硬质合金的焊接工艺现状与展望
- 格式:doc
- 大小:42.50 KB
- 文档页数:7
焊接技术的发展与应用前景随着现代工业不断发展,焊接技术已经成为了不可或缺的一部分。
在生产制造、航空航天、汽车制造、核能工业等众多领域中都得到了广泛的应用。
各种焊接技术日益完善,其发展与应用前景也越来越广泛。
一、焊接技术的发展在古代,人们使用石器时代刀剑般的粗糙工具来进行焊接。
随着时代的发展,焊接技术也得到了巨大的发展。
现代焊接技术主要分为机器焊接和手工焊接两类。
与传统的手工焊接相比,现代化的焊接机器可以更精确地控制焊接参数。
并且,机器焊接可以大幅度提高生产效率,节约劳动力和材料成本。
在现代化的工业领域中,焊接技术得到了广泛应用,可以看到各种焊接方法在生产线上的应用,例如电弧焊接、TIG/TAG等,它们都有自己的特点与优势。
除此之外,高能量激光焊接和扫描式激光焊接被广泛采用,具有更高的自动化程度,使用过程没有辅料或极少量辅料。
与传统焊接技术相比,现代化的焊接技术可以更安全、更精确地完成工作,更加绿色环保,在生产过程中减少对环境的污染,从而进一步提高生产效率。
二、焊接技术的应用前景近年来,焊接技术在生产中的应用越来越大。
在物流、电力、核电、航空、化工等领域中,人们都需要使用焊接技术,因此焊接技术也有着广泛的市场前景。
此外,随着中国军事装备水平的提高和现代工程建设的进展,焊接技术在这些领域的应用普及将成为未来的趋势。
在航空航天领域,高强度、高温度耐受性、较好的腐蚀性是关键要求,这些都需要得到更精确、更高品质的焊接工艺。
目前,众多航空航天科技公司正在积极开发新型的焊接材料以及更加精确、高品质的焊接技术。
随着这些技术的不断创新和发展,将为未来的空间技术提供更加广阔的发展空间。
在核能领域,随着核反应堆的建设,对于焊接技术的要求也越来越高。
核反应堆内部,焊缝的缺陷和质量问题都会对核反应堆的安全运行产生影响,因此核能行业对于焊接技术的要求也比较高。
现代化的焊接技术正逐渐成为核能领域的发展趋势。
在汽车行业,焊接技术的应用也是不可避免的。
焊接行业现状和存在问题焊接行业是现代工业的重要组成部分,广泛应用于汽车制造、航空航天、建筑工程、能源行业等众多领域。
然而,尽管焊接技术在过去几十年取得了巨大的发展,但仍然存在一些问题和挑战。
本文将从技术发展、人才培养、安全问题和环境影响等方面探讨焊接行业的现状和存在问题。
首先,焊接技术在过去几十年取得了重大的突破和进步。
传统的手工焊接逐渐被自动化和机器化焊接技术所取代,提高了焊接速度和质量。
新型材料和焊接工艺的出现,使得焊接可以应用于更多复杂的材料和结构。
然而,尽管技术的进步,焊接过程仍然存在一些问题。
例如,焊接变形和残余应力可能会导致结构的失稳和破坏。
焊接接头的质量控制也是一个重要的问题,不良的焊接接头可能会导致工件的失效和事故的发生。
其次,焊接行业面临着人才短缺和人才培养的问题。
随着技术的发展,对于高技能焊工的需求不断增加。
然而,目前焊工的培养体系并不完善,培训机构和学校的焊接专业设置较少,培养出来的焊工技能水平参差不齐。
缺乏高素质的焊工不仅影响了焊接行业的发展,也给企业的生产效率和质量带来了很大的压力。
第三,焊接行业存在着安全隐患和安全意识不足的问题。
焊接过程中产生的高温、火花和有害气体对焊工的身体健康和人身安全构成威胁。
然而,一些企业在安全设施和操作规程方面存在着不足,对焊工的安全教育和培训也不够重视。
缺乏安全意识的焊工容易发生事故,给企业带来经济和声誉的损失。
最后,焊接行业对环境的影响也是一个重要问题。
焊接过程中产生的烟尘、废气和废水含有有害物质,对环境和人体健康造成污染。
虽然一些先进的焊接设备和工艺可以减少污染物的排放,但目前仍然存在一些中小型企业采用传统的焊接设备和工艺,导致环境污染较严重。
