福建省泉州市普通高中2020-2021学年毕业班第一次质量检查(文科)数学试题
- 格式:docx
- 大小:1.84 MB
- 文档页数:25
绝密★启用前2021年湖北省华大新高考联盟高考数学教学质量测评试卷(文科)注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一.选择题(共12小题).1.设集合A={(x,y)|y=2x﹣3},B={(x,y)|4x﹣2y+5=0},则A∩B=()A.∅B.{(,)}C.{(,﹣)}D.{(﹣,﹣)} 2.若在复平面内,复数所对应的点为(3,﹣4),则z的共轭复数为()A.﹣18﹣i B.﹣18+i C.18﹣i D.18+i3.根据国家统计局数据显示,我国2010~2019年研究生在校女生人数及所占比重如图所示,则下列说法错误的是()A.2010~2019年,我国研究生在校女生人数逐渐增加B.可以预测2020年,我国研究生在校女生人数将不低于144万C.2017年我国研究生在校女生人数少于男生人数D.2019年我国研究生在校总人数不超过285万4.若a=log2021,b=()2021,c=2021,则()A.a<b<c B.b<a<c C.c<b<a D.b<c<a5.小学数学在“认识图形”这一章节中,一般从生活实物人手,抽象出数学图形,在学生正确认识图形特征的基础上,通过习题帮助学生辨认所学图形;例如在小学数学课本中有这样一个2×1的方格表(如图所示),它由2个单位小方格组成,其中每个小方格均为正方形;若在这2×1方格表的6个顶点中任取2个顶点,则这2个顶点构成的线段长度不超过的概率为()A.B.C.D.6.运行如图所示的程序框图,若为了输出第一个大于50的S的值,则判断框中可以填()A.b<13?B.b<21?C.b<33?D.b<34?7.已知=(0,2),||=2,若•=4,则sin∠BAC=()A.B.C.D.8.若λsin170°+tan10°=,则实数λ的值为()A.B.C.D.9.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,过双曲线C上的一点M作两条渐近线的垂线,垂足分别为A,B,若|F1F2|2=16|MA|•|MB|,则双曲线C的离心率为()A.B.C.D.10.已知等差数列{a n}的前n项和为S n,若a10=32,S5=55,则()A.a n=4n﹣8B.a n=2n+12C.S n=n2+n D.S n=n2+n11.已知函数f(x)=sin(ωx+)(ω>0)在[0,2π]上有且仅有6个零点,则实数ω的取值范围为()A.[,+∞)B.(,+∞)C.[,)D.(,)12.已知△ABC中,AB=2BC=4,AC=2,点M在线段AC上除A,C的位置运动,现沿BM进行翻折,使得线段AB上存在一点N,满足CN⊥平面ABM;若NB>λ恒成立,则实数λ的最大值为()A.1B.C.2D.二、填空题(共4小题).13.若实数x、y满足则z=2x+y的最大值为.14.已知定义域为R的函数f(x)满足2f(x)=3f(﹣x)﹣4e x,则曲线y=f(x)在(0,f(0))处的切线方程为.15.已知正方体ABCD﹣A1B1C1D1的体积为27,点E.F分别是线段BC,CC1的中点,点G在四边形BCC1B1内运动(含边界),若直线A1G与平面AEF无交点,则线段CG的取值范围为.16.已知点M在抛物线C:y2=4x上运动,圆C′过点(5,0),(2,),(3,﹣2),过点M引直线l1,l2与圆C′相切,切点分别为P,Q,则|PQ|的取值范围为.三、解答题:共70分。
初一数学试题 第1页(共6页)南安市2020—2021学年度上学期初一、二年期末教学质量监测初一年数学试题(满分:150分; 考试时间:120分钟)学校 班级 姓名 考号友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(单项选择,每小题4分,共40分). 1.有理数2020的绝对值是( ) A .2020- B . 2020C .12020D .12020-2.某省到2020年底已全部脱贫,近三年共脱贫1020000人,将1020000用科学记数法表示为( ) A .61.0210⨯ B .51.0210⨯C .510.210⨯D .410210⨯3.在2-, 2.5-,0,6这四个数中,最小的数是( ) A .2-B . 2.5-C .0D .64.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .22xy - B .23x C .32xy D .32x 5.已知143n xy -与3414x y 是同类项,则n 的值是( )A .2B .3C .4D .5 6.已知︒=∠5.50α,则α∠的余角等于( )A .3930︒'B .3950︒'C .4930︒'D .12930︒' 7.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则 原正方体中与数字5所在的面相对的面上标的数字为( ) A .1 B .2 C .3 D .48.如图,AB ∥CD ,AD ⊥AC ,BAD ∠=40°,则ACD ∠=( ) A .30° B .40° C .50° D .60°初一数学试题 第2页(共6页)9.如图1,A ,B 两个村庄在一条河l (不计河的宽度)的两侧,现要建一座码头,使它到A 、B 两个村庄的距离之和最小,如图2中所示的C 点即为所求的码头的位置,那么这样做的理由是( )A .两直线相交只有一个交点B .两点确定一条直线C .经过一点有无数条直线D .两点之间,线段最短10.如图所示是一个长方形,根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ,正确的为( )A .183x +B .183x -C .366x +D .366x - 二、填空题(每小题4分,共24分).11.如果数a 与2互为相反数,那么a =______.12.一个两位数的个位数字是2,十位数字是x ,用含x 的多项式表示这个两位数为 . 13.已知∠A =100°,则∠A 的补角等于 °.14.在等式的括号内填上恰当的项,2228x y y x -+=-(____________). 15.如图,直线a ∥b ,△ABC 的顶点A 和C 分别落在直线a 和b 上,若∠1=60°,且∠1+∠2=90°, 则ACB ∠的度数是 °.16.根据图中数的规律,则最后一个图形中的x +y +z = .三、解答题(共86分). 17.(8分)计算:(1)12130235⎛⎫⨯-+ ⎪⎝⎭(2)()()()2382-+-÷-初一数学试题 第3页(共6页)18.(8分)先化简,再求值:()()226332x xy xy x ++-,其中2x =-,2y =.19.(8分)如图,直线AB 、CD 相交于点O ,OE AB ⊥,OF CD ⊥.若OC 是AOE ∠的平分线,求3∠的度数.20.(8分)如图,已知AD ⊥BC ,EF ⊥BC ,垂足分别为D 、F ,∠2+∠3=180°.试说明:∠GDC =∠B .下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整. 解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥EF (在同一平面内,垂直于同一条直线的两条直线平行), ∴∠1+∠2= °(两直线平行,同旁内角互补), 又∵∠2+∠3=180°(已知),∴∠1=∠ (同角的补角相等),∴AB ∥DG ( ),∴∠GDC =∠B ( ).21.(8分)把棱长为1的10个相同的正方体摆成如图的形式,画出该几何体的主视图、左视图和俯视图.22.(10分)如图,某长方形广场的四个角都有一块半径为r米的四分之一圆形的草地,中间有一个半径为r米的圆形水池,长方形的长为a米,宽为b米.(1)整个长方形广场面积为;草地和水池的面积之和为;(2)若a=70,b=50,r=10,求广场空地的面积(π取3.142,计算结果精确到个位).23.(10分)如图①,在数轴上点A表示的数为2-,将点A沿数轴向左平移12个单位,得到一条线段AB.(1)在数轴上点B表示的数为;(2)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折,如图③,点B落在点A的右边点B′处,若A恰好为线段CB′的中点,求线段AC的长.初一数学试题第4页(共6页)24.(12分)某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为...........500...元.(.不含套餐成本......)..试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为元;若每份套餐售价定为12元,则该店每天的利润为元;(2)设每份套餐售价定为x元,试求出该店每天的利润(用含x的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.初一数学试题第5页(共6页)25.(14分)问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB∥CD,130PAB︒∠=,120PCD︒∠=,求APC∠度数.经过讨论形成的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得APC∠度数.(1)按该数学活动小组的思路,请你帮忙求出APC∠度数;(2)问题迁移:如图3,AD∥BC,点P在A、B两点之间运动时,ADPα∠=,BCPβ∠=.请你判断CPD∠、α、β之间有何数量关系?并说明理由;(3)拓展应用:如图4,已知两条直线AB∥CD,点P在两平行线之间,且BEP∠的平分线与DFP∠的平分线相交于点Q,求QP∠+∠2的度数.初一数学试题第6页(共6页)初一数学试题 第7页(共6页)南安市2020—2021学年度上学期初一、二年期末教学质量监测初一数学参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题4分,共40分)1.B ; 2.A ; 3.B ; 4.D ; 5.C ; 6.A ; 7.B ; 8.C ; 9.D ; 10.A . 二、填空题(每小题4分,共24分)11.2-; 12.102x +; 13.80; 14.y y 82-; 15.30; 16.139. 三、解答题(共86分) 17.(本题8分)(1)12130235⎛⎫⨯-+⎪⎝⎭ 解:原式=15206-+ ……………………………………………………3分=1 …………………………………………………………4分(2)()()()2382-+-÷-解:原式=94+ ………………………………………………………………7分= 13 …………………………………………………………8分18.(本题8分)先化简,再求值:()()226332x xy xy x++-解:原式=226696x xy xy x ++- ……………………………………………………4分=15xy ……………………………………………………………6分当2x =-,2y =时,原式= ()1522⨯-⨯ ……………………………………7分=60- …………………………………………………8分初一数学试题 第8页(共6页)19.(本题8分)∵OE AB ⊥∴90AOE ︒∠=………………………………………………………………………2分 ∵OC 平分AOE ∠∴∠1=∠2=45︒……………………………………………………………………………4分 又∵OF CD ⊥∴90COF ︒∠= …………………………………………………………………………6分 ∴∠2+∠3=90︒ …………………………………………………………………………7分 ∴345︒∠=…………………………………………………………………………………8分20.(本题8分)解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥ EF (在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2= 180 °(两直线平行,同旁内角互补), ………………………………2分 又∵∠2+∠3=180°(已知),∴∠1=∠ 3 (同角的补角相等),……………………………………………………4分 ∴AB ∥DG ( 内错角相等,两直线平行 ), ………………………………………6分 ∴∠GDC =∠B ( 两直线平行,同位角相等 ). …………………………………8分 21.(本题8分)画对一个得3分,对两个得6分3个全对得8分初一数学试题 第9页(共6页)22.(本题10分)(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为22r π平方米,…4分 (2)依题意得:空地的面积为 22ab r π- ……………………6分当10,50,70===r b a 时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯ ……… ………………………………8分2871.62872=≈ ……………………………………………9分答:广场空地的面积约为2872平方米.………………………………………………10分23.(本题10分)(1) -14 , ……………………………………………………………3分 (2)∵A 为CB ′的中点∴2CB AC = ………………………………………………………………………5分 由对折得 2BC CB AC '== …………………………………………………………7分 ∴2312AB BC AC AC AC AC =+=+==………………………………………9分 ∴4AC = …………………………………………………………10分 24.