2019年度广东省自然科学基金拟立项杰出青年项目
- 格式:pdf
- 大小:158.39 KB
- 文档页数:2
第27卷第4期2021年4月计算机集成制造系统Computer Integrated Manufacturing SystemsVol.27No.4Apr.2021DOI:10.13196/j.cims.2021.04.003多障碍环境下机械臂避障路径规划陈满意1,张桥叫张弓%3+,梁济民3,侯至丞2,杨文林2,徐征2,王建2(X武汉理工大学机电工程学院,湖北武汉430070;2.广州中国科学院先进技术研究所,广东广州511458;3.中国科学院深圳先进技术研究院,广东深圳518055)摘要:为提高协作机器人在多障碍环境下的避障路径规划的成功率和效率,针对机械臂和障碍物提出碰撞检测方法,并提出低振荡人工势场一自适应快速扩展随机树(ARRT)混合算法进行路径规划,机械臂先采用低振荡人工势场法进行搜索,当遇到局部极小、碰撞等情况时切换成ARRT进行逃离,宜至到达目标点。
另外,为了在每个步长都取得最优的逆运动学关节角,保证前后步长对应关节角度值变化的连续性,提出最短行程逆解算法。
为了提高规划后的路径质量,提出一种冗余路径节点删除策略,并使用四次贝塞尔曲线对路径进行拟合。
经过仿真分析,机械臂在多障碍环境下对于环境复杂度的适应性强,路径搜索成功率高于经典算法,其平均路径搜索时间相比于经典RRT算法从26.1s下降到3.6s,算法搜索成功率和效率都得到显著改善。
关键词:协作机器人;机械臂;避障路径规划;低振荡人工势场法;自适应快速扩展随机树法中图分类号:TP242文献标识码:AObstacle avoidance path planning of manipulator in multiple obstacles environmentCHENManyi1,ZHANG Qiao1'2,ZHANG Gong2r3+,LIANG Jimin3,HOUZhicheng2,YANG Wenlin2,XU Zheng2,WANG Jian2(1.School of Mechanical Engineering,Wuhan University of Technology,Wuhan4.30070,China;2.Guangzhou Institute of Advanced Technology,Chinese Academy of Sciences,Guangzhou511458,China;3.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen518055,China)Abstract:To improve the success rate and efficiency of the obstacle avoidance path planning of the cooperative robot in multiple obstacles environment,a collision detection method was proposed,and a low-oscillation-artificial-poten-tial-field&Adaptive-Rapidly-exploring-Random-Tree(ARRT)hybrid algorithm was created.Low-oscillation-arti-ficial-potential-field method was used to search,and ARRT was used for switching to escape with the conditions such as local minimum situation and collision until the target point was reached.In addition,to ensure the continuity of the joint angle between two continuously step,the shortest stroke algorithm was proposed to obtain the optimal inverse kinematic joint angle.To improve the quality of the planned path,a redundant path node deletion strategy was proposed and the path was fitted by four-time Bessel curve.Through simulation analysis,the manipulator had strong adaptability to adapt multiple obstacles environment,and the success rate of path search was higher than the traditional algorithm.The average time of path search was reduced from26.Is to3.6s compared with the classical RRT algorithm.Therefore,the algorithm search success rate and efficiency had been significantly improved.Keywords:collaborative robots;manipulator;obstacle avoidance path planning;low-oscillation-artificial-potential-field method j adaptive-rapidly-exploring-random-tree method收稿日期:2019-07-05;修订日期:2019-10-17o Received05July2019;accepted17Oct.2019.