为解决上述问题,焊接行业需要进一步加强技术研发和创新,提高焊接质量和效率。
同时,应加大对焊工的培训和人才引进,提高焊接技能水平和素质。
企业应重视安全生产,加强安全设施和操作规程的建设,提高焊工的安全意识和技能。
焊接自动化技术的现状与发展趋势引言概述:焊接作为一种常见的创造工艺,在工业生产中扮演着重要的角色。
随着科技的发展和工业生产的需求不断增长,焊接自动化技术也逐渐成为焊接行业的发展趋势。
本文将探讨焊接自动化技术的现状与发展趋势。
一、现状分析1.1 自动化焊接设备的普及随着创造业的发展,自动化焊接设备在工业生产中得到广泛应用。
各种自动化焊接设备如焊接机器人、自动焊接工作站等已经成为工业生产线上不可或者缺的一部份。
1.2 焊接自动化技术的成熟度随着科技的不断进步,焊接自动化技术的成熟度也在不断提高。
自动化焊接设备的智能化程度越来越高,能够实现更加精准和高效的焊接操作。
1.3 自动化焊接技术的应用领域自动化焊接技术已经广泛应用于汽车创造、航空航天、电子电气、建造工程等领域,为工业生产提供了更加可靠和高效的焊接解决方案。
二、发展趋势展望2.1 智能化焊接技术的发展随着人工智能、大数据等技术的不断发展,智能化焊接技术将成为焊接自动化技术的重要发展方向。
智能化焊接设备将更加智能化、自适应,能够实现更加高效和精准的焊接操作。
2.2 柔性化生产需求的增加随着市场需求的不断变化,焊接自动化技术也将朝着柔性化生产方向发展。
自动化焊接设备将更加灵便、适应性强,能够满足不同规格、不同批量的焊接需求。
2.3 绿色环保焊接技术的推广随着环保意识的增强,绿色环保焊接技术将成为未来焊接自动化技术的重要发展方向。
绿色环保焊接技术将更加节能、环保,减少焊接过程中的废气、废渣排放,实现可持续发展。
三、技术挑战与解决方案3.1 自动化焊接设备的成本自动化焊接设备的成本较高,是制约其广泛应用的一个主要因素。
解决这一问题的关键在于提高自动化焊接设备的生产效率,降低生产成本。
3.2 技术人材短缺焊接自动化技术需要专业的技术人材进行研发和应用,而目前技术人材短缺是一个普遍存在的问题。
解决这一问题的关键在于加强焊接自动化技术的人材培养和引进。
3.3 安全性和稳定性问题自动化焊接设备在工业生产中需要保证其安全性和稳定性,以避免意外事故的发生。
刀片焊接工艺
不同的刀片材料和焊接需求,采用的焊接工艺也不同。
比如硬质合金刀具的焊接工艺如下:
1、刀体预热:将刀体放在石棉板上,在刀槽中放入大小与硬质合金刀头相同的厚度0.3的焊料,然后放上硼砂和硬质合金刀头,用还原火焰从刀头底部进行预热刀体,当熔剂熔化时,证明已经达到预热要求的摄氏700-800°。
2、焊接硬质合金刀头:预热完后,用火焰加热硬质合金刀头及焊缝,迅速使焊料熔化,移开火焰后,立刻用金属棒压紧并调整硬质合金刀头,以便把多余的焊料及熔渣排出。
停止加热后,继续压紧硬质合金刀头2-3秒,待焊料凝固后,即送刃保温介质中保温,使之缓慢冷却,保温实际为2-3小时。
国内外硬质合金再生利用的发展现状与对策一、背景介绍硬质合金是一种高性能材料,具有优异的耐磨性、耐腐蚀性和高温稳定性等特点。
然而,由于其生产过程中需要消耗大量的资源和能源,以及废弃物处理成本高昂,导致硬质合金的再生利用一直是个难题。
因此,如何实现硬质合金的再生利用已成为国内外学术界和企业界关注的热点问题。
二、国内外硬质合金再生利用现状1. 国内硬质合金再生利用现状目前,我国硬质合金再生利用技术相对滞后。
主要存在以下问题:(1)废弃物回收率低:由于我国缺乏专业的废旧硬质合金回收企业,许多废弃物被随意处理或丢弃。
(2)再生利用技术不成熟:我国尚未形成完善的硬质合金回收体系和技术路线。
