2017年 临沂市中考信息 试题分析
- 格式:ppt
- 大小:6.18 MB
- 文档页数:50
2017年山东省临沂市中考语文试题一、积累运用1.(2017·临沂)下列词语中加下划线的字每组读音都相同的一项是()A. 羁绊/滑稽撤销/合辙押韵拮据/据理力争B. 睥睨/庇护繁衍/气息奄奄涂抹/拐弯抹角C. 勾当/污垢嘹亮/穷愁潦倒酬和/随声附和D. 告罄/芳馨取缔/根深蒂固咀嚼/味同嚼蜡2.(2017·临沂)下列词语中没有错字的一项是()。
A. 藩篱口头蝉滚瓜烂熟蛛丝马迹B. 门楣城隍庙长吁短叹不容置疑C. 缄默里程碑消声匿迹顾名思义D. 愧怍中轴线语无伦次因地治宜3.(2017·临沂)下列句子中加下划线的成语使用不恰当的一项是()。
A. 校园艺术节画展上,大家纷纷在一幅梅花图前驻足,这幅妙手回春之作仿佛把人们带到了融融春光之中。
B. 近期热播的电视连续剧《人民的名义》,剧情跌宕起伏,反腐尺度之大前所未有,可谓气势磅礴,石破天惊。
C. 各级用人单位越来越重视人才梯对建设,真诚关心,爱护人才,增强人才凝聚力,使各方面人才各得其所,进展其长。
D. 心脏设备设计公司的专家3D打印出一种用于心脏手术的工具,这种工具能在术后帮助医生将组织自动缝合在一起,并能做到天衣无缝。
4.(2017·临沂)下列句子中没有语病的一项是()。
A. 在胶片行业面临被新技术颠覆的时期,富士胶卷经历了最艰难的裁人,传统业务收缩,进而开始了新业务的探索。
B. 北京大学写给2017年自主招生初审未通过考生的一封信,让无数人感到了一所大学的精神和情怀。
C. 不可否认,武侠小说、功夫影片为推广、宣传武术发挥了巨大作用,但也把传统武术推到了神乎其神的境地。
D. 临沂市政府加大对道路建设的投资力度,2017年初,双岭高架路建成通车,大大减轻了东西方向的交通问题。
5.(2017·临沂)下列句子中标点符号使用不正确的一项是()。
A. 李白的“浮云游子意,落日故人情。
”(《送友人》)、“朝如青丝暮成雪”(《将进酒》)都是脍炙人口的名句。
2017年山东省临沂市中考数学试卷一、选择题1.(2017•临沂)﹣的相反数是()A. B. ﹣ C. 2017 D. ﹣20172.(2017•临沂)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A. 50°B. 60°C. 70°D. 80°3.(2017•临沂)下列计算正确的是()A. ﹣(a﹣b)=﹣a﹣bB. a2+a2=a4C. a2•a3=a6D. (ab2)2=a2b44.(2017•临沂)不等式组中,不等式①和②的解集在数轴上表示正确的是()A. B.C. D.5.(2017•临沂)如图所示的几何体是由五个小正方体组成的,它的左视图是()A. B. C. D.6.(2017•临沂)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A. B. C. D.7.(2017•临沂)一个多边形的内角和是外角和的2倍,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形8.(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. = B. = C. = D. =9.(2017•临沂)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A. 10,5B. 7,8C. 5,6.5D. 5,510.(2017•临沂)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A. 2B. ﹣πC. 1D. + π11.(2017•临沂)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A. 11B. 12C. 13D. 1412.(2017•临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形13.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t= ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A. 1B. 2C. 3D. 414.(2017•临沂)如图,在平面直角坐标系中,反比例函数y= (x>0)的图象与边长是6的正方形OABC 的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是A. 6B. 10C. 2D. 2二、填空题15.(2017•临沂)分解因式:m3﹣9m=________.16.(2017•临沂)已知AB∥CD,AD与BC相交于点O.若= ,AD=10,则AO=________.17.(2017•临沂)计算:÷(x﹣)=________.18.(2017•临沂)在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC= ,则▱ABCD的面积是________.19.