基金项目:国家重点研发计划资助项目(2018YFA0902903);国家自然科学基金资助项目(62073092〉;广东省自然科学基金资助项目(2021A1515012638);广州市基础研究计划资助项目(202002030320)。
2019年国家社科基金立项项目数据大盘点2019年国家社科基金立项名单已正式公示,共有5129项项目获得立项公示。
全国教育科学“十三五”规划2019年度课题立项名单已公示了,共有521项项目公示。
面对这“几家欢喜几家愁”的结局,我们以客观、理性的数据分析带您看看今年的国社科年度项目以及教育科学规划项目的立项情况。
立项高频词“新时代”“机制研究”“一带一路”是2019年国社科各类项目立项最多的关键词。
2019年青年项目立项高频词2019年一般项目立项高频词2019年重点项目立项高频词2019年西部项目立项高频词2019年全国教科规划立项高频词立项类别分布2019年国家社科基金立项类别的占比与2018年相比没有太大变化,青年项目的占比比重越来越高,对青年项目的支持越来越大!2019年国社科立项单位TOP100对2019年度立项项目(重点项目、一般项目、青年项目和西部项目)做数据统计分析得出立项最多的单位TOP100(详见下表),中国社会科学院、四川大学、中山大学位列前三名。
与去年的立项排名对比发现,前10名当中,北京大学、山东大学、浙江大学今年挤进了前10,掉出前10的是吉林大学、中央民族大学和复旦大学,这里尤其是复旦大学的排名变化最大,由去年的第9名降到第53名,今年的立项数仅有24项,去年有45项,几乎减少了一半。
排名提升较大的有如:浙江工商大学、郑州大学、重庆大学、安徽大学等。
此外,贵州大学、内蒙古师范大学、四川师范大学以及湖南商学院、云南民族大学、广西大学等西部高校的立项数都有不小的提升。
2019年国社科立项学科排名2019年国家社科基金立项学科排名上变化不大,立项数增长比较大的是马列·科社和民族学,在总立项数增长的情况下(2019年立项数比2018年增长2.7%)其中民族学2018年仅有208项立项,今年有329项立项,增幅达58.2%,远超平均水平。
全国教科规划立项单位TOP502019年全国教科规划公示名单共有521项,经数据统计计算,立项数最多的前50个单位如下表所示,值得注意的是,在几大传统师范院校的“夹缝”中,宁波大学的立项数排在了第3位,比华中师范大学、北京师范大学还要多。
文章编号:1007-757X(2021)01-0010-03基于STM32F103C8T6的两轮自平衡车系统设计聂茹(华南理工大学广州学院电子信息工程学院,广东广州510800)摘要:在STM32F103C8T6微控制器芯片基础上,提出了两轮自平衡车系统的一种设计方案。
系统方案包括STM32F103C8T6微控制器电路设计、车体姿态传感器MPU6050检测电路设计、电机驱动电路设计、以PID控制器为核心的软件设计。
经过测试,两轮自平衡车系统样机能够保持车体自我平衡并简单的直立行走,验证了硬件设计和软件设计的有效性和可靠性。
关键词:MPU6050;STM32;PID控制器;自平衡车中图分类号:TP212.9文献标志码:ADesign of Two-wheel Self-balancing Vehicle System Based on STM32F103C8T6NIE Ru(School of Electronic Information Engineering,Guangzhou College of SouthChina University of Technology,Guangzhou510800,China)Abstract:On the basis of STM32F103C8T6microcontroller chip,this paper presents a design scheme of two-wheel self-balancing vehicle system.The system scheme includesthe circuit design of STM32F103C8T6microcontroller,the detection circuit design of vehicle body attitude sensor MPU6050,the circuit design of motor drive,software design with PID controller as the core.After test,two-wheel self-balancing vehicle system prototype can maintain the self-balance of the car body and simply walk upright,which verifies the effectiveness and reliability of hardware design and software design.Key words:MPU6050;STM32;PID controller;self-balanced vehicle0引言当今社会,生活向着智能化、便捷化发展,两轮平衡车顺应时代潮流,成为适合多种场合使用的代步工具。