(3)缺乏相关政策支持:政策法规方面对于废旧硬质合金回收没有明确规定。
2. 国外硬质合金再生利用现状相比之下,国外硬质合金再生利用技术相对成熟。
主要表现在以下方面:(1)废旧硬质合金回收率高:欧美等发达国家和地区已经形成了完善的硬质合金回收体系。
(2)再生利用技术先进:国外企业投入大量资金进行研究和开发,取得了一系列重要的技术突破。
(3)政策法规支持:欧盟、美国等国家和地区已经出台了相关的政策法规,鼓励和支持废旧硬质合金回收。
三、我国硬质合金再生利用发展对策为了提高我国硬质合金再生利用水平,需要采取以下措施:1. 制定相关政策法规政府应该加大对于废旧硬质合金回收的政策支持力度,制定相关的法律法规,并加强对于违法行为的打击力度。
2. 建立废旧硬质合金回收体系应该建立完善的废旧硬质合金回收体系,包括建立专业化的回收企业、建立统一的标准和规范等。
3. 推广先进的再生利用技术应该引进国外先进的硬质合金再生利用技术,加强相关研究和开发,提高我国硬质合金再生利用水平。
4. 提高社会意识应该加强对于废旧硬质合金回收的宣传和教育,提高社会公众对于环保意识和资源节约意识。
四、结论随着环保意识的不断提高,我国硬质合金再生利用的重要性也越来越凸显。
硬质合金刀头焊机方法(建议内部人员培训资料)亚非企业管理(西安)有限公司生产技术部二〇一五年五月硬质合金刀头焊接方法一、焊接方法一:需要材料::氧气、乙炔气、焊枪、硼砂、黄铜焊条、气焊护目镜、镊子。
气焊关键是调火焰和掌握火候:第一步:将刀杆在砂轮上打磨,出现金属光泽,便于焊接;第二步:先把刀杆焊刀头的地方烧红(大约700℃,颜色为暗红色),撒少许硼沙后继续加热并放入铜焊丝;第二步:待铜丝融化并铺展在刀杆焊接面上,(加热刀杆时,先烧四周,绝对不能先烧刚才放置焊条的地方,铜水不必太厚,但需要平整,否则刀头不易放置);第三步:焊枪离开,撒少许硼砂,使用镊子将合金刀头放好,(焊条和刀头连起来后在焊刀的时候就可以随意掌握刀头的角度,注意连接的时候刀头不能烧得太红了只要能接上就可以了);第四步:加热刀头与刀杆接缝处,这个地方是在刀杆上面,(不是在刀尖的部位)这样是为了刀杆和刀头同时受热,当刀杆和刀头达到800℃。
放入铜焊条,此时铜焊条熔化流入刀头和刀杆缝隙;注意:如果在放置刀头时出现刀杆与刀头颜色不同时则需要进行第四步。
第五步:先加热刀杆四周,并且不时的将火焰往刀头摆动,待刀头与刀杆均显红色,且颜色一致时,刀头会自然粘在刀杆上,此时可以随意调整刀头角度,直到满意为止。
(但需要注意:刀头和刀杆颜色均接近相同红色焊接才可靠牢固,同时刀头不能烧得太久烧得颜色太红,烧得太久太红在使用的时候刀头容易打刀的,即:及刀头过火;但需要格外注意:1.火焰不能一致不动的烧刀头,那样会使刀头烧产生裂纹,刀头上面的焊条也会断裂。
烧刀杆的时候只需将火焰往刀头摆一摆,待刀头和刀杆度烧红,温度差不多的时候刀头便会自然就贴在刀杆之上,这时你可以随意调整刀头的角度;.2.调整刀头角度时火焰不能老放在刀上烧,要烧一下拿开,再烧一下再拿开直到刀头的角度满意。
第六步:继续晃动焊枪在刀头四周加热,直至刀头与刀杆达到等温,刀头完全漂浮在刀杆上,焊接完成。
2024年焊接材料与附件市场发展现状引言焊接是一种常见的金属加工方法,广泛应用于制造业的各个领域。
而焊接材料与附件则是焊接过程中不可或缺的重要组成部分。
本文将对当前焊接材料与附件市场的发展现状进行分析和总结,以期为相关行业的从业人员提供参考。
市场概况焊接材料与附件市场是一个庞大的市场,涉及到多个子领域,包括焊工电极、焊丝、焊剂、焊条、焊接机械设备等。
目前,全球焊接材料与附件市场规模持续扩大,呈现出以下几个发展趋势。