(本题12分)解:………………………………………………………4分(2)当10≤x 时,利润为()5004005-⨯-x ; ……………………6分 当10>x 时,利润为()()54001040500x x =---⨯-⎡⎤⎣⎦ ………………8分 (3)当x =10时,()500400510-⨯-1500=(元), ……………………………9分当x =11时,()()[]1660500401011400511=-⨯---(元); …………10分 当x =14时,()()[]1660500401014400514=-⨯---(元); …………11分 当x =11或14时,利润均为1660元.因为11<14,选择11元,能保证达到利润要求又让顾客省钱. ……………12分初一数学试题 第10页(共6页)25.(本题14分)(1)如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD . ………………………………………1分 ∴∠A +∠APE =180°,∠C +∠CPE =180° ………………2分 ∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,………………………………3分∴∠APC =∠APE +∠CPE =110°.…………………………………………………4分 (2)∠CPD =α+β,……………………………………………………………5分 理由如下:如图,过P 作PE ∥AD 交CD 于E .……………6分 ∵AD ∥BC ,∴AD ∥PE ∥BC , ……………7分 ∴∠DPE =α,∠CPE =β, …………………8分 ∴∠CPD =∠DPE +∠CPE =α+β.……………9分(3)由(1)可得, 360=∠+∠+∠DFP BEP P …………………………10分由(2)可得DFQ BEQ Q ∠+∠=∠ ………………………………11分 又QE 平分BEP ∠,QF 平分DFP ∠∴DFQ DFP BEQ BEP ∠=∠∠=∠2,2 ………12分∴()DFQ BEQ P Q P ∠+∠+∠=∠+∠22DFQ BEQ P ∠+∠+∠=22︒=∠+∠+∠=360DFP BEP P ……………………………14分。
福建省南平市2020-2021学年高中毕业班第一次综合质量检查英语试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分(共20小题,每小题1.5分,满分30分)1.Some tourists’ visiting Tian’ anmen Square during the holiday left a __________ of litter everywhere they went.A.trail B.dotC.chain D.track2.I owe my current success to David, my best friend since childhood, without whom I have no idea where I ________ today.A.am B.wasC.would have been D.would be3.A new airport may be constructed in Nantong, ____ the pace of economic growth will be accelerated. A.in which case B.in that case C.in what case D.in whose case4.The new teacher was so well-organized that she began ________ we stopped yesterday so that no point was left out.A.when B.in whichC.how D.where5.Tom is so creative a person that he always has lots of _________ ideas in his mind, and sometimes we don’t even know what he is thinking about.A.mean B.novelC.slim D.instant6.Why ________ you choose to work in a remote village school when you can own a respectable job in a city?A.need B.shouldC.must D.will7.Varieties of solutions have been provided for us to solve the problem. We can choose________ to start with.A.it B.that C.each D.one8.— How do you find your new classmate?— Oh, she is really ________ of a musician, who can not only sing very beautifully, but also composeskillfully.A.something B.somebodyC.everything D.everybody9.Thanks to the “sugar tax”,food factories have reduced sugar in their products, ________ about 45 million kilograms of sugar.A.to save B.savedC.saving D.having saved10.—Going to watch the Women’s Volleyball Match on Wednesday?—________! Will you go with me?A.Y ou bet B.Y ou got meC.Y ou there D.You know better11.-The online shopkeeper has made an apology for his rude behavior.-OK. If you’re still not satisfied, you can _______ compensation.A.claim B.affordC.sacrifice D.dismiss12.—Do you think he is the only person for the job?—I’m not quite sure but he’ll prove_______ to the task.A.equal B.essentialC.special D.superior13.Hot the night air was,we slept deeply because we were so tired after the long journey. A.although B.while C.as D.however14.Sometimes it seems to bother the teacher ______ all the students are being too quiet.A.how B.whatC.that D.where15.It’s really stupid of you ____ him the news yesterday so that it has been disturbing him all the time.A.having told B.telling C.to tell D.to have told16.If you ________ come to our village, I’ll show you around.A.will B.shall C.must D.should17.---Hi, Johnson, any idea where Susan is?---It is class time, so she __________ in the classroom now.A.can be B.must have beenC.might have been D.should be18.In my opinion,_____ shouldn’t be any doubt that China will become one of the most powerful countries in the near future.A.this B.that C.it D.there19.In Beijing, more than 21,100 people ________ to donate their bodies by the end of 2017, as the city promoted a body donation campaign from 1999.A.have applied B.had appliedC.would have applied D.applied20..She is fed up with sharing a house with others; , she is looking for her own flat. A.moreover B.otherwise C.however D.therefore第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。
2020-2021学年福建省泉州市厦门外国语学校石狮分校九年级(上)期中数学试卷一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列各数中,化为最简二次根式后能与合并的是()A.B.C.D.2.(4分)下面计算正确的是()A.B.C.D.3.(4分)用配方法解一元二次方程x2+2x﹣1=0,配方后得到的方程是()A.(x﹣1)2=2B.(x﹣1)2=3C.(x+1)2=2D.(x+1)2=3 4.(4分)如果4是方程x2﹣6x+k=0的一个根,则方程的另一个根是()A.2B.3C.4D.55.(4分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.6.(4分)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则由题意可列方程()A.x(x﹣12)=864B.x(x﹣12)=864×2C.x(x+12)=864D.x(x+12)=864×27.(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.58.(4分)化简+|x﹣2|结果为()A.4﹣2x B.2x﹣4C.0D.49.(4分)如图,在△ABC中,D、E分别是边AB、BC上的点,且DE∥AC,若S:S△BDE=1:3,则S△DOE:S△AOC的值为()△CDEA.B.C.D.10.(4分)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的为()A.①②③④B.①②③C.①③④D.②③④二.填空题(本大题共6小题,每小题4分,共24分)11.(4分)若,则=.12.(4分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a+b﹣ab的值为.13.(4分)已知M是满足不等式﹣<a<的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为.14.(4分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则关于x的一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为.15.(4分)如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为cm.16.(4分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三.解答题(本大题共9小题,共86分)17.(8分)计算下列各式的值:(1);(2).18.(8分)解方程:(1)(x+4)2=5(x+4);(2)(3x﹣11)(x﹣2)=2.19.(8分)如图,某学习小组为了测量校园内一棵小树的高度CD,用长为1m的竹竿AB 作测量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点E,且点E,A,C在同一直线上.已知EA=3m,AC=9m,求这棵树的高度CD.20.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3),△ABC与△A1B1C1关于y轴对称.(1)画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(2)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.21.(8分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.22.(10分)在日历上,我们可以发现其中某些数满足一定规律,如图是2020年6月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:===7,===7,不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用整式的运算对以上规律加以证明.23.(10分)“对角线红茶馆”是一家网红茶店,但最近该店的招牌茶饮“对角线AB”的销量却不乐观.