(2017•临沂)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:① =(2,1),=(﹣1,2);② =(cos30°,tan45°),=(1,sin60°);③ =(﹣,﹣2),=(+ ,);④ =(π0,2),=(2,﹣1).其中互相垂直的是________(填上所有正确答案的符号).三、解答题20.(2017•临沂)计算:|1﹣|+2cos45°﹣+()﹣1.21.(2017•临沂)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题:(1)x=________,a=________,b=________;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(2017•临沂)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.(2017•临沂)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(2017•临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.(2017•临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(2017•临沂)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.答案解析部分一、<b >选择题</b>1.【答案】A2.【答案】A3.【答案】D4.【答案】B5.【答案】D6.【答案】C7.【答案】C8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】D 13.【答案】B 14.【答案】C二、<b >填空题</b>15.【答案】m(m+3)(m﹣3)16.【答案】4 17.【答案】18.【答案】24 19.【答案】①③④三、<b >解答题</b>20.【答案】解:|1﹣|+2cos45°﹣+()﹣1= ﹣1+2× ﹣2 +2= ﹣1+ ﹣2 +2=1.21.【答案】(1)50;20;30(2)(3)解:根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名22.【答案】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10 m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30 m,则CD=EC﹣ED=AB﹣ED=30 ﹣10 =20 m.23.【答案】(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC= =4 ,∴△ABC外接圆的半径= ×4 =2 .24.【答案】(1)解:当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=(2)解:设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m325.【答案】(1)解:BC+CD= AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE= AC,∵CE=CE+DE=CD+BC,∴BC+CD= AC(2)解:BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα26.【答案】(1)解:由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3(2)解:设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1)(3)解:设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).。
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前山东省临沂市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12017-的相反数是( )A .12017B .12017-C .2017D .2017-2.如图,将直尺与含30角的三角尺摆放在一起.若120∠=,则2∠的度数是 ( ) A .50 B .60 C .70 D .803.下列计算正确的是( )A .)a b a b -=---(B .224a a a +=C .236aa a =D .2224)(ab a b =4.不等式组21512x x -⎧⎪⎨+⎪⎩>①,≥②中,不等式①和②的解集在数轴上表示正确的是( )ABC D5.如图所示的几何体是由五个小正方体组成的,它的左视图是( )ABCD6.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )A .23B .12C .13D .297.