市场规模持续增长随着制造业的发展和技术进步,焊接工艺得到了广泛应用和改良,推动了焊接材料与附件市场的快速增长。
按照市场研究报告,全球焊接材料与附件市场规模在过去五年间增长了约10%,预计在未来几年内仍然保持稳定增长,并有望超过1000亿美元。
技术升级与创新驱动市场发展焊接技术的不断升级和创新是促进焊接材料与附件市场发展的重要因素。
例如,近年来,无铅焊接技术的推广给焊接材料市场带来了新的机遇,受到越来越多的关注。
另外,随着数字化和智能化技术的迅速发展,许多焊接机械设备也实现了智能化控制和自动化操作,提高了效率和质量,进一步推动了市场的发展。
环保和安全意识提高市场需求随着环保和安全意识的增强,对环保型焊接材料和附件的需求也在不断提升。
传统焊接材料中含有有害物质,对环境和人体健康造成一定的危害。
而环保型焊接材料和附件主要通过降低或消除有害物质的使用,减少对环境的污染,达到更高的安全性能要求。
因此,环保型焊接材料和附件正逐渐受到市场的认可和青睐。
市场竞争格局分析焊接材料与附件市场竞争激烈,主要由少数大型企业占据市场份额。
这些公司拥有先进的技术和研发能力,积极追踪市场需求并相应引入创新产品。
同时,市场还存在一些中小企业,虽然规模较小,但通常能提供个性化的产品和服务,满足特定客户的需求。
发展趋势和机遇焊接材料与附件市场将继续受到多种因素的影响,未来发展将呈现以下趋势和机遇:新兴市场的增长焊接材料与附件市场在新兴市场的增长速度较快。
天津大桥焊材集团有限公司
硬质合金堆焊焊条的堆焊工艺
堆焊操作方法正确,堆焊层质量满意的标志是:待冷却后,堆焊层表面呈发亮的金黄色,堆焊层胎体合金与基体金属结合良好,合金颗粒排列紧密,且均匀、牢固的焊嵌在胎体金属里。
该焊条采用氧乙炔堆焊。
操作工艺如下:
(1)清理工件,使被焊工件表面露出金属光泽。
(2)取平焊位置进行堆焊,为此可使用适当的胎具为控制堆焊层厚度,可利用限厚块。
(3)用中性焰预热,焰心勿接触工件表面,距离以25mm为宜。
(4)堆焊硬质合金焊层。
用YD型焊条堆焊,使用中性焰(可稍偏碳化焰)焊咀均匀平稳的在工件表面上移动,火焰对着合金焊条加热(注意不可使焰心尖端接触合金颗粒),使焊条中胎体合金熔化,随之硬质合金颗粒也一同落下。
在熔化的胎体金属凝固之前,要把颗粒安排好,可用左手拿着的合金焊条拔弄,或另一人手持一根打底焊条或石墨棒作拔棍,在一傍迅速拨弄颗粒,使之排列均匀整齐。
堆焊层厚度按设计要求控制。
(5)工件堆焊完后,放在不通风的地方,缓慢冷却,不可急冷,有条件可用石棉毡盖上。
(6)工件冷却到室温后,如果有需要,可把堆焊面磨到要求尺寸和形状。
(7)清理工件,去除所有飞溅,熔渣等。
镁-铝异种合金搅拌摩擦焊的研究现状及展望篇一咱今天就唠唠这镁-铝异种合金搅拌摩擦焊,这玩意儿听起来挺高大上,其实就像是给两种不太对付的金属“拉郎配”,想让它们紧紧抱在一起,为咱工业界出份力。
我记得有一次去参观一个小型的金属加工坊,那老板正为接一批镁合金和铝合金混合部件的活儿发愁呢。
他拿着两块金属片直挠头,跟我念叨:“这俩货,一个软乎乎像个面团,一个硬邦邦像块石头,咋把它们焊得牢实呢?”这就说到点子上了,镁合金和铝合金的物理化学性质差异大,就像两个性格迥异的人,熔点、硬度、热膨胀系数都不一样,要让它们完美结合,可不容易。
目前这搅拌摩擦焊的研究啊,已经有了些成果。
科研人员就像一群智慧的“红娘”,在努力寻找让镁和铝“情投意合”的方法。
从工艺参数来看,搅拌头的形状、旋转速度、焊接速度这些都得拿捏得死死的。
比如说,用个特定形状的搅拌头,像个特制的小勺子,高速旋转着在金属接缝处搅和,产生的摩擦热就能让材料软化,在压力作用下融合在一起。