河北省科学技术厅关于印发2024年度河北省省级科技计划基础研究(自然科学基金)项目申报指南的通知文章属性•【制定机关】河北省科学技术厅•【公布日期】2024.02.07•【字号】冀科金〔2024〕1号•【施行日期】2024.02.07•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】科学技术综合规定正文河北省科学技术厅关于印发2024年度河北省省级科技计划基础研究(自然科学基金)项目申报指南的通知冀科金〔2024〕1号各有关单位:省科技厅研究编制了2024年度河北省省级科技计划基础研究(自然科学基金)项目申报指南(电子版请在省科技厅网站下载),现印发给你们。
请按照要求,结合工作实际,认真组织推荐项目。
申报及推荐审核项目须通过“河北省科学技术厅网站”—“科技管理”—“科技计划”—“河北省科技计划项目综合服务平台”在线操作。
在项目申报前,请务必认真阅读申报流程。
申报项目采用“无纸化”方式,只需在线提交、审核电子申报书及其附件材料,无需在申报阶段报送纸质材料。
申请人网络受理时间:2024年2月27日至3月7日17:00申报单位审核截止时间:2024年3月11日17:00依托单位审核截止时间:2024年3月14日17:00业务咨询电话:河北省自然科学基金委员会办公室0311-66505379 85815545 85817132项目综合服务平台技术支持:*************82620020监督电话:*************附件:基础研究(自然科学基金)项目申报指南河北省科学技术厅2024年2月7日附件基础研究(自然科学基金)项目申报指南一、总体安排以习近平新时代中国特色社会主义思想为指导,深入贯彻落实习近平总书记关于科技创新的重要论述特别是关于基础研究的重要讲话重要指示批示精神,围绕省委、省政府对基础研究工作部署,坚持“四个面向”,坚持自由探索和目标导向统筹推进,瞄准我省战略性新兴产业、高成长性产业、传统优势产业发展的关键共性技术基础研发需求,以重大原始创新和关键核心技术突破为主线,凝聚创新合力,培养基础研究人才团队,促进基础研究与应用研究融通创新发展,为加快建设经济强省、美丽河北,奋力谱写中国式现代化建设河北篇章提供源头支撑。
2019年度广东省科学技术奖公示信息项目名称液体-气体两相流模型的适定性理论主要完成单位单位1:华南理工大学单位2:西北大学单位3:华中师范大学主要完成人(职称、完成单位、工作单位)1.朱长江(职称:教授、工作单位:华南理工大学、完成单位:华南理工大学、主要贡献:提出了完成本项目研究的主要思路,并实施了本项目所有创新点的主要科研工作。
10篇代表作全部都有他的署名并在研究中做出了决定性的贡献。
先后主持完成国家杰出青年科学基金项目和国家自然科学基金重点项目等项目。
)2.姚磊(职称:教授、工作单位:西北大学、完成单位:西北大学、主要贡献:参与本项目主要科研工作。
10篇代表作中有5篇都有他的署名并在研究中做出了重要贡献。
先后主持国家自然科学基金青年项目和面上项目。
基于本项目的主要研究工作,于2012年获全国百篇优秀博士学位论文奖)3.温焕尧(职称:教授、工作单位:华南理工大学、完成单位:华中师范大学、主要贡献:重要科学发现第二项的代表性论文2。
提出了梯度平方分解恒等式。
)项目简介刻画流体之间相互作用的液体-气体两相流模型是石油工业中描述管道和深井中油和气的生产和输运的常见数学模型。
该模型不仅具有深刻的物理意义,而且也具有重要的数学理论价值。
关于其研究是近二十多年来本领域的热点问题之一,有许多关于该模型及其相关模型的数值结果,但对于该模型的适定性理论,即存在性、唯一性和稳定性等结果却很少。
该项目系统地研究了液体-气体两相流模型的自由边界问题、初边值问题和Cauchy问题解的适定性等问题。
挪威应用数学家Steinar Evje 教授在其同一篇论文中提到了我们的其中1篇代表作11次并作为后续研究。
我们在研究爆破机制时提出了速度的梯度平方分解恒等式,从而代替了传统方法中的梯度平方分解不等式。
美国《数学评论》(MR3457694)对我们的一篇代表作进行了评论,认为是文章有趣且非常有技巧。
本项目第一完成人朱长江教授曾获国家杰出青年科学基金资助以及入选了万人计划“国家教学名师”,所领导的两相流模型研究团队被同行专家称为国内外该领域的两个团队之一“Zhu’s group” (具体请见[Lizhi Ruan, Proceedings of the Royal Society of Edinburgh, 144A,351-362, 2014]第352页),另外一个团队为挪威应用数学家Steinar Evje教授团队。
