differential equation可分离变量的微分方程variable separable differential equation隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneour lineardifferential equation withconstant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficient。
2.3 恰当方程与积分因子方法(Exact differential equation and method ofintegrating factor )[教学内容] 1. 认识恰当方程,如何判定恰当方程; 2.介绍如何求解恰当方程; 3. 介绍什么叫积分因子; 4. 介绍如何寻找积分因子;5. 积分因子一些性质.[教学重难点] 重点是会判定和求解恰当方程,难点是如何寻找方程的积分因子 [教学方法] 自学1、4;讲授2、3 课堂练习 [考核目标]1. 熟练判定一个一阶方程是否为恰当方程;2. 会求解恰当方程;3. 知道积分因子的概念;4. 会寻找积分因子,并求解方程.1. 一阶微分形式的原函数存在性及其求法sin(3y)e y)u(x ,2x =的全微分为cos(3y)dy 3e sin(3y)dx 2e dy u dx u du 2x 2x y x +=+=,我们称u(x, y)为一阶微分形式cos(3y)dy 3e sin(3y)dx 2e 2x2x+的一个原函数,并不是任一微分形式都有原函数的,例如dy xy dx 2x +。
《数学分析》下册P228定理21.12给出了如何判定dy y)Q(x,dx y)P(x,+是否存在原函数充要条件,这里P(x, y), Q(x, y)在单连通区域D 内具有一阶连续偏导数.例33. 判定一阶微分形式y)dy cos (x y)dx sin (2x ++是否为某个函数u(x, y)的全微分,如果是,求出它的原函数u(x, y).解:记 y) cos (x y)Q(x, ,y)sin (2x y)P(x,=+=, 易见P(x, y)和Q(x, y)在单连通区域2R 内具有一阶连续偏导数,且0xPx Q =∂∂-∂∂,(格林公式:⎰⎰⎰-=+D y x L )dxdy P (Q Qdy Pdx =0即积分路径无关). 因此由定理21.12知,y)dy cos (x y)dx sin (2x ++恰是某个函数u(x, y)的全微分.求函数u(x, y)方法一、由y)P(x ,u x =知,C(y)y sin x x y)dx P(x,y)u(x,2++==⎰.再由y)Q(x ,u y =知,y cos x (y)' C y cos x y)(x ,u y =+=,即1C C(y) 0,(y)' C ==(常数). 特别地,取0C 1=,得到一个原函数为 12C y sin x x y)u(x ,++=.求原函数方法二、由定理21.12知,y)dy cos (x y)dx sin (2x ++曲线积分与路径无关性且⎰+=t)(s,(0,0)y)dy Q(x,y)dx P(x, t)u(s,. 特别地,取折线段OA: y=0, s x 0≤≤;t y 0 s, x :AB ≤≤=,则t cos s s ydy cos s 2x dx Qdy Pdx Qdy Pdx t)u(s,2ts 0ABOA+=+=+++=⎰⎰⎰⎰.将自变量(s, t)换为(x, y)得到,y cos x x y)u(x ,2+=.练习28. 判定一阶微分形式)dy y -2x y -(x )dx y -2x y (x 2222++是否为某个函数u(x, y)的全微分,如果是,求出它的原函数u(x, y).2. 恰当方程(Exact equation)的概念及其解法 (1)设一阶方程为y)N(x ,y)M(x ,dx dy -=,其中M(x,y), N(x, y)在单连通区域内具有一阶连续偏导数,改写为对称形式(*)0y)dy N(x,y)dx M(x,=+. 如果y)dy N(x,y)dx M(x,+恰好为某个函数u(x, y)的全微分,则称方程(*)为恰当方程. (2)恰当方程y)dy N(x,y)dx M(x,+的解法:Step (a) 求出一阶微分形式一个原函数u(x, y),则0Ndy Mdx y)du(x,=+=;Step(b) 由一个二元函数两个偏导数都为零知,该二元函数为常函数. 于是,有C y)u(x,=, 这就是恰当方程的通积分.例34. Use the method of exact equations to solve 1dxdyy cot 2x -=⋅⋅. Solution First, we rearrange the equation as 0dy y cot dx x2=+. Let y cot y)N(x, ,x2y)M(x,==, 在0x ≠的单连通区域内,000y M x N =-=∂∂-∂∂(Test for exactness ), 因此0dy y cot dx x2=+为恰当方程.Assume that u(x, y) is a antiderivative(原函数) ofdy y cot dx x 2+, then N u M,u y x ==. (a) Integrating the first equality, we get ⎰+==C(y)2ln x dx x2y)u(x,.(b) Differentiating the above equality, we get ysin y cos dy dCy,cot (y)' C y)(x ,u y ===. (c) Integrating the above equality, we get⎰⎰=dy ysin ycos dC(y), |y sin |ln C(y)=. So u(x, y)=|y sin x |ln 2and general integral (通积分) of equation is 12C |y sin x |ln =. 例35. 