四月第一周该店只卖出30杯“对角线AB”,已知该茶饮每杯的成本为20元,卖价为40元;第二周,该店推出了一款新口味茶饮命名为”对角线CD”,“对角线CD ”每杯的成本为15元,卖价仍为40元,并且从第二周开始不再售卖“对角线AB ”.(1)若要使这两周卖这两款茶饮的总利润不低于2850元,则第二周至少应该卖出多少杯“对角线CD ”?(2)在实际制作过程中,“对角线CD ”按照(1)中杯数的最低数量进行制作,但由于材料、店面等因素的影响,每杯成本比15元多了a %(a >10),于是该店决定将售价也提高a %,附近的商户受到该店的启发,也纷纷推出了新品,在市场冲击下,“对角线红茶馆”有a %的“对角线CD ”变质而无法卖出,但第二周仍比第一周获利多1650元,求a 的值.24.(12分)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论,设其中一根为t ,则另一根为2t ,因此ax 2+bx +c =a (x ﹣t )(x ﹣2t )=ax 2﹣3atx +2t 2a ,所以有b 2﹣ac =0;我们记“K =b 2﹣ac ”,即K =0时,方程ax 2+bx +c =0为倍根方程:下面我们根据所获信息来解决问题:(1)以下为倍根方程的是;(写出序号)①方程x 2﹣x ﹣2=0;②x 2﹣6x +8=0;(2)若关于的x 方程mx 2+(n ﹣2m )x ﹣2n =0是倍根方程,求4m 2+5mn +n 2的值;(3)若A (m ,n )在一次函数y =3x ﹣8的图象上,且关于x 的一元二次方程x 2﹣n=0是倍根方程,求此倍根方程.25.(14分)如图,在△ABC 中,∠ACB =90°,AC =BC =a ,D 是AB 边上一动点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE .(1)猜想线段DB 、BE 、DE 的数量关系,并说明理由;(2)M 、N 分别为线段AB 、DE 的中点,在D 的运动过程中,的值是否发生改变,若改变请说明理由,若不变求出的值;(3)求线段BF 的取值范围(用含a 的代数式表示).2020-2021学年福建省泉州市厦门外国语学校石狮分校九年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列各数中,化为最简二次根式后能与合并的是()A.B.C.D.【分析】根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.即可解答.【解答】解:因为=3,=2,=,=,所以能与合并的是,故选:B.【点评】本题考查了同类二次根式,解决本题的关键是掌握同类二次根式的定义.2.(4分)下面计算正确的是()A.B.C.D.【分析】根据二次函数的性质对A、B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=5,所以A选项错误;B、原式=5,所以B选项错误;C、原式=,所以C选项正确;D、原式==,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.(4分)用配方法解一元二次方程x2+2x﹣1=0,配方后得到的方程是()A.(x﹣1)2=2B.(x﹣1)2=3C.(x+1)2=2D.(x+1)2=3【分析】把常数项﹣1移项后,应该在左右两边同时加上一次项系数2的一半的平方.【解答】解:把方程x2+2x﹣1=0的常数项移到等号的右边,得到x2+2x=1,方程两边同时加上一次项系数一半的平方,得到x2+2x+1=1+1,配方得(x+1)2=2.故选:C.【点评】本题考查了用配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.(4分)如果4是方程x2﹣6x+k=0的一个根,则方程的另一个根是()A.2B.3C.4D.5【分析】把x=4代入方程求出k,得出方程,求出方程的解即可.【解答】解:把x=4代入方程得:16﹣24+k=0,解得:k=8,即方程为x2﹣6x+8=0,解得:x1=2,x2=4,故选:A.【点评】本题考查了一元二次方程的解,根与系数的关系,解一元一次方程的应用,主要考查学生的计算能力.5.(4分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选:B.【点评】此题主要考查学生对相似三角形的判定方法的理解及运用.6.(4分)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则由题意可列方程()A.x(x﹣12)=864B.x(x﹣12)=864×2C.x(x+12)=864D.x(x+12)=864×2【分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解答】解:∵矩形的宽为x(步),且宽比长少12(步),∴矩形的长为(x+12)(步).依题意,得:x(x+12)=864.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.7.(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.5【分析】根据三角形中位线定理和直角三角形的性质即可得到结论.【解答】解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=BC=7,∵∠AFB=90°,AB=8,∴DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故选:B.【点评】本题考查了三角形中位线定理,直角三角形的性质,熟练掌握三角形中位线定理是解题的关键.8.(4分)化简+|x﹣2|结果为()A.4﹣2x B.2x﹣4C.0D.4【分析】直接利用二次根式的性质和绝对值的性质分别化简得出答案.【解答】解:由题意可得:2﹣x≥0,则x﹣2≤0,故原式=2﹣x+2﹣x=4﹣2x.故选:A.【点评】此题主要考查了二次根式的性质和绝对值的性质,正确掌握二次根式的性质是解题关键.9.(4分)如图,在△ABC中,D、E分别是边AB、BC上的点,且DE∥AC,若S:S△BDE=1:3,则S△DOE:S△AOC的值为()△CDEA.B.C.D.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S:S△CDE=1:3,△BDE∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴=,故选:D.【点评】该命题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(4分)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的为()A.①②③④B.①②③C.①③④D.②③④【分析】根据判别式,根与系数的关系,二次函数的性质一一判断即可.【解答】解:∵x2﹣2x﹣a=0,∴Δ=4+4a,∴①当a>﹣1时,Δ>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④当a>3时,由(3)可知,两个实根一个大于3,另一个小于3,故④正确,解法二:构造图象法,令y1=x2﹣2x,y2=a,画出两个函数图象,利用图像法解决问题即可.故选:C.【点评】本题考查一元二次方程的根的判别式,根与系数的关系,抛物线与x轴的交点等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二.填空题(本大题共6小题,每小题4分,共24分)11.(4分)若,则=.【分析】根据比例的基本性质变形,代入求值即可.【解答】解:由可设y=3k,x=7k,k是非零整数,则.故答案为:.【点评】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.12.(4分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a+b﹣ab的值为3.【分析】根据根与系数的关系得到a+b=2,ab=﹣1,然后利用整体代入的方法计算.【解答】解:根据题意得a+b=2,ab=﹣1,所以a+b﹣ab=2﹣(﹣1)=3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.13.(4分)已知M是满足不等式﹣<a<的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为±2.【分析】利用无理数的估算得到M=2,N=2,然后根据平方根的定义求解.【解答】解:∵满足不等式﹣<a<的所有整数为﹣1,0,1,2,∴M=2,∵x≤的最大整数为2,即N=2,∴M+N=4,∴M+N的平方根为±2.故答案为±2.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了无理数的估算.14.(4分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则关于x的一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故答案是:x=2020.【点评】本题考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.(4分)如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为64cm.【分析】如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.求出CE,EF,DF即可解决问题.【解答】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB∥EF,AE∥BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE∥PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.16.(4分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,过点E作EG⊥AD于G,连接CF,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠CAD=∠BAD,∠CBE=∠ABE,∵∠ACB=90°,∴2(∠BAD+∠ABE)=90°,∴∠BAD+∠ABE=45°,∴∠EFG=∠BAD+∠ABE=45°,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三.解答题(本大题共9小题,共86分)17.(8分)计算下列各式的值:(1);(2).【分析】(1)利用二次根式的乘法法则和平方差公式计算;(2)根据二次根式的除法法则和绝对值的意义计算.【解答】解:(1)原式=﹣(5﹣3)=3﹣2=1;(2)原式=﹣+3﹣=﹣+3﹣=3﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解方程:(1)(x+4)2=5(x+4);(2)(3x﹣11)(x﹣2)=2.【分析】(1)方程移项后用因式分解法解方程即可;(2)方程整理后运用公式法求解即可.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x﹣1)=0,x+4=0,x﹣1=0,解得,x1=﹣4,x2=1;(2)(3x﹣11)(x﹣2)=2,整理得,3x2﹣17x+20=0,∵Δ=b2﹣4ac=49>0,∴,∴x1=4,.【点评】本题考查的是解一元二次方程的因式分解法和公式法,熟知解一元二次方程的基本方法是解答此题的关键.19.(8分)如图,某学习小组为了测量校园内一棵小树的高度CD,用长为1m的竹竿AB 作测量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点E,且点E,A,C在同一直线上.已知EA=3m,AC=9m,求这棵树的高度CD.【分析】直接利用已知得出△EAB∽△ECD,再利用相似三角形的性质得出答案.【解答】解:∵AB∥CD,∴△EAB∽△ECD,∴,∵AB=1,∴CD=4.答:这棵树的高度CD为4m.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.20.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3),△ABC 与△A1B1C1关于y轴对称.(1)画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(2)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.【分析】(1)把A、B、C的横纵坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可;(2)利用梯形的面积公式计算.【解答】解:(1)如图,△A2B2C2为所作;(2)以B1、B2、A1、A2四个点为顶点构成的四边形的面积=×(2+4)×3=9.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.也考查了轴对称变换.21.(8分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到Δ=a2+4,则可判断Δ>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到Δ=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)根据题意得a≠0,∵Δ=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,而a2>0,∴Δ>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴Δ=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.22.