中国食品学报Journal of Chinese Institute of Food Science and Technology Vol.20No.3 Mar.2020第20320203月国家自然科学基金食品科学学科2019年度项目资助情况分析与2020年度项目分类申请展望李兴峰罗晶(国家自然科学基金委员会生命科学部北京100085)摘要本文分析了2019年度国家自然科学基金食品科学学科项目申请与资助情况,介绍了2020年度食品科学学科以面上项目和重点项目为试L,开展基于四类科学问题属性的分类申请与评审$关键词国家自然科学基金;食;科学学科;项目申请;项目资助文章编号1009-7848(2020)03-0001-06doi:10.16429/j.1009-7848.2020.03.001国家自然科学基金委员会(以下简称自然科学基金委)坚持以习近平新时代中国特色社会主义思想为指导,深入分析我国基础研究和科学基金发展面临的新形势、新任务、新要求,确立了基于“鼓励探索、突出原创;聚焦前沿、独辟蹊径;需求牵引、突破瓶颈;共性导向、交叉融通”四类科学问题属性分类的资导向/1-20(新时代科学基金资助导向,分类申请和坚持、分步。
2019,自然科学基金委以重点项目和部分学科面上目为,开展了基于四类科学问题属性的分类申请与[2]o2020年,将分类申请与扩到全部面上项目和目,为建立项目分类基础叫分析2019国家自然科学基金科学学科目与资的主要问题,2020科学学科面上目和目基于四类科学问题属性的分类和12019年度国家自然科学基金食品科学学科项目申请与资助情况分析2019,科学学科类基金目为3439,目526,资助莖23827万元。
主要介绍面上目、青年科学基金目、科学基金目和目、国家出收稿日期:2020-03-18作者简介:李兴峰(1978—),男,博士,教授E-mail:lixf@科学基金目、科学基金目的与资助情况。
噻托溴铵通过抑制NLRP3炎症小体活性在慢性阻塞性肺疾病中发挥抗炎作用*徐慧1, 曹伟涛1, 白鸽2, 罗承娜1, 刘俊1, 赵子文1, 刘朝晖1△, 赵祝香1△(1华南理工大学医学院附属第二医院,广州市第一人民医院呼吸内科,广东 广州 510180;2广州医科大学附属第一医院,广州呼吸疾病研究所呼吸疾病国家重点实验室,广东 广州 510120)[摘要] 目的:建立小鼠慢性阻塞性肺疾病(COPD )模型,探讨噻托溴铵(TIO )是否能够通过调控核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)炎症小体活性发挥肺保护作用。
方法:全身暴露香烟烟雾法构建COPD 小鼠模型,部分采用TIO 进行干预,分析小鼠的一般情况、肺功能指标、病理改变和肺部炎症细胞数量的变化。
ELISA 法检测小鼠支气管肺泡灌洗液(BALF )上清中白细胞介素1β(IL -1β)和IL -18的水平;Western blot 法检测小鼠肺组织NLRP3及caspase -1蛋白的表达。
结果:与对照组比较,COPD 组小鼠体重、第100毫秒用力呼气容积(FEV100)、FEV100/用力肺活量(FVC )和动态肺顺应性(Cdyn )均明显下降(P <0.05),气道阻力(RI )明显升高(P <0.05),FVC 水平无显著差异,肺组织平均肺泡间隔、BALF 中炎症细胞、IL -1β和IL -18水平和肺组织中NLRP3及caspase -1蛋白表达均显著升高(P <0.05)。
与COPD 组比较,COPD+TIO 组小鼠体重、FVC 和Cdyn 水平无显著差异,FEV100和FEV100/FVC 明显升高(P <0.05),RI 明显下降(P <0.05),肺组织平均肺泡间隔,BALF 中炎症细胞、IL -1β和IL -18水平,以及肺组织中NLRP3和caspase -1蛋白表达均显著降低(P <0.05)。
生态毒理学报Asian Journal of Ecotoxicology第18卷第2期2023年4月V ol.18,No.2Apr.2023㊀㊀基金项目:国家自然科学基金面上项目(21876180);广东省基础与应用基础研究基金自然科学基金杰出青年项目(2022B1515020030);广州大学百人计划引进人才科研启动项目㊀㊀第一作者:张伟(1982 ),女,博士,副教授,研究方向为环境污染物的生态毒理学㊁环境过程-暴露机制-生态健康㊁去除技术原理与应用,E -mail:***************.cn㊀㊀*通信作者(Corresponding author ),E -mail:***************.cnDOI:10.7524/AJE.1673-5897.20220704001张伟,叶紫君,黄莉萍,等.砷甜菜碱的合成途径和代谢过程[J].