一个多边形的内角和是外角和的2倍,这个多边形是( ) A .四边形B .五边形C .六边形D .八边形8.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x 个,那么所列方程是( ) A .90606x x =+ B .90606x x=+ C .90606x x=- D .90606x x =- 9.某公司有毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)这15名员工每人所创年利润的众数、中位数分别是( ) A .10,5B .7,8C .5,6.5D .5,510.如图,AB 是O 的直径,BT 是O 的切线.若45,2ATB AB ∠==,则阴影部分的面积是 ( )A .2B .31π24-C .1D .11+π2411.将一些相同的“○”按如图所示摆放.观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是( )A .11B .12C .13D .1412.在ABC △中,点D 是边BC 上的点(与,B C 两点不重合),过点D 作,DE AC ∥,DF AB ∥分别交,AB AC 于,E F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m . 其中正确结论的个数是( )A .1B .2C .3D .414.如图,在平面直角坐标系中,反比例函数()ky x x=>0的图象与边长是6的正方形OABC 的两边,AB BC 分别相交于,M N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是( )A .B .10C .D .第Ⅱ卷(非选择题 共78分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上) 15.分解因式:39m m -= .16.已知AB CD ∥,AD 与BC 相交于点O ,若23BO OC =,10AD =,则AO = .17.计算:22()x y xy yx x x--÷-=. 18.在□ABCD 中,对角线,AC BD 相交于点O .若34,10,sin 5AB BD BDC ==∠=,则□ABCD 的面积是 .19.在平面直角坐标系中,如果点P 坐标为(,)m n ,向量OP 可以用点P 的坐标表示为(,)OP m n =.已知:1122, ,OA x y OB x y ==(),(),如果12120x x y y =+,那么OA 与OB 互相垂直.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)下列四组向量:①(2,1),(1,2)OC OD ==-;②(cos30,tan45),(1,sin60)OE OF ==;③1(32,2),(3,)2OG OH =--=+; ④0(π,2)(2,1)OM ON ==-,.其中互相垂直的是 (填上所有正确答案的符号).三、解答题(本大题共7小题,共63分.解答应写出必要的文字说明、证明过程或演算步骤) 20.(本小题满分7分)计算:11|12cos 458()2--+-21.(本小题满分7分)为了解某校学生对《最强大脑》《朗读者》《中国诗词大会》《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题:(1)x = ,a = ,b = ; (2)补全上面的条形统计图;(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名. 22.(本小题满分7分)如图,两座建筑物的水平距离30m BC =,从A 点测得D 点的俯角α为30,测得C 点的俯角β为60,求这两座建筑物的高度.23.(本小题满分9分)如图,BAC ∠的平分线交ABC △的外接圆于点D ,BAC ∠的平分线交AD 于点E . (1)求证:DE DB =;(2)若90,4BAC BD ∠==,求ABC △外接圆的半径.24.(本小题满分9分)某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量3)(m x 之间的关系如图所示.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340cm (二月份用水量不超过325cm ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?25.(本小题满分11分)数学课上,张老师出示了问题:如图1,,AC BD 是四边形ABCD 的对角线,若60ACB ACD ABD ADB ∠=∠=∠=∠=,则线段,,BC CD AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC △≌△,从而容易证明ACE △是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC △绕着点A 逆时针旋转60,使AB 与AD 重合,从而容易证明ACF △是等边三角形,故AC CF =,所以A C B C C D=+. 