(10分)在日历上,我们可以发现其中某些数满足一定规律,如图是2020年6月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:===7,===7,不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用整式的运算对以上规律加以证明.【分析】(1)直接选择一组数据代入计算得出答案;(2)利用3个数据之间的关系进而计算得出答案.【解答】(1)解:答案不唯一,如:===7;(2)证明:设中间那个数为n,则:∵====7,∴=7.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.23.(10分)“对角线红茶馆”是一家网红茶店,但最近该店的招牌茶饮“对角线AB”的销量却不乐观.四月第一周该店只卖出30杯“对角线AB”,已知该茶饮每杯的成本为20元,卖价为40元;第二周,该店推出了一款新口味茶饮命名为”对角线CD”,“对角线CD”每杯的成本为15元,卖价仍为40元,并且从第二周开始不再售卖“对角线AB”.(1)若要使这两周卖这两款茶饮的总利润不低于2850元,则第二周至少应该卖出多少杯“对角线CD”?(2)在实际制作过程中,“对角线CD”按照(1)中杯数的最低数量进行制作,但由于材料、店面等因素的影响,每杯成本比15元多了a%(a>10),于是该店决定将售价也提高a%,附近的商户受到该店的启发,也纷纷推出了新品,在市场冲击下,“对角线红茶馆”有a%的“对角线CD”变质而无法卖出,但第二周仍比第一周获利多1650元,求a的值.【分析】(1)设第二周应该卖出x杯“对角线CD”,根据总利润=每杯的利润×销售数量结合使这两周卖这两款茶饮的总利润不低于2850元,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据总利润=销售总价﹣总成本结合第二周比第一周获利多1650元,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设第二周应该卖出x杯“对角线CD”,依题意,得:(40﹣20)×30+(40﹣15)x≥2850,解得:x≥90.答:第二周至少应该卖出90杯“对角线CD”.(2)依题意,得:40(1+a%)×90(1﹣a%)﹣15(1+a%)×90=(40﹣20)×30+1650,整理,得:a2﹣25a=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.【点评】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.(12分)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论,设其中一根为t,则另一根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2﹣ac=0;我们记“K=b2﹣ac”,即K=0时,方程ax2+bx+c=0为倍根方程:下面我们根据所获信息来解决问题:(1)以下为倍根方程的是②;(写出序号)①方程x2﹣x﹣2=0;②x2﹣6x+8=0;(2)若关于的x方程mx2+(n﹣2m)x﹣2n=0是倍根方程,求4m2+5mn+n2的值;(3)若A(m,n)在一次函数y=3x﹣8的图象上,且关于x的一元二次方程x2﹣n =0是倍根方程,求此倍根方程.【分析】(1)据倍根方程定义判断即可;(2)根据(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=﹣得到m=﹣n或m=﹣n,从而得到m+n=0,4m+n=0,进而得到4m2+5mn+n2=0;(3)设其中一根为t,则另一个根为2t,据此知ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,从而得倍根方程满足b2﹣ac=0,据此求解可得.【解答】解:(1)①x2﹣x﹣2=0,(x+1)(x﹣2)=0,x1=﹣1,x2=2,∴方程x2﹣x﹣2=0不是倍根方程;②x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x1=2,x2=4,∴方程x2﹣6x+8=0是倍根方程;故答案为②;(2)mx2+(n﹣2m)x﹣2n=0,因式分解得:(x﹣2)(mx+n)=0,解得:x1=2,x2=﹣,∵方程mx2+(n﹣2m)x﹣2n=0是倍根方程,∴2=﹣或4=﹣,即m=﹣n或m=﹣n,∴m+n=0或4m+n=0;∵4m2+5mn+n2=(4m+n)(m+n)=0;(3)设其中一根为t,则另一个根为2t,则ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,∴b2﹣ac=0,∵x2﹣n=0是倍根方程,∴(﹣)2﹣×2×n=0,整理,得:m=3n,∵A(m,n)在一次函数y=3x﹣8的图象上,∴n=3m﹣8,∴n=1,m=3,∴此倍根方程为x2﹣x+=0.【点评】本题考查了一元二次方程的解,根与系数的关系,根的判别式,一次函数图像上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.25.(14分)如图,在△ABC中,∠ACB=90°,AC=BC=a,D是AB边上一动点(点D 与A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)猜想线段DB、BE、DE的数量关系,并说明理由;(2)M、N分别为线段AB、DE的中点,在D的运动过程中,的值是否发生改变,若改变请说明理由,若不变求出的值;(3)求线段BF的取值范围(用含a的代数式表示).【分析】(1)证明△ACD≌△BCE,根据全等三角形的性质得到∠CBE=∠A,进而得到∠DBE=90°,根据勾股定理证明即可;(2)连接CM、CN,根据等腰直角三角形的性质得到=,证明△MCN∽△ACD,根据相似三角形的性质证明;(3)分点D与点A重合、BF⊥DE两种情况,分别求出BF,得到答案.【解答】解:(1)DB2+BE2=DE2,理由如下:∵∠ACB=90°,AC=BC,∴∠A=∠CBA=45°,∵∠ACB=90°,∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠A=45°,∴∠DBE=∠CBA+∠CBE=90°,由勾股定理得,DB2+BE2=DE2;(2)的值不变,理由如下:连接CM、CN,∵∠ACB=90°,AC=BC=a,M为线段AB的中点,∴CM=AB=AC,∴=,同理,=,∴=,∵∠ACM=∠DCN=45°,∴∠ACD=∠MCN,∴△MCN∽△ACD,∴==,∴的值不变,=;(3)当点D与点A重合时,BF=0,∵点D与点A不重合,∴BF>0,当BF⊥DE时,BF最大,此时,BM=BE=AD=,∴DE==a,∵∠DBE=90°,BM=BE,BE⊥BD,∴BF=DE=a,∴0<BF≤a.【点评】本题考查的是旋转变换的性质、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质,掌握旋转变换的性质、三角形全等的判定定理和性质定理是解题的关键.。
2020-2021学年度下学期泉州市高中教学质量监测2021.07高一化学(试卷满分100分,考试时间:90分钟)温馨提示:1.试卷共8页,1~4页为第I 卷,5~8页为第Ⅱ卷。
2.请将试题答案统一填写在答题卷上。
可能用到的相对原子质量:H 1C 12O 16一、选择题(每小题只有一个选项符合题意,本题包括18小题,其中1~12题,每小题2分,13~18题,每小题3分,共42分)1.下列物质所使用的材料属于合金的是A .三星堆出土象牙B .玉玺C .青花瓷D .青铜纵目面具2.以下过程没有发生化学反应的是A .石油裂化B.蛋白质盐析C .煤的干馏D .植物油硬化3.日常生活中,下列做法与化学反应速率无关的是A.在铁制品表面刷油漆B .在糕点包装内放置除氧剂C .面团放在温热处发酵D .在糖果制作过程中添加着色剂4.下列有关化学用语的表示错误的是A .苯的空间填充模型:B .乙醛的结构式:C .乙炔的结构简式:CH≡CHD .乙酸的电子式:保密★启用前5.沼气在我国部分农村地区有广泛的应用。
一定条件下,动植物废弃物(秸秆、杂草、人畜粪便等)在沼气池经隔绝空气发酵可产生沼气(如下图所示)。
下列说法错误的是A .秸秆、杂草的主要成分为纤维素B .人畜粪便中含有脂肪和蛋白质等C .脂肪、蛋白质和纤维素都属于高分子化合物D .严禁在窨井口和化粪池附近燃放烟花爆竹6.Atropic 酸(结构简式如右图)是合成某些消炎、镇痛药物的中间体。
下列说法正确的是A .Atropic 酸的分子式为C 9H 9O 2B .Atropic 酸中苯环上的一氯代物有4种C .Atropic 酸能发生氧化、酯化、加聚等反应D .1mol Atropic 酸能与足量的Na 反应生成11.2L H 27.与下列物质的反应中,硝酸既表现氧化性,又表现酸性的是A .木炭B .FeOC .MgOD .Na 2CO 38.下列试剂不能实现“”转化的是A .H 2B .NH 3C .CO 2D .C 2H 5OH9.下列有关自然界中氮循环的说法错误的是A .工业合成氨属于人工固氮B .豆科植物可实现生物固氮C .含氮无机物与有机氮可以相互转化D .氨和铵盐在硝化细菌作用下被还原10.铝热反应可用于焊接钢轨,实验室常用下图装置模拟铝热反应。
福建省宁德市2020-2021学年高一数学下学期期末考试质量检测试题(含解析)一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|=.14.在△ABC中,若b=1,c=,∠C=,则a=.15.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若⊥,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.参考答案一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解.解:∵z=i(1+i)=﹣1+i,∴.故选:B.2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等【分析】事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件;P(A)==,P(B)==,P(AB)==,由P(AB)=P(A)P (B),得A与B独立;事件A与事件B不相等.解:掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件,故A,B均错误;P(A)==,P(B)==,P(AB)==,∵P(AB)=P(A)P(B),A与B独立,故C正确;事件A与事件B不相等,故D错误.故选:C.3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大【分析】由柱状图计算出乙户的旅游支出占比,再与甲的比较即可.解:由饼状图,甲户的旅游支出占25%;由柱状图,乙户的旅游支出占<25%.故选:A.4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°【分析】把正方体的平面展开图还原成正方体ADNE﹣CMFB,由此能求出AM与BN所成角的大小.解:如图,把正方体的平面展开图还原成正方体ADNE﹣CMFB,∵CD∥BN,CD⊥AM,∴AM⊥BN,∴在这个正方体中,AM与BN所成角的大小为90°.故选:D.5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β【分析】对于A,m∥α或m⊂α;对于B,m与β相交、平行或m⊂β;对于C,m与n 平行或异面;对于D,由面面垂直的判定定理得α⊥β.解:由m,n是两条直线.α,β是两个平面,知:对于A,若m∥n,n∥α,则m∥α或m⊂α,故A错误;对于B,若α⊥β,m⊂α,则m与β相交、平行或m⊂β,故B错误;对于C,若m∥α,n⊂α,则m与n平行或异面,故C错误;对于D,若m⊂α,m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.【分析】找出10组随机数中三次投篮恰有两次命中的事件,计算所求的概率值.解:根据10组随机数:204 978 171 935 263 321 947 468 579 682,表示三次投篮恰有两次命中的事件是204,171,263,共3件;所以该运动员三次投篮恰有两次命中的概率为P=.故选:B.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.【分析】基本事件总数n=3×3=9,利用列举法求出田忌的马获胜包含的基本事件有3种情况,由此能求出田忌的马获胜的概率.解:田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,基本事件总数n=3×3=9,分别为:田忌的上等马对阵齐王的上等马,田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的上等马,田忌的中等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的下等马对阵齐王的上等马,田忌的下等马对阵齐王的中等马,田忌的下等马对阵齐王的下等马,田忌的马获胜包含的基本事件有3种情况,分别为:田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的下等马,则田忌的马获胜的概率为P=.