有研究团队通过大量实验发现,当搅拌头旋转速度在一定范围内,焊接速度也配合得恰到好处时,镁-铝焊接接头的强度能有明显提升,这就好比找到了两个人相处的最佳模式,不温不火,感情才能长久。
不过这过程中也有不少难题。
焊接过程中的温度控制就是个大问题,温度高了,镁合金容易烧损,铝合金也可能出现过热组织,就像炒菜火大了,菜就糊了。
而且焊接后的接头性能稳定性也有待提高,有时候刚开始测试强度还行,过段时间就不行了,就像人刚谈恋爱时山盟海誓,没多久就闹矛盾。
展望未来呢,我觉得一方面要在新材料的研发上使劲儿。
比如说研发一种新的中间层材料,放在镁和铝之间,就像给两个不太熟的人找个共同的好朋友,让它们更好地融合。
另一方面,智能化焊接也是个方向。
想象一下,有个智能系统能实时监测焊接过程中的温度、压力、金属流动情况,然后自动调整参数,就像有个经验丰富的老工匠在旁边把关,那这焊接质量肯定蹭蹭往上涨。
这镁-铝异种合金搅拌摩擦焊啊,虽然现在还有些小脾气,但只要科研人员继续琢磨,未来肯定能在航空航天、汽车制造等领域大放异彩,成为金属连接界的“明星组合”。
硬质合金烧结变形及控制方法摘要:硬质合金烧结变形及其控制方法是硬质合金制造领域的一个重要研究方向。
本文通过对硬质合金材料的组成和制备工艺进行综述,分析了烧结变形的成因和影响因素。
在此基础上,提出了一系列控制方法,包括优化烧结工艺参数、改进烧结模具设计、合理选择烧结添加剂等。
同时,本文通过实际案例分析,验证了这些控制方法的有效性。
研究结果表明,通过合理控制烧结过程中的变形,可以显著提高硬质合金材料的性能和质量,为硬质合金制造提供了理论依据和技术支持。
关键词:硬质合金、烧结变形、控制方法、制备工艺、烧结工艺参数引言:硬质合金是一种重要的工程材料,在机械、航空航天、石油化工等领域具有广泛的应用。
硬质合金的制备过程中,烧结是一个关键的工艺步骤,它决定了硬质合金材料的性能和质量。
然而,烧结过程中常常会出现各种变形问题,如开裂、弯曲等,严重影响了硬质合金的制造效率和质量稳定性。
因此,研究硬质合金烧结变形及其控制方法具有重要的理论意义和实际价值。
一、硬质合金的组成和制备工艺1.1 硬质合金的组成硬质合金通常由两个主要组分组成:金属碳化物和粘结相。
金属碳化物主要是钨碳化物(WC),它具有高硬度、高熔点和良好的耐磨性。
粘结相通常是钴(Co)或镍(Ni),它的作用是将金属碳化物颗粒牢固地粘结在一起,并提供一定的韧性和冲击强度。
此外,硬质合金还可能含有其他元素或添加剂,如钛(Ti)、铌(Nb)、钼(Mo)等,以进一步改善其性能。
1.2 硬质合金的制备工艺硬质合金的制备工艺通常包括粉末混合、成型和烧结三个主要步骤。
首先,将金属碳化物粉末和粘结相粉末按照一定的配比进行混合,通常使用球磨或干法混合的方法,以确保两种粉末均匀混合。
然后,将混合粉末通过成型工艺,如压制、注射成型等,制备成所需的形状,如板材、棒材、刀片等。
最后,成型体经过烧结工艺,即在高温下进行加热处理,以使金属碳化物颗粒结合成整体。
烧结过程中,首先进行预烧结,将成型体加热至金属碳化物颗粒开始颗粒间结合的温度。
硬质合金报告
一、背景介绍
硬质合金,又称“硬质合金钨钢”或“钨钢”,是一种具有高硬度、高耐磨性和高强度的新材料。
其主要成分为钨酸钴和碳化钨,常
用于制作刀具、磨料、矿钻等工业用品。
二、制备方法
硬质合金的制备方法主要包括粉末冶金法、化学气相沉积法和
浸渍硬化法等。
其中,粉末冶金法是最为常见的一种制备方法,
具体步骤如下:
1.选用优质的钨酸钴和碳化钨原材料进行配比。
2.将原材料进行混合,加入适量的粘结剂和其他添加剂,制成
均匀的混合物。
3.将混合物进行成型,通常采用挤压或注射成型的方法。
4.将成型件进行烘干和烧结处理,以形成高密度、高硬度的硬质合金。
三、应用领域
硬质合金具有优异的物理和化学性能,因此被广泛应用于各个领域。