生态毒理学报,2023,18(2):188-197Zhang W,Ye Z J,Huang L P,et al.Biosynthesis pathways and metabolic processes of arsenobetaine [J].Asian Journal of Ecotoxicology,2023,18(2):188-197(in Chinese)砷甜菜碱的合成途径和代谢过程张伟*,叶紫君,黄莉萍,赵芊瑜广州大学环境科学与工程学院,广州510006收稿日期:2022-07-04㊀㊀录用日期:2022-09-17摘要:砷污染问题引起全球高度关注,在中国㊁南亚和东南亚等地尤为严重㊂砷通过食物链传递对生态系统以及人类健康造成潜在危害㊂研究发现海洋鱼类具有独特的高砷甜菜碱(arsenobetaine,AsB)富集能力,人类通过摄食海洋鱼类会摄取大量的AsB ,可能造成潜在的健康危害㊂然而,AsB 在不同生物体内的生物转化(合成和降解)过程尚不清楚㊂本文对已知和推测的AsB 合成和降解过程进行综述,探究海洋生物体内高AsB 富集原因和可能的合成途径,哺乳动物体内的AsB 代谢过程,以及环境中微生物在AsB 降解过程中发挥的作用,加深我们对AsB 沿食物链传递和代谢过程的认识,为防治砷污染,降低砷污染对生态与人体健康的风险提供理论依据,促进砷生态毒理学的发展㊂关键词:砷甜菜碱;海洋生物;哺乳动物;生物转化;合成;降解文章编号:1673-5897(2023)2-188-10㊀㊀中图分类号:X171.5㊀㊀文献标识码:ABiosynthesis Pathways and Metabolic Processes of ArsenobetaineZhang Wei *,Ye Zijun,Huang Liping,Zhao QianyuSchool of Environmental Science and Engineering,Guangzhou University,Guangzhou 510006,ChinaReceived 4July 2022㊀㊀accepted 17September 2022Abstract :Arsenic pollution,a serious environmental problem especially in China,South Asia and Southeast Asia,has aroused great concern worldwide.Arsenic is transmitted through the food chain and results in potential risk to the ecosystems and human health.It has been reported that marine fish have a unique enrichment capacity of high concentration of arsenobetaine (AsB),and human uptake a large amount of AsB through consumption of marine fish.However,the process of AsB biotransformation (biosynthesis and degradation)in different organisms is not clear.In this review,the biosynthetic and degradation processes of AsB were summarized to explore the reasons of high AsB enrichment in marine organisms and possible synthetic pathways.We also reviewed the potential AsB metabolic processes in mammals,and the involvement of microorganisms in AsB degradation was also included.All these information should provide a theoretical basis for understanding the transmission and metabolism process of AsB along the food chain,and promote the development of arsenic ecotoxicology.Better understand -第2期张伟等:砷甜菜碱的合成途径和代谢过程189㊀ing of the biosynthetic and metabolic process of AsB not only supply fundamental information in making strate-gies to prevent and control arsenic pollution,but also in reducing the risk of arsenic pollution to the ecology and human health.Keywords:arsenobetaine;marine organisms;mammal;biotransformation;synthesis;degradation㊀㊀重金属污染是目前世界范围内最严重的环境问题之一㊂多种重金属在美国有毒物质与疾病登记署和环境保护局颁布的危害物质名录(The Priority List of Hazardous