故选:C.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.【分析】利用平面向量的线性运算及平面向量的基本定理求解即可.解:∵=2,∴=+=+=+(﹣)=+﹣×,∴=+,∴=+.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)【分析】根据平面向量数量积的运算性质逐一进行判断即可解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限【分析】根据已知条件,结合复数z的三角形式和共轭复数的概念,即可求解.解:对于A选项,当时,z=cos+=,,故A选项正确,对B选项,=cosπ+sinπi=﹣1,故B选项错误,对于C选项,∵z=r(cosθ+i sinθ),∴z4=r4(cos4θ+i sin4θ),则|z4|=r4,|z|4=r4,∴|z4|=|z|4,故C选项正确,对于D选项,==,即在复平面对应的点为(,)位于第四象限,故D选项错误.故选:AC.11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为【分析】设这个四面体的棱长为a,利用分割补形法求其外接球的半径,由等体积法求其内切球半径,再由已知列式求解a,然后逐一分析四个选项得答案.解:设这个四面体的棱长为a,四面体可看作棱长为的正方体截得的,故四面体的外接球即为正方体的外接球,外接球直径为正方体体对角线长,2R外==,∴R外=a,四面体的高h=a,根据等体积法,S•h=4×S•r内,解得r内=a,依题意得R外﹣r内=a﹣a=,∴a=12,故C正确;正四面体外接球的半径,则正四面体外接球的表面积为4π×54=216π,故A错误;正四面体内切球的半径为,则内切球的体积V=×=,故B正确;线段MN的最大值为:R外+r内=,故D错误.故选:BC.12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4【分析】根据题意,假设设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,由此依次分析选项,可得答案.解:由题意,设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,依次分析选项:对于A,a,b,c,d,e,f,g依次取3,3,3,4,5,5,7,则满足中位数为4,众数为3,但是第7天的人数为7>6,不符合题意;对于B,若g≥7,中位数为1,则有(a+b+c+d+e+f+g)>g≥1,与均值小于1矛盾,可以判定该社区没有发生群体性发热,符合题意;对于C,若均值为2,标准差为,则有(a+b+c+d+e+f+g)=2,[(a﹣2)2+…+(g﹣2)2]=3,变形可得a+b+c+d+e+f+g=14,(a﹣2)2+…+(g﹣2)2=21,若g≥7,则(g﹣2)2≥25,与标准差为矛盾,可以判定该社区没有发生群体性发热,符合题意;对于D,a,b,c,d,e,f,g依次取0,1、2,3,4,4,7,满足均值为3,众数为4,但是第7天的人数为7>6,不符合题意;故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|= 1 .【分析】根据已知条件,运用复数的运算法则,以及复数模的公式,即可求解.解:∵z==,∴.故答案为:1.14.在△ABC中,若b=1,c=,∠C=,则a= 1 .【分析】先根据b,c,∠c,由正弦定理可得sin B,进而求得B,再根据正弦定理求得a.解:在△ABC中由正弦定理得,∴sin B=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:115.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.【分析】作出图形,数形结合能求出结果.解:如图,以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,,水面所在直线EF∥桌面所在直线CD,,∴,∴圆柱母线与水面所在平面所成的角∠EFB=∠CBF=.故答案为:.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为﹣4 .【分析】设在向量方向上的投影为x,结合图形可知当N点与A点重合时x最小,所以,进而可得答案.解:设在向量方向上的投影为x,则,当x最小时,取得最小值,结合图形可知当N点与A点重合时x最小,所以=.故答案为:﹣4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.【分析】(1)根据平面向量数量积运算公式求解即可;(2)由得,进而求出,再根据平面向量夹角公式求解即可.解:(1),所以,所以,(2)因为,所以,所以,所以,所以,因为θ∈[0,π],所以.故与的夹角为.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.【分析】(1)连接A1C,交AC1于O,连接OD,可得OD∥A1B,再由直线与平面平行的判定得AB1∥平面ADC1;(2)由平面ABB1A1⊥平面ABC,AB⊥AA1,利用平面与平面垂直的性质可得AA1⊥平面ABC,再由已知求得三棱锥ABC﹣A1B1C1与三棱锥C1﹣ADC的体积,作差可得几何体ABD﹣A1B1C1的体积.【解答】(1)证明:连接A1C,交AC1于O,连接OD,∵OD是ΔCA1B的中位线,∴OD∥A1B,又OD⊂平面ADC1,AB1⊄平面ADC1,∴AB1∥平面ADC1;(2)解:∵平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,AB⊥AA1,AA1⊂平面ABB1A1,∴AA1⊥平面ABC,∵AB⊥AC,AB=AC=1,且AA1=2,∴,,故.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.【分析】(1)求出频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,从而80%分位数一定位于[76,86)内,由此能估计样本数据的80%分位数.(2)①求出平均数,得到,再由62∈(60,80),得该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,利用列举法求出摸出两件产品总基本事件共10个,法一:记A:摸出两件产品中至少有一个一等品,利用列举法求出A包含的基本事件共9个,由此能求出所求概率.法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).利用对立事件概率计算公式能求出所求概率.解:(1)因为频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,所以,80%分位数一定位于[76,86)内,所以=.所以估计样本数据的80%分位数约为78.5.(2)①,所以,又62∈(60,80)可知该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,这是古典概型,摸出两件产品总基本事件共10个,分别为:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),方法一:记A:摸出两件产品中至少有一个一等品,A包含的基本事件共9个,分别是:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),所以.方法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).所以.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.【分析】(1)①根据正弦定理以及同角关系进行转化求解;②利用正弦定理和余弦定理进行转化求解即可.(2)根据点D是边AC靠近A的三等分点,方法1:根据条件得到关于a,c的关系式,然后利用基本不等式求出ac的范围,再得到面积的最大值;方法2,直接利用余弦定理,结合基本不等式进行转化求解即可.解:(1)若选①,由2b sin A=a tan B,得2 sin B sin A=由sin A≠0,sin B≠0,得因为B∈(0,π),所以B=60°.若选②,由a(sin A﹣sin C)=b sin B﹣c sin C,得a2+c2﹣b2=ac所以因为B∈(0,π),所以B=60°.(2)方法一:,,由,平方得,即,所以,所以,即,当且仅当时,取等号,所以,此时且.方法二:△ABC中,由余弦定理,可得b2=a2+c2﹣ac,由∠ADB+∠CDB=π,得cos∠ADB=﹣cos∠CDB,所以,所以,即a2+4c2+2ac=9,由基本不等式,得即,当且仅当,取等号,所以,即,所以,此时且.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.【分析】(1)利用对立事件的概率公式以及相互独立事件的概率乘法公式求解即可;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,然后由互斥事件的加法公式得到P(E)=P(F)+P(G),再利用对立事件的概率公式以及相互独立事件的概率乘法公式分别求解P(F),P(G),即可得到答案.解:(1)记事件A:甲面试合格,事件B:乙面试合格事件C:丙面试合格事件D:恰好有一人面试合格,依题意,事件A、B、C相互独立,所以==;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,因为F与G互斥,所以P(E)=P(F)+P(G),又==,==,,所以至多一人签约的概率为.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若AB⊥BC,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.【分析】(1)由“鳖臑”的定义求解即可;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,利用线面垂直的判定定理和性质证明l⊥平面BCD,即可证明l⊥BD;②延长ED,BC,交于点F,连接AF,利用线面垂直的判定定理证明AF⊥平面PAB,由二面角的平面角的定义即可证明.解:(1)因为PA⊥平面ABC,AB,AC,BC⊂平面ABC,则PA⊥AB,PA⊥AC,PA⊥BC,故△PAC与△PAB是两个直角三角形,当AB⊥BC时,则△BAC为直角三角形,因为PA∩AB=A,PA,AB⊂平面PAB,则BC⊥平面PAB,又PB⊂平面PAB,所以BC⊥PB,则△BPC为直角三角形,故该三棱锥为“鳖臑”;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,证明如下:在△ABC中,由余弦定理可得,由勾股定理逆定理可知,BC⊥AC,又因为PA⊥底面ABC,BC⊂平面ABC,所以PA⊥BC,又PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,又l⊂平面PAC,则l⊥BC,又l⊥CD,CD∩BC=C,CD,BC⊂平面BCD,所以l⊥平面BCD,又BD⊂平面BCD所以l⊥BD;②延长ED,BC,交于点F,连接AF,因为点F∈平面ADE,点F∈平面ABC,所以平面ADE∩平面ABC=AF,因为PA⊥底面ABC,且AF⊂平面ABC所以PA⊥AF,因为PB⊥平面EDA,AF⊂平面EDA,所以PB⊥AF,又因为PB∩PA=P,PA,PB⊂平面PAB,所以AF⊥平面PAB,所以AF⊥AE,AF⊥AB,故∠EAB是平面EAD与平面BAC所形成的二面角的平面角.21。