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“60ACB ACD ABD ADB ∠=∠=∠=∠=”改为“45ACB ACD ABD ADB ∠=∠=∠=∠=”,其他条件不变,那么线段,BC ,CD AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“60ACB ACD ABD ADB ∠=∠=∠=∠=”改为“ACB ACD ABD ADB α∠=∠=∠=∠=”,其他条件不变,那么线段,,BC CD AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(本小题满分13分)如图,抛物线23y ax bx +=-经过点(2,3)A -,与x 轴负半轴交于点B ,与y 轴交于点C ,且3OC OB =. (1)求抛物线的解析式;(2)点D 在y 轴上,且BDO BAC ∠=∠,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点,,,A B M N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.数学试卷 第9页(共22页) 数学试卷 第10页(共22页)∵AB CD ∥,∴250BEF ∠=∠=︒,故选A .【解析】解:该几何体的三视图如下: 主视图:;俯视图:;左视图:,故选:D .【解析】解:画树状图得:312)180360︒=是O的切线;交O于D,连结BD,∵是O的直径,∴ADB、BDT△都是等腰直角三角形,∴AD=的面积等于弓形BD的面积,∴阴影部分的面积S=交O于D,连结BDT都是等腰直角三角形,所以的面积等于弓形(nn++=个图形中“○”的个数是78数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)102226NM BM BN '''=+=+=2()y x x y =-【提示】先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.数学试卷 第15页(共22页) 数学试卷 第16页(共22页),∴ABCD 的面积46CD AC =⨯故答案为:24.1得出ABCD 24CD AC =.【考点】四边形的性质,三角函数,勾股定理【答案】①③④,所以OC 与OD 互相垂直;sin 602︒︒=所以OE 与OF 不互相垂直;12)(2)2+-⨯,所以OG 与OH 互相垂直;,所以OM 与ON 互相垂直.【提示】根据向量垂直的定义进行解答. (2)中国诗词大会的人数为20人,补全条形统计图,如图所示:数学试卷 第18页(共22页)2数学试卷 第19页(共22页) 数学试卷 第20页(共22页)cos AC α.理由:如图α,∴AB =α,∴∠cos cos AC ACD AC α∠=,∴cos AC α,CECD DECD BC =+=+,∴2cos BC CD AC α+=.(2)先判断出ADE ABC ∠=∠,即可得出ACE △是等腰三角形,再用三角函数即可得出结论.【考点】全等三角形的判定和性质,四边形的内角和,等腰三角形的判定和性质26.【答案】(1)223y x x -=-(2)1(0,1)D ,2(0,1)D -(3)存在,(4,5)M 或(2,11)-或(0,3)-【解析】解:(1)由23y a x b x =+-得(0,3)C -,∴3OC =,∵3OC OB =,∴1OB =,∴(1,0)B -,把(2,3)A -,(1,0)B -代入23y ax bx =+-得423330a b a b +-=-⎧⎨--=⎩,∴12a b =⎧⎨=-⎩,∴抛物线的解析式为223y x x -=-;(2)设连接AC ,作B F A C ⊥交AC 的延长线于F ,∵(2,3)A -,(0,3)C -,∴AF x ∥轴,∴(1,3)F --,∴3BF =,3AF =,∴45BAC ∠=︒,设(0,)D m ,则||OD m =, ∵BDO BAC ∠=∠,∴45BDO ∠=︒,∴1OD OB ==,∴||1m =,∴1m =±,∴1(0,1)D ,2(0,1)D -;(3)设2(,23)M a a a --,(1,)N n ,①以AB 为边,则AB MN ∥,AB MN =,如图2,过M 作ME ⊥对称轴y 于E ,AF x ⊥轴于F ,则A B F N M E△≌△,∴3NE AF ==,3ME BF ==,∴||13a -=,∴3a =或2a =-,∴(4,5)M 或(2,11)-;②以AB 为对角线,BN AM =,BN AM ∥,如图3,则N 在x 轴上,M 与C 重合,∴(0,3)M -,综上所述,存在以点A ,B ,M ,N 为顶点的四边形是平行四边形,(4,5)M 或(2,11)-或(0,3)-.数学试卷第21页(共22页) 数学试卷 第22页(共22页)【提示】(1)待定系数法即可得到结论;(2)连接AC ,作BF AC ⊥交AC 的延长线于F ,根据已知条件得到AF x ∥轴,得到(1,3)F --,设(0,)D m ,D (0,m ),则||OD m =即可得到结论;(3)设2(,23)M a a a --,(1,)N n ,①以AB 为边,则AB MN ∥,AB MN =,如图2,过M 作ME ⊥对称轴y 于E ,AF x ⊥轴于F ,于是得到ABF NME △≌△,证得3NE AF ==,3ME BF ==,得到(4,5)M 或(2,11)-;②以AB 为对角线,BN AM =,BN AM ∥,如图3,则N 在x 轴上,M 与C 重合,于是得到结论.【考点】待定系数法求函数的解析式,图象的平移变换,勾股定理,平行四边形的判定和性质。