以下是几个典型的应用领域:
1.刀具:硬质合金制成的刀具具有高硬度、高切削力和长寿命等优点,被广泛应用于机械加工行业。
2.磨料:硬质合金具有高耐磨性和高硬度,适用于制作高效砂轮、砂带和砂纸等磨料。
3.矿钻:硬质合金的强度和硬度可以适应岩石的强度和硬度,因此被广泛应用于矿山勘探和地质勘查等领域。
四、发展趋势
随着科技的不断进步,硬质合金的应用领域也越来越广泛。
未来,硬质合金将会被广泛应用于高精度加工、航空航天和新能源等领域。
同时,硬质合金的制备技术也将不断改进和创新,以满足多样化的应用需求。
五、结论
硬质合金作为一种新型的高硬度材料,具有优异的物理和化学性能,在工业领域拥有广泛的应用前景。
人们应该不断探索和开发硬质合金的制备技术和应用领域,为工业的发展做出更多的贡献。
.. . …
. word. … 硬质合金的焊接工艺现状与展望 高频感应钎焊,硬质合金钎焊,高频感应加热设备 硬质合金是一种以难熔金属化合物(WC、TaC、TiC、NbC等)为基体,以过渡族金属(Co,Fe,Ni)为粘结相,通过粉末冶金方法制备的金属瓷工具材料,它具有高强度、高硬度、高弹性模量、耐磨损、耐腐蚀、热膨胀系数小以及化学性质较为稳定等优点,广泛应用于 切削工具、耐磨零件、采矿与筑路工程机械等领域【1】。 硬质合金的材质脆硬、韧性差而且价格高,这些因素使其难以被制成大尺寸、形状复杂的构件加以应用,而硬质合金与钢体材质的焊接是弥补其不足的主要方法,合适可靠的焊接技术正在不断拓展它的应用围。因此,欲更好更合理地应用硬质合金,必须了解它的性能特点,根据其用途的不同而选择合适的焊接工艺。 1硬质合金的焊接性 由于与硬质合金相焊的基体材料一般是碳素钢,硬质合金与之相比具有较小的热膨胀系数和较低的热导率,因此焊接时容易出现以下问题: 1)焊接裂纹 硬质合金的热膨胀系数较小,一般为钢的1/2~1/3,硬质合金和钢材焊后由于不能同步收缩,会在焊缝区形成很高的残余应力,且在硬质合金上多为拉应力,由此导致硬质合金开裂。焊接应力是钎焊硬质合金时出现裂纹以及接头低应力断裂的主要原因【2】。 2)焊缝脆化 主要是在焊缝区形成M6C 型复合碳化物η相,其中M包含W、Fe、Co、Ni等元素,主要原因是硬质合金与钢进行焊接时,硬质合金中的碳向钢侧扩散,使硬质合金中含碳量降低而形成η相【3】。焊缝脆化导致接头的抗弯强度低。 3)气孔、夹渣及氧化 这主要是出现在钎焊接头中。当加热温度过高时,造成钎缝氧化及焊料成分的严重烧损;而加热温度偏低,则钎料流动性不好,形成虚焊,且焊缝留有大量气孔和夹渣,以至严重降低焊缝强度【4,5】。 2硬质合金的焊接方法与工艺要素 由于硬质合金与碳素钢之间的物理性能相差较大,目前钎焊和扩散焊仍然是可行而又实用焊接方法。此外一些新的焊接方法如钨极惰性气体保护电弧焊(TIG),电子束焊(EBW),激光焊(LBW)等也在积极的研究探索之中,将有可能在硬质合金的焊接中得到应用。 2.1 钎焊 钎焊是一种传统且广泛应用的硬质合金焊接方法,它的工艺成熟可靠,依据加热方式的不同分以下一些工艺方法: 1)火焰钎焊 .. . …
. word. … 火焰钎焊是用可燃气体(乙炔、丙烷等)与氧气或压缩空气混合燃烧的火焰作为热源进行焊接的一种方法。火焰钎焊设备简单、操作灵活方便,根据工件形状可用多火焰同时加热焊接。钎料多采用丝状或片状的铜基、银基钎料,其中HL105锰黄铜钎料应用最为广泛;钎剂一般采用脱水硼砂。火焰钎焊主要适用于中小尺寸硬质合金刀具、模具和量具的小批量生产,对于大型的硬质合金工具,由于火焰加热的温度和速度难以控制,加热时会产生较大的温度梯度,容易引发裂纹的产生,因此一般不采用此方法【2,6】。 2)电阻钎焊 电阻钎焊一般可分为直接加热法和间接加热法。