2020-2021学年福建省福州市高一(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.43754.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c5.函数f(x)=的图象大致是()A.B.C.D.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.57.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)二、多选题(共4小题).9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=110.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增三、填空题(共4小题).13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)=.15.已知角θ的终边经过点P(﹣4,3),则=.16.已知函数f(x)=,则f[f(﹣3)]=;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是.三、解答题(共6小题).17.(1)求值:;(2)已知,,求的值.18.已知,,,.(1)求的值;(2)求的值.19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.参考答案一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)解:∵集合A={x|y=lg(x+1)}={x\x>﹣1},B={x|2x>1}={x|x>0},∴A∩B={x|x>0}=(0,+∞).故选:A.2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.解:sin78°sin18°﹣cos78°cos162°=sin78°sin18°+cos78°cos18°=cos(78°﹣18°)=cos60°=.故选:C.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.4375解:由表格可知,方程x3+x2﹣2x﹣2=0的近似根在(1,1.5),(1.25,1.5),(1.375,1.5),(1.375,1.4375),(1.40625,1.4375),故程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为:1.4375,故选:D.4.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c 解:log20.8<log21=0,0<0.82<1,20.8>20=1;∴a<b<c.故选:A.5.函数f(x)=的图象大致是()A.B.C.D.解:函数的定义域为R,f(x)≥0恒成立,排除C,D,f(﹣x)===f(x),即函数f(x)是偶函数,图象关于y轴对称,排除B,故选:A.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.5解:设8.0级地震释放出的能量为E1,5.0级地震释放出的能量为E2,则lgE1﹣lgE2=4.5,∴,∴.故选:D.7.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣解:设﹣x=θ,则x=﹣θ,则sinθ=,则cos(x+)=cos(﹣θ+)=cos(﹣θ)=﹣cos(﹣θ)=﹣sinθ=﹣,故选:C.8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)解:当x∈(﹣2π,2π),f(x)=a cos2|x|+2sin|x|﹣a+2=0(a≠0),则有f(﹣x)=f(x),所以函数f(x)为偶函数,偶函数的对称性,只需研究x∈(0,2π)时,f(x)=a cos2x+2sin x﹣a+2=0有两个零点,设t=sin x,则h(t)=at2﹣2t﹣2有一个根t∈(﹣1,1),①当a<0时,h(t)=at2﹣2t﹣2开口向下,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,这与a<0矛盾,不符合题意;②当a>0时,h(t)=at2﹣2t﹣2开口向上,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,则存在t∈(﹣1,0),只需h(1)=a﹣2+2<0,解得a<4,所以0<a<4,综上所述,实数a的取值范围为(0,4).故选:D.二、多选题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=1解:,∴A正确;f(x)在R上是增函数,∴f(﹣2)<f(3),∴B错误;,=,∴f(2x)=2f(x)g(x),∴C正确;[f(x)]2﹣[g(x)]2=,∴D错误.故选:AC.10.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.解:将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)=2sin(4x﹣)的图象,故g(x)的周期为,且g(x)的最大值为2,最小值为﹣2,若g(x1)•g(x2)=﹣4,所以g(x1)和g(x2)是函数g(x)的最大值和最小值,所以|x1﹣x2|=+,k∈Z,当k=0时,|x1﹣x2|=;当k=1时,|x1﹣x2|=.故选:BD.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.解:设,则a+b=log26+log3=log26﹣log36>0,故A错误;﹣=log62+log63=log66=1,故B正确;∵a=log26>0,b=log3<0,∴ab<0,故正确;+=(log62)2+(﹣log63)2=(log62)2+(log63)2=(log62+log63)2﹣2log62log63>1﹣2×()2=1﹣=,故D正确.故选:BCD.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增解:对于A,由于ω>0,f(0)=sin>sin0,设t=ωx+,则t∈[,2ωπ+],因为f(x)在[0,2π]上有且仅有5个零点,所以5π≤2ωπ+<6π,解得≤ω<,故A正确,对于B,f(x)=1即此时f(x)取最大值,则满足ωx+=,,的x是f(x)=1的解,共3个,故B正确,对于C,f(x)=﹣1,即此时f(x)取最小值,则满足ωx+=,的x是f(x)=﹣1的解,但当ω接近时,ωx+=<6π,也是f(x)=﹣1的解,这时f(x)=﹣1有3个解,故C错,对于D,当x∈(0,)时,由ω×+=(ω+2)×<<,所以f(x)是递增的,故D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答.13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.解:设扇形的半径为r,弧长为l,则l+2r=9,∵圆心角为1rad的弧长l=r,∴3r=9,则r=3,l=3,则对应的扇形的面积S=lr=×3×3=.故答案是:.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)= 2.5.解:根据题意,f(x)为偶函数且满足f(x+4)=f(x),则f(5.5)=f(﹣2.5)=f(2.5),又由当2≤x≤3,f(x)=x,则f(2.5)=2.5,则有f(5.5)=f(2.5)=2.5,故答案为:2.5.15.已知角θ的终边经过点P(﹣4,3),则=7.解:因为角θ的终边经过点P(﹣4,3),所以,所以=.故答案为:7.16.已知函数f(x)=,则f[f(﹣3)]=1;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是[0,1).解:∵f(x)=,∴f(﹣3)=sin()+1=2,则f[f(﹣3)]=f(2)=|log22|=1;作出函数f(x)的图象如图,若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),不妨设a<b<c<d,由图可知,|log2c|=|log2d|,得log2(cd)=0,即cd=1.a+b=﹣2,且﹣1<b≤0,则abcd=(﹣b﹣2)b=﹣(b+1)2+1∈[0,1),故答案为:2;[0,1).三、解答题:本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤,在答题卡上相应题目的答题区域内作答.17.(1)求值:;(2)已知,,求的值.解:(1)=(2﹣2lg2)+3+(﹣)+lg2=4.(2)因为,,两边平方可得1﹣2sinαcosα=,可得2sinαcosα=,可得sinα+cosα===,可得===﹣.18.已知,,,.(1)求的值;(2)求的值.解:(1)因为,,所以,故=;(2)因为,由(1)可知,=,所以,因为,所以,又,所以,故===19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?解:(1)因为函数y=ka x(k>0,a>1)中,y随x的增大而增大的速度越来越快,而函数y=log a(x+1)+q(a>1)中,y随x的增大而增大的速度越来越慢,依题意应选择函数y=ka x(k>0,a>1),则有,解得k=8,a=,所以函数的解析式为y=8•()x(x∈N);(2)由(1)可知,当x=0时,y=8,设经过x个月该水域中水葫芦面积至少是当初投放的100倍,则有8,所以x=log≈11.36,所以约经过12个月该水域中水葫芦面积至少是当初投放的100倍.20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;解:(1)函数===所以函数f(x)的最小正周期为π,令,解得,所以函数f(x)的单调递减区间为;(2)因为函数f(x)的图象关于点(m,n)对称,所以有,解得,又因为m>0,所以m的最小值为.21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.解:(1)由函数图象知,A=1,T=﹣,∴T=π,所以ω==2,∵x=时,f()=cos(2×+φ)=1,∴2×+φ=2kπ,k∈Z,解得φ=2kπ﹣,k∈Z,又∵|φ|<,∴φ=﹣,∴f(x)的解析式为f(x)=cos(2x﹣);(2),2x﹣∈[﹣,],∴f(x)∈[,1],要使2[f(x)]2﹣mf(x)﹣1≥0,恒成立,令t=f(x),则t∈[,1],即2t2﹣mt﹣1≥0,因为g(t)=2t2﹣mt﹣1图象开口向上,且g(0)=﹣1,∴要使t∈[,1]时,2t2﹣mt﹣1≥0,则有,解得m≤﹣1,即实数m的取值范围是(﹣∞,﹣1].(3)由题意可得y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,在[0,π]上,2x﹣∈[﹣,],①当a>1或a<﹣1时,y=f(x)的图象与直线y=a在[0,π]上无交点;②当a=1或a=﹣1时,y=f(x)的图象与直线y=a在[0,π]上仅有一个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=2021;③当﹣1<a<或<a<1时,y=f(x)的图象与直线y=a在[0,π]上恰有2个交点,y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上有偶数个交点,不可能有2021个交点;④当a=时,y=f(x)的图象与直线y=a在[0,π]上恰有3个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=1010.综上可得,当a=1或﹣1时,n=2021;当a=时,n=1010.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(1)若函数g[f(x)]的定义域为R,则任意x∈R,使得f(x)=x2+ax+>0,所以△=a2﹣4×1×<0,解得﹣1<a<1,所以实数a的取值范围为(﹣1,1).(2)若函数g[f(x)]在(1,+∞)上单调递减,又因为g(x)在(0,+∞)上为减函数,所以f(x)在(1,+∞)上为增函数且任意x∈(1,+∞),f(x)>0,所以﹣≤1,且f(1)>0,即﹣≤1,且1+a+>0,解得a>﹣,所以a的取值范围为(﹣,+∞).(3)因为当x>1时,g(x)=﹣lnx<0,所以h(x)=min{f(x),g(x)}≤g(x)<0,所以h(x)在(1,+∞)上无零点,①当a≥0时,f(x)过(0,)点,且对称轴﹣≤0,作出h(x)的图象,可得h(x)只有一个零点x=1,②当a<0时,f(x)过(0,)点,且对称轴﹣>0,当△=a2﹣4×1×<0,即﹣1<a<0时,h(x)只有一个零点x=1,当△=a2﹣4×1×=0,即a=﹣1时,f(x)的零点为x=﹣=,h(x)由两个零点x=,x=1,当△=a2﹣4×1×>0,即a<﹣1时,令f(x)=0,解得x1=,x2=,且0<x1<1,0<x2,若x2=<1,即﹣<a<﹣1时,函数h(x)有3个零点x=x1,x=x2,x=1,若x2=>1,即a<﹣时,函数h(x)有1个零点x=x1,若若x2==1,即a=﹣时,函数h(x)有2个零点x=x1,x=1,综上所述,当a∈(﹣∞,﹣)∪(﹣1,0)时,h(x)只有一个零点,当a=﹣1或﹣时,h(x)有两个零点,当a∈(﹣,﹣1)时,h(x)有三个零点.。