2017年临沂数学中考模拟真题及答案(2)【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.三、解答题(本大题共9个小题,满分70分)15.(7分)计算:先化简,再求值:,其中x=1.【考点】分式的化简求值.菁优网版权所有【分析】先算括号里面的,再算除法,或者利用乘法分配律进行化简,最后把x的值代入进行计算即可.【解答】当时,原式= .【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.16.(7分),∠ADB=∠AEC,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ADB和△AEC中∵ ∠ADB=∠AEC,AD=AE,∠DAB=∠EAC∴ △ADB≌△AEC∴ AB=AC又∵ AD=AE∴ BE=CD【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.17.(7分),长4m的楼梯AB的倾斜角∠ABD为45°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为30°,求调整后的楼梯AC的长.(精确到0.1m,, )【考点】解直角三角形的应用;坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ADB中,∵sin∠ABD= ,∴AD=4sin45°= (m),在Rt△ACD中,∵sin∠ACD= ,∴AC= (m).答:调整后的楼梯AC的长约为5.6 m【点评】本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可.18.(8分)荔枝是云南省的特色水果,小明的妈妈先购买了2千克酸味和3千克甜味,共花费90元;后又购买了1千克酸味和2千克甜味,共花费55元.(每次两种荔枝的售价都不变)(1)求酸味和甜味的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求甜味的数量不少于酸味数量的两倍,请设计一种购买方案,使所需总费用最低.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设酸味售价为每千克x元,甜味售价为每千克y元,根据题意列出方程组即可解决问题.(2)设购买酸味n千克,总费用为m元,则购买甜味12﹣n千克,路程不等式求出n的范围,再构建一次函数,利用一次函数的性质解决最值问题.【解答】解:(1)设酸味售价为每千克x元,甜味售价为每千克y元,根据题意得:解得:答:酸味售价为每千克15元,甜味售价为每千克20元.(2)设购买酸味n千克,总费用为m元,则购买甜味12-n千克,∴12-n≥2n ∴n≤4m=15n+20(12-n)=-5n +240∵k=-5<0 ∴m随n的增大而减小∴当n=4时,m =220答:购买酸味4千克,甜味8千克时,总费用最少.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.19.(8分),转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别标有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相加(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)若规定两个数字的和为5时甲赢,两个数字的和为4时乙赢,请问这个游戏对甲、乙两人是否公平?【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)分别求出定两个数字的和为5时和两个数字的和为4时的概率,即可知道游戏是否公平不公平.【解答】(1)画树状图得:(或者列表得)和 1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 7则共有12种等可能的结果;(2)∵两个数字的和为5或者和为4都是有3种情况,∴两个数字的和为5或者和为4的概率都是: .∴这个游戏对甲、乙两人是公平的.【点评】本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.20.(7分),菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(9分)某学校为了增强学生体质,决定开放以下球类活动项目:A.