直接加热法是将电极置于接头两侧,使电流经过钎缝面的接触电阻而发热,从而完成焊接过程;间接加热法是将电极置于接头一侧的钢质母材上,电流通过钎缝一侧的母材电阻发热(或通过发热元件发热)来实现钎焊。采用间接加热法可避免电极与硬质合金接触,防止硬质合金的过热和烧损,避免其硬度的降低和开裂。可配用铜基或银基钎料,常用的有H68、HL105钎料等,其中HL105钎料的抗剪强度较高,对于YT5刀具的焊接,抗剪强度可达28.5GPa,对于YG8可达到29.7GPa。钎剂一般采用脱水硼砂【7】。 加热电压是电阻钎焊的重要参数,要选择合适的数值以保证合理的发热升温速度;其次要保证电极与工件接触处于良好状态。加热过程中要及时排渣,防止钎缝夹杂和气孔形成而降低强度。使用硼砂钎剂时一定要先经过脱水处理,否则由于结晶水的存在,在焊接过程中结晶水蒸发,在焊接区域产生大量气体,既影响了正常排渣,又易在焊缝中产生气孔【7】。 电阻钎焊的操作较为简单方便,效率比火焰钎焊高,工件表面的氧化较少,但是在加热过程中易造成工件局部过热烧损。此外对于复杂形状的工件、多刃刀具及尺寸很小的工件也不便操作【2】。 3)感应钎焊 感应加热钎焊的优点是加热迅速,钎料液化过程短,并可以在各种气氛(空气、保护气体、真空)下进行,能减轻硬质合金过热和氧化,有利于提高焊接质量;该方法的缺点是设备较复杂、一次性投资较大,其次是感应电流的趋表效应,当钎焊大厚工件时,加热温度不均匀,难于保证钎焊质量,且效率也低,故一般只适用于钎焊结构型式简单(最好是轴类细长型)的小尺寸焊件【2】。 感应钎焊的工艺参数一般包括钎缝间隙、加热速度、冷却速度、感应圈形状尺寸、钎料钎剂的加入方式等因素。这些因素必须有一个合适的组配围,因素的波动会对焊缝质量造成不良影响,尤其是在硬质合金中产生较大的焊接应力。 钎缝间隙值是确保钎焊质量的重要参数。通常认为钎缝越小,焊接应力越大,反之亦然。钎缝间隙过小时,会发生“挤死”和“钎不透”,使接头强度下降和焊接应力增加;而间隙过大,毛细作用.. . …
. word. … 减弱,也会导致“钎不透”,使接头强度下降。因而大小适中的钎缝间隙对减小焊接应力和增强焊缝牢度有很大的作用【8】。 加热和冷却速度对钎头焊接质量有很大影响。加热速度太快,合金中会产生较大的应力;加热太慢,则高温停留时间长,这虽然能使液态钎料的润湿和扩散更完善,但会造成合金的氧化烧损。通常加热以不超过100℃/s为宜。冷却速度太快,合金中会产生很大的收缩应力;冷却速度太慢,虽然能减小焊接应力,但对钢体材质的淬火不利,故一般以60℃/s为宜【8】。 感应圈是感应加热设备的重要元件,交流电源的能量是通过它传递给焊件而实现加热的,因此,感应圈的结构是否合理对于钎焊质量和生产率有很大影响。正确设计和选用感应圈的原则是:感应圈应有与焊件相适应的外形, 尽量减少感应圈本身和焊件之间的无用间隙,间隙最好不大于2~3mm,以便提高加热效率。为了使焊件加热平稳、均匀,防止焊件尖角处发生局部过热,应当合理选择感应圈的匝数和感应电流的交变频率等参数。 4)炉中钎焊 将装配好的工件放在电阻丝发热的加热炉中进行加热钎焊的方法称之为炉中钎焊,其特点是工件整体加热,加热均匀、工件变形小。不足之处是加热速度慢、效率低。但对于批量生产,一炉可以同时钎焊多个接头及焊件,以此可以弥补加效率低的不足【9】。炉中钎焊的加热气氛有以下几种: a)空气炉 由于焊件在空气中加热时工件容易氧化,且升温速度较慢,不利于钎剂去除氧化膜,故应用受到一定的限制,目前已逐渐被保护气氛炉中钎焊和真空炉中钎焊所代替【9】。 b)保护气氛炉 根据保护气氛的不同,可以分为还原气体和惰性气体炉中钎焊【9】。