求解下列方程02y)dy e (x dx e yy=++.Solution Let 2y x e y)N(x , ,e y)M(x ,yy +==. First, we apply the test for exactness (恰当方程判定方法):0e e M N y y y x =-=-. So equation is exact equation.Assume u(x, y) is an antiderivative of M d x+ N d y , then N u M,u y x ==. (a) Integrating the first equality: u(x, y)=C(y)e x dx e y y +=⎰.(b) Differentiating the above equality: 2y (y)' C 2y,xe (y)' C e u y y y =+=+=. (c) Integrating the 2ydy dC =, we get 2y C(y)=.So u(x, y) =2y y e x +, and general integral of equation is C ~y e x 2y =+.作业29. Determine which of the following equations is exact. Solve those that are exact. (a) 0)dy y (x )dx x (y 33=++-; (b) y)dx cos x cos (e )dy x e y sin (sin x yy+=-. 作业30. For each of the following equations, find the value of n for which the equation is exact. Then solve the equation for that value of n.(a) 0y)dy x (x y)dx n x (x y 2322=+++; (b) 0dy e n x )dx ey (x 2xy 2xy=++.3. 积分因子(Integrating Factor )如果一个方程是恰当方程,则它的求解过程是程序化的. 但并不是任一个方程都是恰当的,那么能否通过某种操作或等价变换使得它化为恰当方程呢? 尝试如下: 例36. 求解0x )dy y (x ydx 2=-+.解:记x )y (x y)N(x , y,y)M(x ,2-==,则验证0112x y M N y x ≠--=-. 即原方程不是恰当的. 但是在原方程两边乘以0x 1y)μ(x,2≠=,则新方程为0)dy x1(y dx x y 2=-+. 此时222x x )y (x y)(x ,N ~ ,x y y)(x ,M ~-==,有0x1x 1M ~N ~22y x =-=-. 新方程是恰当方程. 记u(x, y)为dy N ~dx M ~+一个原函数,则N ~u ,M ~u y x ==. (a) 对第一个等式两边积分得到:⎰+-==C(y)xydx x y y)u(x,2; (b) 对上式两边关于y 求导得到:y dydC y,(y)' C ,x 1y (y)C'x 1u y ==-=+-=. (c) 对ydy dC =两边积分得到:2y C(y)2=. 于是2y x y y)u(x ,2+-=.因此,原方程的通积分为12C 2y x y y)u(x ,=+-=. 注解37. 这里有几个问题需要回答:(1)方程0Ndy Mdx =+和乘以因子y)μ(x,后所得新方程0dy N ~dx M ~=+是否等解?如果不等解,那么问题出在哪?(2)如何寻找方程一个积分因子,使之成为恰当方程?关于问题(1)的回答是如果因子0y)μ(x,≠,则两方程等价;否则可能不等价.(上课听讲!) 关于问题(2)的回答:研究如果0Ndy Mdx =+两边乘以因子y)μ(x,所得方程0dy N ~μdx μM =+为恰当方程,则y)μ(x,需要满足什么条件?0)()(=∂∂-∂∂yM x N μμ,(**)y x y x M N M N μμμ+-=-)(,这是一个偏微分方程,由此确定出y)μ(x,难度不低于原常微分方程. 现作如下简化假定:情形一:y)μ(x,只是x 的函数,于是方程(**)简化为x y x N M N μμ-=-)(,反过来检验N )μM (N y x --是否只为变量x 的方程,若是,求解NM N dx d y x μμ)(--=,得到⎰=--dxNM N yx ey)μ(x,.情形二:y)μ(x,只是y 的函数,于是方程(**)简化为y y x M M N μμ=-)(,反过来检验M)μM (N y x -是否只为变量y 的方程,若是,求解M)μM (N dy d μy x -=,得到⎰=-dyMM N yx ey)μ(x,.例38. (1) 寻找方程0x )dy y (x ydx 2=-+的积分因子.(2) 寻找方程02x ydx )dy y (3x 22=--的积分因子,并求解该方程.解:记x y x y)N(x , y,y)M(x ,2-==,则1)-x (x y N 1),2(x y 112x y M N y x =-=--=-,于是,x2NM N yx -=--恰好为x 的函数,因此,所求积分因子为2dx x 2x 1e y)μ(x ,=⎰=-.由例36知,原方程通积分为原方程的通积分为12C 2y x y y)u(x ,=+-=.另一方面,注意到2x 1y)μ(x,=没有定义的点x=0,易验证,x=0也是方程的解. (上课听讲!) (2) 记22y -3x y)N(x , 2x y,y)M(x ,=-=,2x y M 8x ,2x 6x M N y x -==+=-,于是,y 4MM N yx -=-恰好为y 的函数,因此,所求积分因子为4dy y 4y1e y)μ(x,=⎰=-.0dy y)y (3x dx y 2x 0,dx y 2x y dy y )y (3x 42234422=-+-=--. 