篮球、B.乒乓球、C.排球、D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(①,图②),请回答下列问题:(1)这次被调查的学生共有多少人?(2)请你将条形统计图补充完整;(3)若该校共有学生1900人,请你估计该校喜欢D项目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.菁优网版权所有【分析】(1)用喜欢篮球的人数除以喜欢篮球的人数所占的百分比,即可求出这些被调查的学生数;(2)用总人数减去喜欢篮球、乒乓球和足球的人数,即可求出喜欢排球的人数,从而补全统计图;(3)用总人数乘以喜欢足球的人数所占的百分比即可.【解答】解:(1)由扇形统计图可知:扇形A的圆心角是36°,所以喜欢A项目的人数占被调查人数的百分比= ×100%=10%.由条形图可知:喜欢A类项目的人数有20人,所以被调查的学生共有20÷10%=200(人).(2)喜欢C项目的人数=200-(20+80+40)=60(人),因此在条形图中补画高度为60的长方条,所示.(3)1900×(40÷200)=380(人).答:该校喜欢D项目的人数约为380人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分),在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于F.(1)求证:DF是⊙O的切线;(2)若⊙O的半径为2,BC= ,求DF的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)欲证明DF是⊙O的切线只要证明DF⊥OD,只要证明OD∥AC即可.(2)连接AD,首先利用勾股定理求出AD,由△ADC∽△DFC可得,列出方程即可解决问题.【解答】(1)证明:连接OD,∵OB=OD ∴∠ABC=∠ODB∴AB=AC ∴∠ABC=∠ACB∴∠ODB=∠ACB ∴OD∥AC∵DF⊥AC∴DF⊥OD∴DF是⊙O的切线(2)连接AD,∵AB是⊙O的直径∴AD⊥BC 又∵AB=AC∴BD=DC=∴AD=∵DF⊥AC ∴△ADC∽△DFC∴ ∴DF=【点评】本题考查切线的判定、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.23.(9分),抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)把A点和B点坐标分别代入y=ax2+bx中得到关于a、b的方程组,然后解方程组即可得到抛物线解析式;(2)计算函数值为3所对应的自变量的值即可得到C点,然后根据三角形面积公式计算△ABC的面积;(3)作PD⊥BH,,设P(m,﹣m2+4m),则利用S△ABH+S梯形APDH=S△PBD+S△ABP可得到关于m的方程,然后解方程求出m即可得到P点坐标.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC= ×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6= ×3×3+ (3+m﹣1)(m2﹣4m)﹣ (m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.。
2017年山东省临沂市语文中考试题注意事项:1.本试卷分试题卷和答题卡两部分。
考生必须用0.5毫米黑色墨水签字笔将答案全部写在答题卡规定的区域内,在试题卷上答题不得分。
2.试题卷1至8页,答题卡1至4页。
总分120分,考试时间120分钟。
3.答卷前考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置。
4.考试结束后,将本试卷和答题卡一并交回。
一、积累运用(28分)1.下列词语中加点的字每组读音都相同的一项是( )(2分)A. 羁.绊/滑稽.撤.销/合辙.押韵 拮据./据.理力争B. 睥.睨/庇.护 繁衍./气息奄奄.. 涂抹./拐弯抹.角C. 勾.当/污垢.嘹.亮/穷愁潦.倒 酬和./随声附和.D. 告罄./芳馨. 取缔./根深蒂.固 咀嚼./味同嚼.蜡2. 下列词语中没有错字的一项是( )(2分)。
A.藩篱 口头蝉 滚瓜烂熟 蛛丝马迹B.门楣 城隍庙 长吁短叹 不容置疑C.缄默 里程碑 消声匿迹 顾名思义D.愧怍 中轴线 语无伦次 因地治宜3.下列句子中加点的成语使用不恰当的一项是( )(2分)。
A. 校园艺术节画展上,大家纷纷在一幅梅花图前驻足,这幅妙手回春....之作仿佛把人们带到了融融春光之中。
B. 近期热播的电视连续剧《人民的名义》,剧情跌宕起伏,反腐尺度之大前所未有,可谓气势磅礴,石破天惊。
....C.各级用人单位越来越重视人才梯对建设,真诚关心,爱护人才,增强人才凝聚力,使各方面人才各.得其所,进展其长。
...D.心脏设备设计公司的专家3D打印出一种用于心脏手术的工具,这种工具能在术后帮助医生将组织自动缝合在一起,并能做到天衣无缝....。