福建省泉州市2020-2021学年高二上学期期末数学(理科)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.双曲线22164x y -=的焦点坐标是( ). A.(B.(0,C.( D.(0,2.命题:p x ∀∈R ,1222xx ⎛⎫+ ⎪⎭≥⎝,则p ⌝为( ).A .x ∃∈R ,1222xx +≥ B .x ∃∈R ,1222xx +< C .x ∀∈R ,1222xx +<D .x ∃∈R ,1222xx +≤3.设x ,y 满足约束条件0220x y x y x -≤⎧⎪-≥-⎨⎪≥⎩,则2z x y =+的最大值是( ).A .1B .6C .7D .84.在平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a =,AD b =,1A A c =,则下列向量中与1B M 相等的是( )A .1122a b c -++ B .1122a b c ++ C .1122a b c -+D .1122a b c --+5.已知a ,b ,c 分别为ABC ∆内角A ,B ,C的对边,若3c =,b =30B =︒,则a =( ).A .3B.CD .3或6.等比数列{}n a 的各项数列均为正数,且34258a a a a +=,则212226log log log a a a +++=…( ).A .5B .6C .8D .22log 3+7.已知抛物线C 的顶点在原点,焦点在x 轴上,C 与直线:1l y x =-相交于A ,B 两点.若线段AB 中点的横坐标为3,则C 的标准方程为( ).A .22x y =B .22x y =C .22y x =D .24y x =8.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞B .(0,)+∞C .[0,)+∞D .(1,)+∞9.下列说法正确的是( ).A .若数列{}n a 为等差数列,则数列{}1n n a a ++为等差数列B .若14m ≤-,则函数2()lg lg f x x x m =+-无零点C .在ABC ∆中,若sin A <,则04A π<<D .直线m ⊄平面α,直线n ⊂平面α,则“//m n ”是“//m α”的充要条件10.过点(2,2)P 作两条互相垂直的直线1l 和2l ,1l 与x 轴正半轴交于点A ,2l 与y 轴正半轴交于点B ,若(,)M x y 为线段AB 的中点,则14x y+的最小值为( ).A .72B .4C .92D .511.我国古代《易经》中有关于远古时期“结绳计数”的记载,即通过在绳子上打结来记录数量.某部落采用“满五进一结绳计数”方法,即在从右到左依次排列的绳子上打结,当某条绳子的打结数量达到5个时,则松开该绳上的所有结,并往左边相邻的绳子上打个结.例如,若打猎记录如图1,则表示打猎数量累计为8.如果该部落某年的打猎记录如图2,那么可以表明该部落该年的打猎数量累计为( ).A .3906B .7812C .19530D .3906012.已知1F 为椭圆2222:1(0)x y C a b a b+=>>左焦点,直线l 过椭圆的中心且与椭圆交于A ,B 两点.若以AB 为直径的圆过1F ,且1124F AB ππ≤∠≤,则椭圆C 的离心率的取值范围是( ).A .2⎣⎦B .2⎫⎪⎪⎣⎭C .20,3⎛⎤ ⎥⎝⎦D .12,23⎡⎤⎢⎥⎣⎦二、填空题13.已知向量(1,2,3)a =-,(3,,)b x y =,若a 与b 共线,则x y +=__________. 14.若“24x <”是“11m x m -≤≤+”的必要不充分条件,则m 的取值范围是__________.15.已知1F ,2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 作直线l 与C的左右支分别交于P ,Q 两点,若260QPF ∠=︒,且2||PQ PF =,则双曲线的渐近线的方程为__________.16.已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________.三、解答题17.已知n S 为等差数列{}n a 的前n 项和,32418S a a =+=. (1)求数列{}n a 的通项公式; (2)设1n nb S =,求数列{}n b 的前n 项和. 18.已知抛物线22(0)y px p =>经过点(3,6). (1)求此抛物线方程及焦点坐标;(2)过点(3,0)的直线与抛物线相交于A ,B 两点,若AB 中点M 到直线20x +=的距离为7,求||AB .19.在平面四边形ABCD 中,4=AD ,2CD =,AB BC =,90B ∠=︒. (1)若3D π∠=,求DAC ∠;(2)求四边形ABCD 面积S 的最大值.20.如图,已知四边形ABDE 的正方形,AD 与BE 相交于点O ,BCD 为等边三角形.现将EAD 沿AD 折起到E AD '的位置,将CBD 沿BD 折起到C BD'的位置,使得折后E D '⊥平面C BO '.(1)求证:OB ⊥平面'AE D ; (2)求二面角A OC B -'-的大小.21.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能.22.点P 在椭圆22:142x y C +=上,过P 作x 轴的垂线,垂足为Q .(1)若点R 满足22RQ PQ =,试求点R 的轨迹2C 的方程; (2)直线l 与1C 相交于A ,B 两点,且与(1)中的2C 相切,线段AB 的垂直平分线与y 轴相交于点(0,)K n ,求n 的取值范围.参考答案1.A 【分析】求得双曲线的a ,b ,c ,可得所求焦点坐标. 【详解】解:双曲线22164x y -=的a =2b =,c =可得双曲线的焦点为(. 故选:A . 【点睛】本题考查了双曲线的焦点坐标.在求解时,应确定两方面,一是焦点所在的轴,二是c 的值.对于双曲线221(0)x y AB A B+=<,2c A B =+.若0A >,则焦点在x 轴上; 若0B >,则焦点在x轴上. 2.B 【分析】全称命题:x A ∀∈,()P x 的否定,是特称命题:x A ∃∈,()P x ⌝,结合已知中原命题x ∀∈R ,1222x x+≥,易得到答案. 【详解】 解:原命题x ∀∈R ,1222xx+≥ ∴ 命题x ∀∈R ,1222xx +≥的否定是: x ∃∈R ,1222xx+<. 故选:B . 【点睛】本题考查了命题的否定. x A ∀∈,()P x 的否定为x A ∃∈,()P x ⌝ ; x A ∃∈,()P x 的否定是x A ∀∈,()P x ⌝.求否定的易错点是和否命题进行混淆. 3.B 【分析】作出约束条件对应的平面区域,将目标函数变形成2y x z =-+,画出2y x =- 并在平面区域内进行平移,即可找到最优解,进而可求最大值. 【详解】解:作出可行域,如图所示的阴影部分由2z x y =+可得2y x z =-+,则z 为直线2y x z =-+的纵截距 结合图象可知,当直线2y x z =-+过(2,2)B 时,z 取得最大值6 故选:B . 【点睛】本题考查了线性规划求最值.对于这种题目,作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求最值即可. 4.A 【详解】因为利用向量的运算法则:三角形法则、平行四边形法则表示出11111()222B M B BM c c a B b B AD A =+=+-=-+,选A5.C 【分析】由已知利用余弦定理可得260a -+=,解方程可求a 的值. 【详解】解:3c =,b =30B =︒ ∴由余弦定理可得:2222cos b a c ac B =+-可得223323a a =+-⨯⨯,整理得260a -+=∴解得a =故选:C . 【点睛】本题考查了余弦定理.在解三角形时,若已知两边及一边的对角,一般情况下用正弦定理解三角形,有时也可用余弦定理求另一边.若已知两边及其夹角,则利用余弦定理解三角形.易错点在于忽略大边对大角. 6.B 【分析】结合等比数列的性质可求出344a a =,结合对数的运算性质可知所求即为2126log (...)a a a ,再次利用等比数列的性质即可求出. 【详解】解: 因为{}n a 为等比数列,则由等比数列的性质可知5342a a a a = 又因为34258a a a a +=,所以34254a a a a ==则()32122262126234log log log log log ()a a a a a a a a +++== (3)2log 46==.故选:B . 【点睛】本题考查了等比数列的性质,考查了对数的运算性质.在等比数列中,若p q m n +=+,则p q m n a a a a =;等差数列有一个类似的性质,即若p q m n +=+,则p q m n a a a a +=+.对于该的应用,易错点是和等差数列性质混淆. 7.D 【分析】设出抛物线方程22y px =,与直线方程联立,利用韦达定理得1222x x p +=+,由中点横坐标为3,可求p ,进而可求解抛物线方程. 【详解】解:抛物线C 的顶点在原点,焦点在x 轴上,抛物线方程设为22y px =联立221y px y x ⎧=⎨=-⎩,可得2(22)10x p x -++=C 与直线:1l y x =-相交于A ,B 两点.设()()1122,,,A x y B x y则1222x x p +=+,121=x x .由已知可得:1222322x x p ++==,解得2p =.所求抛物线方程为:24y x =. 故选:D . 【点睛】本题考查了抛物线方程的求解,考查了直线与抛物线的位置关系.当涉及到直线与抛物线的问题时,常联立直线与抛物线的方程,消元后,根据韦达定理,得到两个交点坐标的关系.再根据具体地条件进行列方程求解. 8.B 【分析】结合已知不等式可转化为即22a x x >-+,结合二次函数的性质求22x x -+ 在[2,)+∞ 上的最大值,即可求解. 【详解】 解:[2,)x ∈+∞,22()0x x a f x x-+=> [2,)x ∴∈+∞,220x x a -+>即22a x x >-+在[2,)x ∈+∞上恒成立.结合二次函数的性质可知 当2x =时,22x x -+取得最大值为0.即0a >. 故选:B . 【点睛】本题考查了由不等式恒成立问题求参数的范围.对于关于()f x 的不等式在x 的某段区间上恒成立问题,一般情况下进行参变分离,若()a h x > 在区间上恒成立,只需求出()h x 的最大值,令max ()a h x > 即可; 若()a h x < 在区间上恒成立,只需求出()h x 的最小值,令min ()a h x < 即可.9.A 【分析】A:利用等差数列的定义进行判断;B:令lg t x =,则2()f t t t m =+-,结合二次函数的零点存在问题,进行判断;C:结合正弦函数,可解不等式,进而可判断A 的取值范围;D:判断由“//m n ”是否能推出“//m α”,再判断由“//m α”是否能推出“//m n ”. 【详解】解:数列{}n a 为等差数列,不妨设数列{}n a 通项公式为n a pn q =+,则1(1)n a p n q pn p q +++=++=.122n n n b a a pn p q +∴=+=++则1232n b pn p q +=++.12n n b b p +∴-=与n 无关. 故数列{}1n n a a ++为等差数列,A 正确.令lg t x =,则2()f t t t m =+-,当14m =-时, 21()04f t t t =++=此时12t =-,即x =,函数函数2()lg lg f x x x m =+-有零点,B 错误.由正弦函数图像可知,若sin A <则04A π<<或34A ππ<<,C 错误. 当“//m α”时,直线n ⊂平面α,不一定有“//m n ”,所以D 项错误. 故选:A . 【点睛】本题考查了等差数列的定义,考查了函数的零点与方程的根,考查了三角函数不等式,考查了充分必要条件的判断.判断一个数列是否为等差数列,可利用等差数列的定义,即判断后一项与前一项的差是否为一个常数;求解三角函数不等式时,常常结合三角函数的图像进行求解;判断两个命题的关系时,通常分为两步,判断由p 是否能推出q ,以及判断由q 是否能推出p . 10.C 【分析】设O 为坐标原点,由题意可得,ABOP 四点共圆,且圆心为M ,结合圆的性质及两点间的距离公式化简可得M 的方程,然后结合基本不等式即可求解. 【详解】解:设O 为坐标原点,由题意可得,ABOP 四点共圆,且圆心为M所以||||MP MO =,=化简可得,2x y +=,且0x >,0y >,则141141419()5(54)2222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4y x x y =即23x =,43y =时取等号,此时取得最小值92. 故选:C . 【点睛】本题考查了轨迹方程的求法,考查了基本不等式.对于求轨迹方程的问题,根据题意,找到等量关系,列出方程.有些特殊轨迹,如圆,椭圆,双曲线,抛物线,根据定义也能进行求解.利用基本不等式求最值时,常见的题型是”1”的代换. 11.B 【分析】由题意可得该部落一年的打猎数量为252252525+⨯+⨯++⨯…,由等比数列的求和公式计算可得所求和. 【详解】解:由图2可得该部落一年的打猎数量为:()625515225252521552781215-+⨯+⨯++⨯=⨯+++=⨯=-…….故选:B . 【点睛】本题考查了等比数列求和,考查了进制数的转换.对于数()n abcdef 为n 进制的数,将其转换为十进制时,只需代入公式5432a nb nc nd ne nf ⨯+⨯+⨯+⨯+⨯+ 进行求解.本题的难点在于不能由图2写出正确的五进制数. 12.A 【分析】设1F AB θ∠=,由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即|2AB c =,运用直径所对的圆周角为直角,以及锐角三角函数的定义,以及辅助角公式,结合离心率公式可得所求范围. 【详解】解:设1F AB θ∠=,则124ππθ≤≤由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即||2AB c = 在直角三角形1F AB 中,12cos AF c θ=,12sin BF c θ=由椭圆的对称性可得1122cos 2sin 24AF BF a c c c πθθθ⎛⎫+==+=+⎪⎝⎭即有14c e aπθ==⎛⎫+ ⎪⎝⎭. 由124ππθ≤≤42πθ⎛⎫+∈ ⎪⎝⎭⎣,则,23e ∈⎣⎦. 故选:A . 【点睛】本题考查了椭圆的定义性质,考查了三角函数的值域.本题难点是不能由性质得到,a c 的方程,若采用设直线方程、交点坐标找关于,a c 的方程,计算量很大.对于12sin(),[,]y A x x x x ωϕ=+∈ 求值域时,常用换元法,令t x ωϕ=+ ,结合正弦函数图像即可求出函数值域. 13.3 【分析】若a 与b 共线,则存在唯一实数λ使得a b λ=,1323x y λλλ=⎧⎪-=⎨⎪=⎩,解得λ,x ,y 进而得出答案.【详解】解:若a 与b 共线,则存在唯一实数λ,使得a b λ=所以(1,2,3)(3,,)x y λ-=,即1323x y λλλ=⎧⎪-=⎨⎪=⎩,解得1369x y λ⎧=⎪⎪=-⎨⎪=⎪⎩所以693x y +=-+= 故答案为:3.【点睛】本题考查空间向量的共线.若向量()()111222,,,,,x y z x y z ==a b 共线,则存在唯一实数λ使得a b λ= 或得到111222222(0)x y z x y z x y z ==≠,进而进行求解. 