还原性气体一般用H2或CO,不仅能避免工件在加热过程的氧化,还能还原工件表面的氧化膜,有助于钎料的润湿;惰性气体一般用Ar、N2和He等,对气体纯度的要求较高,一般要在99.99%以上,在气体入炉前还要经过脱水(硅胶、浓硫酸)脱氧(海绵钛)装置。工件通常应放在容器,在流动的气体中进行加热钎焊。用惰性气体比用还原性气体的安全性要高。加热温度、保温时间及冷却速度是主要的工艺参数。加热温度高于900℃时,硬质合金的硬度会有明显降低。保温时间过长时也会引起硬质合金的硬度降低。焊后应缓慢冷却,以防止开裂【10-12】。 c)真空炉 真空钎焊是基于在真空中加热时金属及其氧化物产生蒸发,破坏其表面氧化膜,从而达到去膜效果的。在真空条件下,有一些金属可在低于熔点的温度下便发生显著蒸发,也有一些金属氧化物会发生挥发。金属,特别是金属氧化物的蒸发能有效地破坏表面氧化膜,使真空条件下的无钎剂钎焊成为可能。对于以TiC为硬质相的YW类硬质合金来说,采用Ag-Cu-Zn.. . …
. word. … 系合金作为钎料,在真空炉中钎焊是一种比较好的方法,因为焊接过程中Zn的挥发能使Cu的扩散能力增强,从而使焊缝强度升高【13】。 真空钎焊的优点是可防止被焊金属、硬质合金及钎料与氧、氢、氮等气体介质发生反应而产生不良影响,并且由于钎焊组装件在真空炉中升温、降温缓慢,从而可大大降低温度梯度,有利于减少钎焊应力,获得高质量的钎焊质量,在焊接大件及形状较复杂的硬质合金时采用真空钎焊技术尤为有利。由于金属及其氧化物的蒸发是随着周围气压的降低及温度升高而加剧的【14】,因此真空钎焊的炉真空度、加热温度及保温时间是影响钎焊质量的主要因素,正确选择这些参数对钎焊质量至关重要。 加热温度的选择应参照所用钎料的实际熔点,在空气中加热一般比熔点高10~30℃。而在真空钎焊时,由于传热的滞后效应,也为了提高钎料的流动性,加热温度应比空气中略高一些【14】;对于同样尺寸的焊件,真空钎焊时的保温时间应比空气炉中的适当延长。如果时间太短,则钎料与被焊母材之间来不及形成足够的冶金结合,还可能由于加热不均匀而造成“虚焊”。相反,如果保温时间过长,则有可能导致钎料严重烧损蒸发,从而导致焊缝强度降低【14】。 真空度的选择与被焊件材质及所用钎料的成分、性质有关,同时也与钎焊温度有关,一般应在10-3Mpa以上,以便获得良好的去膜效果。钎料中的Zn、Ag在真空状态下显著蒸发的温度较低,为避免钎料中的这类元素蒸发,在接近焊料熔化温度时,可停止抽真空。此外,对于一定材质的焊件及所用钎料,可由确定的加热温度来反推所需的炉真空度【14】。 5)激光钎焊 激光作为一种新型的焊接热源,具有加热速度快、热影响区窄、焊后变形及残余应力小等特点,特别是在减弱接头熔合区脆化方面,具有独特的优点。这使其有可能应用于硬质合金的焊接【15】。据相关文献报道,可采取激光的“深熔焊”和“热导焊”模式进行硬质合金的钎焊,用纯Cu、Ag-Cu合金作为钎料。相关的工艺参数主要有激光功率、焊接速度、焦点位置、填充层厚度等【15-17】。由于硬质合金与钎料之间的熔点相差很大,在焊接中要严格控制工艺参数, 既使钎料在瞬时充分熔化, 以浸润硬质合金, 又能将硬质合金基体加热到较高的温度而不致熔化,使其能够更好地被液态钎料所润湿, 形成理想的钎焊接头【16】。 在激光“深熔焊”过程中, 激光功率密度很高,在激光直接作用的区域, 硬质合金瞬间可达很高温度,并与钎料中的Cu发生剧烈的“亲合”作用,还容易发生钎料的蒸发和过度烧损,使表面出现严重的凹陷现象【15】,因此必须通过适当调整工艺参数来减少钎料的烧损。另外由于硬质合金中Co的含量一般都很低,在激光“深熔焊”的高温作用下极易逸失, 而使WC以疏松的状态存在, 此时的硬质合金将不能保持原有的致密烧结组织和性能,导致接头不可避免地出现一些裂纹、气孔等缺陷【17】。