4.下列句子中没有语病的一项是( )(2分)。
A.在胶片行业面临被新技术颠覆的时期,富士胶卷经历了最艰难的裁人,传统业务收缩,进而开始了新业务的探索。
B.北京大学写给2017年自主招生初审未通过考生的一封信,让无数人感到了一所大学的精神和情怀。
2017年临沂市中考数学试卷2017年临沂市中考数学试卷⼀、选择题(共14⼩题;共70分)1. 的相反数是A. B. C. D.2. 如图,将直尺与含⾓的三⾓尺摆放在⼀起,若,则的度数是A. B. C. D.3. 下列计算正确的是A. B.C. D.4. 不等式组中,不等式和的解集在数轴上表⽰正确的是A. B.C. D.5. 如图所⽰的⼏何体是由五个⼩正⽅体组成的,它的左视图是A. B.C. D.6. ⼩明和⼩华玩“⽯头、剪⼦、布”的游戏,若随机出⼿⼀次,则⼩华获胜的概率是A. B. C. D.7. ⼀个多边形的内⾓和是外⾓和的倍,则这个多边形是A. 四边形B. 五边形C. 六边形D. ⼋边形8. 甲、⼄⼆⼈做某种机械零件,已知甲每⼩时⽐⼄多做个,甲做个所⽤时间与⼄做个所⽤时间相等,求甲、⼄每⼩时各做零件多少个.如果设⼄每⼩时做个,那么所列⽅程是A. B. D.9. 某公司有名员⼯,他们所在部门及相应每⼈所创年利润如下表所⽰:这名员⼯每⼈所创年利润的众数、中位数分别是A. ,B. ,C. ,D. ,10. 如图,是的直径,是的切线,若,,则阴影部分的⾯积是A. C. 111. 将⼀些相同的“○”按如图所⽰摆放,观察每个图形中的“○”的个数,若第个图形中“○”的个数是,则的值是A. B. C. D.12. 在中,点是边上的点(与,两点不重合),过点作,,分别交,于,两点,下列说法正确的是A. 若,则四边形是矩形B. 若垂直平分,则四边形是矩形C. 若,则四边形是菱形D. 若平分,则四边形是菱形13. ⾜球运动员将⾜球沿与地⾯成⼀定⾓度的⽅向踢出,⾜球飞⾏的路线是⼀条抛物线,不考虑空⽓阻⼒,⾜球距离地⾯的⾼度(单位:)与⾜球被踢出后经过的时间(单位:)之间的关系如下表:下列结论:①⾜球距离地⾯的最⼤⾼度为;②⾜球飞⾏路线的对称轴是直线踢出时落地;④⾜球被踢出时,距离地⾯的⾼度是A. B. C. D.14. 如图,在平⾯直⾓坐标系中,反⽐例函数的图象与边长是的正⽅形的两边,分别相交于,两点,的⾯积为.若动点在轴上,则的最⼩值是A. B. C. D.⼆、填空题(共5⼩题;共25分)15. 分解因式:.16. 已知,与相交于点.若,,则.17. .18. 在平⾏四边形中,对⾓线,相交于点,若,,,则平⾏四边形的⾯积是.19. 在平⾯直⾓坐标系中,如果点坐标为,向量可以⽤点的坐标表⽰为.已知:,,如果,那么与互相垂直,下列四组向量:,;;;.其中互相垂直的是(填上所有正确答案的符号).三、解答题(共7⼩题;共91分)20. .21. 为了解某校学⽣对《最强⼤脑》、《朗读者》、《中国诗词⼤会》、《出彩中国⼈》四个电视节⽬的喜爱情况,随机抽取了名学⽣进⾏调查统计(要求每名学⽣选出并且只能选出⼀个⾃⼰最喜爱的节⽬),并将调查结果绘制成如图所⽰的统计图表:学⽣最喜爱的节⽬⼈数统计表根据以上提供的信息,解答下列问题:(1),,;(2)补全条形统计图;(3)若该校共有学⽣名,根据抽样调查结果,估计该校最喜爱《中国诗词⼤会》节⽬的学⽣有多少名.22. 如图,两座建筑物的⽔平距离点测得点的俯⾓为,测得点的俯⾓为,求这两座建筑物的⾼度.23. 如图,的平分线交的外接圆于点,的平分线交于点.(1)求证:;(2)若,,求外接圆的半径.24. 某市为节约⽔资源,制定了新的居民⽤⽔收费标准,按照新标准,⽤户每⽉缴纳的⽔费(元)与每⽉⽤⽔量之间的关系如图所⽰.(1)求关于的函数解析式;(2)若某⽤户⼆、三⽉份共⽤⽔(⼆⽉份⽤⽔量不超过),缴纳⽔费元,则该⽤户⼆、三⽉份的⽤⽔量各是多少?25. 数学课上,张⽼师出⽰了问题:如图,,是四边形的对⾓线,若,则线段,,三者之间有何等量关系?经过思考,⼩明展⽰了⼀种正确的思路:如图,延长到,使,连接,证得,从⽽容易证明是等边三⾓形,故,所以.⼩亮展⽰了另⼀种正确的思路:如图,将绕着点逆时针旋转,使与重合,从⽽容易证明是等边三⾓形,故,所以.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图,如果把“”改为“”,其它条件不变,那么线段,,三者之间有何等量关系?针对⼩颖提出的问题,请你写出结论,并给出证明.(2)⼩华提出:如图,如果把“”改为“”,其它条件不变,那么线段,,三者之间有何等量关系?针对⼩华提出的问题,请你写出结论,不⽤证明.26. 如图,抛物线经过点,与轴负半轴交于点,与轴交于点,且.(1)求抛物线的解析式;(2)点在轴上,且,求点的坐标;(3)点在抛物线上,点在抛物线的对称轴上,是否存在以点,,,为顶点的四边形是平⾏四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.答案第⼀部分1. A2. A3. D4. B5. D6. C7. C 【解析】设所求多边形的边数为,由题意得,解得.