14.(1,1)- 【分析】先解出不等式,根据题中给的充要性,判断集合的包含关系,解出参数. 【详解】解:由题意知:设24x <对应的集合为(2,2)A =- 设11m x m -≤≤+对应的集合为[1,1]B m m =-+,24x <是11m x m -≤≤+的必要不充分条件 B ∴ A 2112m m -<-⎧∴⎨+<⎩,解之得:11m -<<.故答案为:(1,1)-. 【点睛】本题考查了由充分必要条件求参数的取值范围,考查了二次不等式得解法.对于已知两命题的充分必要关系时,首先对两命题进行化简,一般解不等式,得到两命题对应的集合,A B 即可;再根据命题关系,得到参数的取值范围.若已知p 是q 的充分不必要条件,则A B ;若已知p 是q 的必要不充分条件,则B A .15.y = 【分析】由题意画出图形,由双曲线定义结合已知可得12PF a =,24PF a =.再由余弦定理可得a 与c 的关系,进而得到226ba=即求得双曲线的渐近线的方程.【详解】解:由双曲线的定义知,1212QF QF PF a -==,212PFPF a -=24PF a ∴=,260QPF ∠=︒,12120F PF ∴∠=︒在12F PF △中,由余弦定理:2221212122cos120F F PF PF PF PF =+-⋅︒得2221244328c a PF PF a =+⋅=,即227c a=226b a∴=,即双曲线的渐近线方程为y =.故答案为:y =.【点睛】本题考查了双曲线定义及性质,考查了余弦定理.一般地,在圆锥曲线的问题中,若已知过两焦点角的大小,常结合余弦定理进行求解.本题的难点在于,根据已知条件,能够结合双曲线的定义及性质,用,,a b c 将1212,,PF PF F F 表示出来.对于求椭圆和双曲线离心率的题目,关键在于列出,,a b c 的方程,结合定义进行化简.16.(4++ 【分析】由正弦定理、余弦定理、三角函数恒等变换的应用化简已知等式可得2sin 2sin()A B A =-,进而可得2B A =.由正弦定理可得4cos b A =.根据已知可求范围64A ππ<<,利用余弦函数的性质可求范围b <<2a =,即242b c =+,可求ABC ∆的周长为212a b c b b ++=+,由二次函数性质即可求得ABC ∆的周长的取值范围.【详解】解:因为2sin sin (sin sin )B A A C =+,所以22b a ac =+由余弦定理可得2222cos 222c b a c ac c aA bc bc b+-++===同理可得:cos 2c aB b -=,即2cos 2cos c a b A c a a B+=⎧⎨-=⎩.消去c , 可得22cos 2cos a b A a B =-∴2sin 2sin cos 2sin cos A B A A B =- 即2sin 2sin()A B A =-,可得2B A = 由正弦定理sin sin a b A B=,可得2sin sin 2bA A =,即4cos b A = 因为ABC ∆为锐角三角形,且ABC π++=,所以022A π<<即64A ππ<<,所以cos 22A <<,即b << 又因为2a =,即242b c =+所以ABC ∆的周长为2241222b a bc b b b -++=++=+由二次函数性质可得, ABC ∆的周长的取值范围为:(4++. 故答案为:(4++. 【点睛】本题考查了正弦定理,考查了余弦定理,考查了二次函数求最值.在解三角形的问题中,若已知的一个等式中,既有边又有角,则常常进行边角互化,即2sin 2sin 2sin a R Ab R Bc R C =⎧⎪=⎨⎪=⎩或者222222222222cos cos cos b c a A a a c b B b b a c C c ⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩统一形式,进而进行求解. 17.(1) 3n a n =;(2)23(1)n nT n =+.【分析】(1)设等差数列的公差为d ,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,可得1212113(1)31n n b S n n n n ⎛⎫==⋅=- ⎪++⎝⎭,再由数列的裂项相消求和,计算可得所求和. 【详解】解:(1)等差数列{}n a 的公差设为d ,由32418S a a =+=可得1133182418a d a d +=⎧⎨+=⎩ ,解得13a d ==.则33(1)3n a n n =+-=. (2)13(33)(1)22n S n n n n =+=+,设1212113(1)31n nb S n n n n ⎛⎫==⋅=- ⎪++⎝⎭ 则数列{}n b 的前n 项和2111112121132231313(1)n nT n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭…. 【点睛】本题考查了等差数列通项公式,考查了等差数列的前n 项和.求等差数列的通项公式时,可用基本量表示出已知条件,列出方程组,求得基本量,即可求解通项公式.数列的求和问题,常见的思路有分组求和,错位相减,裂项相消等.18.(1)方程为:212y x =,焦点坐标为(3,0);(2)16. 【分析】(1)利用已知条件求出p ,然后求解抛物线方程以及焦点坐标.(2)求出抛物线的准线方程,结合已知条件利用抛物线的定义以及梯形的中位线的性质求解即可. 【详解】解:(1)由题意可得266p =,所以6p,所以抛物线方程为212y x =所以抛物线的焦点坐标为(3,0).(2)抛物线的焦点坐标为(3,0),准线方程为3x =-因为AB 中点M 到直线20x +=的距离为7,即M 到直线30x +=的距离为8d =由抛物线的定义以及梯形中位线性质可得:||22816AB d ==⨯=. 【点睛】本题考查了抛物线方程,考查了抛物线的焦点弦问题.求抛物线的方程时,一般首先设出抛物线的方程,由已知条件列出关于p 的方程,进行求解即可.关于抛物的焦点弦,一般并不采用设直线与抛物线方程联立,由韦达定理进行求解的方法,而是结合抛物线的焦点弦公式求解12AB x x p =++.19.(1)6DAC;(2)5+【分析】(1)由已知利用余弦定理可求AC 的值,由正弦定理可得1sin 2DAC ∠=,进而可求DAC ∠的值.(2)设D θ∠=,由余弦定理可得AC =利用三角形的面积公式可求54cos ABC S θ=-△,4sin ADC S θ=△,可求54ABCD S πθ⎛⎫=-+ ⎪⎝⎭,结合范围(0,)θπ∈,利用正弦函数的性质可求其最大值.【详解】解:(1)由余弦定理可得:2222cos AC AD CD AC CD D =+-⋅⋅即AC ==由正弦定理可得:sin sin AC CD DACθ=∠,即sin 213sin 2CD DAC AC π⋅∠=== 又因为CD AC <,所以6DAC(2)设D θ∠=,由余弦定理可得AC ==所以21122ABC S AC =⨯△1(2016cos )4θ=-54cos θ=- 又因为124sin 4sin 2ADC S θθ=⨯⨯⨯=△所以4sin 54cos 54ABCD S πθθθ⎛⎫=+-=-+ ⎪⎝⎭因为(0,)θπ∈,所以42ππθ-=,即当34πθ=时, ABCD S最大值为5+ 【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角函数求最值.已知三角形中两边及其一边的对角时,常采用正弦定理求解,有时也采用余弦定理;当已知三角形的两边及其夹角时,或已知三角形的三边时,采用余弦定理解三角形.在解三角形时,注意运用大边对大角进行排除答案.20.(1)见解析;(2)3π. 【分析】(1)推导出E D OB '⊥,OB AD ⊥,由此能证明OB ⊥平面AE D '.(2)以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角A OC B -'-的大小. 【详解】 (1)证明:E D '⊥平面C BO ',OB ⊂平面C BO ',∴E D OB '⊥,∵在正方形ABDE 中,O 为AD 与BE 的交点,OB AD ∴⊥E D AD D '⋂=,OB ∴⊥平面AE D '.(2)解:AE E D '=',O 为AD 中点,E O AD ∴'⊥以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系A,B,(D,E ',E D '⊥平面C BO ',∴平面C BO '的一个法向量为(3,0,n E D ='= E D '⊥平面C BO ',∴E D OC '⊥'设(,,)C xy z ',则(,)DC x yz '=+,(,)BC x y z '=-1E D OC '⊥,||||6DC BC'='=,066+=∴==,解得x y z ⎧=⎪⎪=⎨⎪=⎪⎩或33x y z ⎧=-⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩(舍).(C ∴'设平面AOC '的法向量(,,)n x y z =则OA 3x 0OC 3x 0n n '⎧⋅==⎪⎨⋅=-+=⎪⎩,取1y =,得(0,1,1)n =-设二面角A OC B -'-为θ,则|||31cos ||||22n m n m θ⋅-===⋅⋅由图知3πθ=,∴ 二面角A OC B -'-的大小为3π. 【点睛】本题考查了线面垂直的判定,考查了二面角的求法.在证明线面垂直时,关键是在平面内找到两条直线与已知直线垂直,常运用勾股定理、矩形的临边、正方形的对角线、等腰三角形三线合一、线面垂直的性质等来证明线线垂直.求二面角的大小时,建立空间直角坐标系,求出两个平面的法向量,进而可求. 21.(1)sin θ=;(2)视角30达到最佳.【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB ==10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-=(2)1sin 2θ=≤=,当且仅当2290000x x =,即x =,sin θ取到最大值12 因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒ 即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等.22.(1)2214x y +=;(2)(1,0)(0,1)-.【分析】(1)设R ,P ,Q 的坐标由向量间的关系,求出R 与P 的坐标之间的关系,再由相关点法求出R 的轨迹方程.(2)设直线l ,联立与两个切线的方程,由题意得n 与直线参数的关系,由参数的范围求出n 的取值范围. 【详解】解:(1)设()00,P x y ,则()0,0Q x ,(,)R x y ,()0,RQ x x y =--,0(0,)PQ y =-由22RQ PQ =,所以0002x x y x -=⎧⎪⎨-=⎪⎩,解得:0x x=,0y =由P 在椭圆上,所以动点R 的轨迹2C 的方程:2214x y +=.(2)当直线l 的斜率不存在时:2l x =,不符合题意,舍去; 当直线的斜率存在时,设直线l 的方程为:y kx m =+ 联立与椭圆2C 的方程,整理得:()222148440k xkmx m +++-=则()()222264414440k m km∆=-+-=,化简得:2241k m =-①因为直线l 与椭圆1C 交于A ,B ,设(,)A x y ,(),B x y '',AB 的中点M 联立直线l 与椭圆1C 的方程整理得:()222124240kxkmx m +++-=∴ 2412km x x k -+'=+,222412m xx k-'=+,()22212m y y k x x m k +'=+'+=+ 则222,1212kmm M k k -⎛⎫⎪++⎝⎭,所以AB 的中垂线方程:22121212m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭ 令0x =,得212m y k -=+,所以212m n k -=+②,由①②得2||12n k=+ 令2121t k =+>,则|||(1,0)(0,1)n ==-⋃.所以n 的取值范围:(1,0)(0,1)-.【点睛】本题考查了轨迹方程,考查了直线与椭圆的位置关系,考查了函数值域.涉及到直线与椭圆问题,一般情况下,将直线方程与椭圆方程进行联立,若直线方程未知,则可先设出直线方程.联立整理后,根据韦达定理得到交点的坐标关系,再接下来则根据题意进行求解.此类题计算量往往比较大,应注意计算的准确性.。
普通高等学校招生全国统一考试试题文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,,(D ){0246810},,,,, 【答案】C 【解析】试题分析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故}10,6,2,0{=B C A ,故应选答案C 。
(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i55 (D )43i55-【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z 5354||-=,应选答案D 。
(3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC=(A )30° (B )45°(C)60°(D)120°【答案】A(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定D 是不正确的,因为从图中可以看出:平均最高气温高于20C 0只有7、8两个月份,故应选答案D 。