记u(x, y)为方程左端一个原函数,则C(y)yx dx y 2x y)u(x ,323+-=-=⎰; 24242y y 1y 3x (y)C'y x 3y)(x ,u -=+=,解得y 1C(y)=, 于是u(x, y)=y 1y x 32+-.所求通积分为132C y1y x y)u(x ,=+-=.另一方面,注意到4y1y)μ(x ,=没有定义的点y=0,易验证,y=0也是方程的解. (上课听讲!) 作业31. Solve each of the following differential equations by finding integrating factor. (1) 0x y)dy (x 1)dx (x y 2=-+-;(2) 0y)dy csc 2y y cot (e dx e xx=++; (3)教材P60 习题 2(1)、(9)4. 更多关于积分因子知识和方法(1)积分因子是二元函数情形:(a )0dy x dx y =-,0|)yx|d(ln y x dy x dx y ==-;(b )0dy x dx y =-,0)yxd(arctan y x dy x dx y 22==+-.(2)设齐次方程0y)dy N(x,y)dx M(x,=+,当0yN xM ≠+时,有积分因子yN x M 1μ+=,并运用之来求解yx yx dx dy -+=.解:(a )回忆:若R t y),M(x ,t ty)M(tx ,k∈∀=,则称y)M(x,为k 次齐次函数. 若M(x,y)和N(x,y)都为k 次齐次函数,则称方程y)N(x ,y)M(x ,dx dy -=为齐次方程.假定M(x, y)满足连续可微条件对y)M(x ,t ty)M(tx ,k=关于t 求导得到,y)M(x,kt ty)(tx,yM ty)(tx,xM 1k y x -=+,令t=1得到恒等式y)M(x ,k y)(x ,yM y) (x ,x M y x =+,类似地,y)N(x ,k y)(x ,yN y) (x ,x N y x =+.(b )考察0yN x M y)dy N(x ,y)dx M(x ,=++,经计算得到=+∂∂-+∂∂)yNx M y)M(x ,(y )yN x M y)N(x ,(x2y y y x x x yN)(x M )MyN N (x M yN)(x M M )N yN x M (M yN)(x M N +++++-++-+=0yN)(x M NM k M N k yN)(x M )NyM (x M )M yN x (N 22y x y x =+-=++-+=. 因此新方程为恰当方程.(c )考察方程yx y x dx dy -+=,改写为0y)dy (x -y)dx (x =-+. 取22y x 1y)x y(y)x (x 1μ+=+-++=,则新方程为0y x y)dy(x -y)dx (x 22=+-+. 分组为0y x x )dy -ydx (ydy)(x dx 22=+++,0yx x )dy-ydx (y x ydy)(x dx 2222=++++, 即0y x x )dy -ydx ()y 2(x )y d(x 222222=++++,0)x y (arctan d )y ln(x d 2122=++.所求的通积分为x yarctan 22e C ~y x =+.另一方面22y x 1μ+=没有定义的只有(0, 0)点,因此原方程没有其他的解.(3)思考教材P61 习题10,并求解0y)dy (x x)dx (y =++-.(参见教材P38例7) 解:方程为恰当方程,因此由习题10结论知,C x 2x y y C,y)y(x x )x (y 22=-+=++-为方程的通积分.(4)思考教材P61习题9,自行阅读丁同仁、李承治《常微分方程教程》P47定理6和P48例题2,完成教材P61 习题2(11) .。
高阶常系数齐次线性微分方程的解法凯歌【摘要】常微分方程是微积分学的重要组成部分,求解高阶微分方程是常微分方程的一难点问题,通常用适当的变量代换,达到降阶的目的来解决问题。
结合多年的教学经验,归纳总结给出高阶常系数齐次线性微分方程的一些求解方法,包括常系数齐次线性微分方程和欧拉方程以及可降阶的高阶微分方程等,并通过例题阐述各种方法。
%Ordinary Differential equation is an important part of differential and integration. Solving Ordinary Differential equation of difficult prob-lem is the differential equations of high order. Generally, in order to achieve the purpose to solve problems, it uses an appropriate variable substitution. With many years of teaching experience, summarizes to give some methods for solving the linear differential equation of higher-order, including homogeneous linear differential equation with constant coefficient, Euler equations and higher-order differential of reduce order and so on, gives an example to explain a variety of methods.【期刊名称】《现代计算机(专业版)》【年(卷),期】2016(000)002【总页数】4页(P26-28,51)【关键词】微分方程;特征方程;欧拉方程;齐次方程【作者】凯歌【作者单位】内蒙古财经大学统计与数学学院,呼和浩特 010070【正文语种】中文求解常微分方程的问题,常常通过变量分离、两边积分,如果是高阶微分方程则通过适当的变量代换,达到降阶的目的来解决问题。