则这个多边形是六边形.8. B 9. D 10. C11. B 12. D 13. B 14. C第⼆部分15.16.17.18.19. ①③④第三部分20.21. (1);;(2)喜爱中国诗词⼤会的⼈数为名,补全条形统计图,如图所⽰:(3)根据题意得:(名),则估计该校最喜爱《中国诗词⼤会》节⽬的学⽣有名.22. 延长,交于点,可得,在中,,,,在中,,,,则.答:这两座建筑物的⾼度分别是,.23. (1)平分,平分,,,,,,,,,;(2)连接,如图所⽰:由()得:,,,是直径,,,.24. (1)当时,设与的函数关系式为,,得,即当时,与的函数关系式为.当时,设与的函数关系式为,得即当时,与的函数关系式为.由上可得,与的函数关系式为;(2)设⼆⽉份的⽤⽔量是,当时,,解得,⽆解,当时,,解得,,所以.答:该⽤户⼆、三⽉份的⽤⽔量各是,.25. (1);理由:如图,延长⾄,使,因为,所以,,因为,所以,所以,所以,因为,所以,在和中,所以,所以,,所以是等腰直⾓三⾓形,所以,因为,所以.(2).26. (1)由得,,,,.把,代⼊得抛物线的解析式为.(2)连接,作交的延长线于点,如图,,,,,,,.设,则,,,,,,.(3)设,①以为边,则,,如图,过作于,轴于,则,,,,或;②以为对⾓线,,,如图,则在轴上,与重合,,综上所述,存在以点,,,为顶点的四边形是平⾏四边形,.。
2017年山东省临沂市中考真题语文一、积累运用(28分)1.下列词语中划线的字每组读音都相同的一项是()(2分)A.羁绊/滑稽撤销/合辙押韵拮据/据理力争B.睥睨/庇护繁衍/气息奄奄涂抹/拐弯抹角C.勾当/污垢嘹亮/穷愁潦倒酬和/随声附和D.告罄/芳馨取缔/根深蒂固咀嚼/味同嚼蜡解析:C项第一组读读gòu,第二组都读liáo,第三组都读hè。
答案:C2.下列词语中没有错字的一项是()(2分)A.藩篱口头蝉滚瓜烂熟蛛丝马迹B.门楣城隍庙长吁短叹不容置疑C.缄默里程碑消声匿迹顾名思义D.愧怍中轴线语无伦次因地治宜解析:A.“口头蝉”应为“口头禅”。
C.“消声匿迹”应为“销声匿迹”。
D.“因地治宜”应为“因地制宜”。
答案:B3.下列句子中划线的成语使用不恰当的一项是()(2分)A.校园艺术节画展上,大家纷纷在一幅梅花图前驻足,这幅妙手回春之作仿佛把人们带到了融融春光之中。
B.近期热播的电视连续剧《人民的名义》,剧情跌宕起伏,反腐尺度之大前所未有,可谓气势磅礴,石破天惊。
C.各级用人单位越来越重视人才梯对建设,真诚关心,爱护人才,增强人才凝聚力,使各方面人才各得其所,进展其长。
D.心脏设备设计公司的专家3D打印出一种用于心脏手术的工具,这种工具能在术后帮助医生将组织自动缝合在一起,并能做到天衣无缝。
解析:A项使用有误,妙手回春:称赞医生医道高明,能把垂危的病人治好。
不符合语境。
答案:A4.下列句子中没有语病的一项是()(2分)A.在胶片行业面临被新技术颠覆的时期,富士胶卷经历了最艰难的裁人,传统业务收缩,进而开始了新业务的探索。
B.北京大学写给2017年自主招生初审未通过考生的一封信,让无数人感到了一所大学的精神和情怀。
C.不可否认,武侠小说、功夫影片为推广、宣传武术发挥了巨大作用,但也把传统武术推到了神乎其神的境地。
D.临沂市政府加大对道路建设的投资力度,2017年初,双岭高架路建成通车,大大减轻了东西方向的交通问题。
山东省临沂市2017年初中学业水平考试物理答案解析第I卷一、选择题1.【答案】D【解析】电磁波的传播不需要介质,“墨子号”与地面控制系统是依靠电磁波来交流的。
2.【答案】C【解析】摩托车安装有消声器,是在声源处减弱噪声,故A错误;蝙蝠的回声定位是利用声波的传播,声波在真空中无法传播,所以在太空中不能够发挥作用,故B错误;正在发声的音叉把小球反复弹开,说明发生的音叉在振动,故C正确;在橡皮筋的松紧、长度相同时,其越细振动越快,音调越高,细的橡皮筋是高音弦,故D错误。
3.【答案】B【解析】海市蜃楼是光在不均匀大气中折射形成的,故A错误;影子的形成,表明光是沿直线传播的,故B正确;光污染是因为比较光滑的平面发生镜面反射造成的,故C错误;照相机拍照时所成的像是倒立、缩小的实像,故D错误。
4.【答案】D【解析】根据图示可知,使用筷子时,动力臂小于阻力臂,是费力杠杆,即费力省距离,故A错误;根据图示可知,使用食品夹时,动力臂小于阻力臂,是费力杠杆,即费力省距离,故B错误;定滑轮是一个等臂杠杆,即动力臂等于阻力臂,即不省距离,也不费距离,故C错误;动滑轮是一个省力杠杆,即省力但一定费距离,故D正确;5.【答案】A【解析】开关要接在火线和灯泡之间,故A正确,家用电器使用时金属外壳要接地。
当用电器的外壳和火线间的绝缘破损,使外壳带电,电流就会流入大地,不会对人体造成伤害,故B错误;遇到有人触电时,直接用手将人拉开,人体也会发生触电,故C错误;使用测电笔辨别火线时,一定要用手触及笔尾的金属部分,否则容易造成误判,认为带电体不带电是十分危险的,故D错误。
6.【答案】B【解析】司南是根据磁极间的相互作用规律工作的,故A不符合题意;发电机是利用电磁感应的原理制成的,故B符合题意;电铃是利用电流的磁效应来工作的,故C不符合题意;微风扇的电动机是利用通电导线在磁场中受力的作用的原理工作的,故D不符合题意。
7.【答案】A【解析】一块橡皮的质量在6 g 左右,一枚一元硬币的质量与此差不多,在6 g 左右。