Substances)上名列前茅,其中砷(arse-nic,As)位于环境污染物的首位(https://www.atsdr. /spl/index.html)㊂砷是一种天然存在的有毒类金属元素,是危害最严重的环境污染物之一,几乎存在于所有的环境介质中㊂美国毒物和疾病登记署(ATSDR)将其列为对人类健康危害最大的有毒物质,世界卫生组织(WHO)也将其列为引起全球重大公共卫生关注的化学物质㊂砷具有高毒性㊁致畸㊁致癌等危害㊂据报道,印度和孟加拉等国多处地区均发现与砷污染有关的大面积长期中毒事件,当地居民备受砷中毒疾病的折磨与煎熬[1-2]㊂2013年,据国际权威期刊报道,砷污染对约2000万中国人造成健康危害,对中国砷污染提出预警[3]㊂据世界卫生组织报道,目前全球至少有5000多万人口正面临着地方性砷中毒的威胁,提醒公众警惕砷中毒㊂砷污染是我国近海最严重的环境问题之一,各种来源的砷通过陆地径流㊁大气沉降㊁排污口和海洋倾废等途径汇入海洋㊂不同来源的砷汇入海洋生态系统,进入海洋食物链,传递至海洋鱼类,最终对人类健康构成严重威胁,导致砷对海洋生态系统的污染成为一个重要的国际性健康和环境问题[4]㊂海洋的承载力是有限的,当污染物排放超过海洋环境承载力时,就会引发海洋生态环境安全问题㊂砷污染影响着全球115个国家,已经在中国㊁南亚和东南亚(如巴基斯坦㊁孟加拉国㊁尼泊尔和印度)等地成为严重的环境问题,而这一区域刚好位于 南海-印度洋 ,它是中国 21世纪海上丝绸之路 重要战略区域㊂砷在海洋环境中存在着多种化学形态,已经鉴定了20多种不同的无机和有机形态砷,前者包括三价砷(arsenite,As(III))和五价砷(arsenate,As(Ⅴ)),后者包括一甲基砷酸(monomethylarsonic acid,MMA)㊁二甲基砷酸(dimethylarsinic acid,DMA)㊁砷甜菜碱(arsenobetaine,AsB)和砷胆碱(arsenocholine,AsC)等㊂无机砷具有剧毒,甲基砷(MMA和DMA)毒性减弱,而AsB和AsC毒性极小或无毒[5]㊂海产品是人类砷摄入的主要来源[6]㊂在西班牙的一项研究中,发现大多数人接触砷的途径是海产品,这种来源占砷暴露总量的96%[7]㊂AsB主要通过砷在鱼类㊁软体动物和甲壳类动物等海洋生物中代谢而形成[8-9]㊂AsB是海产品中砷的主要存在形式,通常占鱼类总砷的90%以上[10-12]㊂海产品中的总砷(AsB>90%)浓度可能比食品中的砷限值(50ng ∙g-1)高出200倍[13]㊂通过食用海产品,人类摄入大量的AsB,从而AsB进入人类食物链[14-17]㊂根据联合国粮食及农业组织(粮农组织)发布的‘世界渔业和水产养殖状况“,2016年鱼类总产量高于往年,人类直接消费了151亿t[18]㊂因此,通过消费鱼类, AsB是人类摄入的主要砷化合物㊂AsB被认为是海洋食物链中砷代谢的最终产物,是海洋生态系统中砷循环的终点,是人类摄入的主要砷形态,但对其生物合成和降解的机理认识仍然缺乏[6,19-27]㊂一方面,从解毒的角度,从低等微生物到海洋鱼类,许多酶在剧毒的无机砷向无毒的AsB生物转化中发挥重要作用㊂尽管已经提出了关于其生物合成途径的各种推测,海洋生物中AsB的合成途径尚不清楚[14,28]㊂另一方面,从食品安全的角度,AsB在哺乳动物和人体内是否会降解为毒性更强的无机砷,AsB对人体是否会产生毒性危害呢?这些问题仍不清楚㊂因此,海产品中AsB的合成途径以及人类从海产品中摄入AsB的降解过程仍有待挖掘,最终是否会导致生态和健康风险仍有待深入探究㊂本文对AsB在海产品和哺乳动物体内的生物转化(合成和降解)过程进行了综述,有助于了解AsB的潜在生态和健康风险,从而加深我们对AsB 在海产品和哺乳动物中的毒理循环的认识㊂剖析它们对认识AsB从海洋鱼类到哺乳动物的传递规律,特别在人类体内的代谢过程具有重要意义,而且为解决海产品砷污染以及造成的人类健康危害问题提供相应的理论支持,为最终采取防范措施,防控生态和人体砷暴露具有重要的现实指导意义㊂本综述为砷在毒理学和环境化学领域的进一步研究提供了有益的资源㊂190㊀生态毒理学报第18卷1㊀海洋生物体内高砷甜菜碱富集原因和可能的合成途径(Causes and possible synthetic pathways ofhigh arsenobetaine in marine organisms)1.1㊀海洋生物体内高砷甜菜碱富集原因(Causes of high arsenobetaine in marine organisms)海产品的质量状况一直为社会大众所关注㊂海洋鱼类体内总砷浓度(1~1000μg㊃g-1)比淡水鱼类总砷浓度(<1μg㊃g-1)高1~3个数量级,表现出较高的砷富集能力[8,28-29]㊂我们对我国沿海野生海洋鱼类砷含量进行了由北至南的大范围调查,评估了中国沿海野生鱼类砷富集状况,发现中国沿海部分海洋底栖鱼类短吻红舌鳎(Cynoglossus joyneri)和孔虾虎鱼(Trypauchen vagina)肌肉组织中砷含量严重超标,其中湛江的孔虾虎鱼肌肉组织中砷含量超过我国制定的安全标准30倍之多,长期摄食会对人体健康造成潜在危害,揭示中国沿海海洋鱼类体内存在高砷富集状况㊂海洋鱼类具有高砷富集现象,AsB 是海洋鱼类体内主要的砷存在形态,占总砷的90%以上[29-35]㊂AsB同样是海洋甲壳类和软体动物组织中主要的砷存在形态,占总砷的50%~95%[30]㊂AsB在其他海洋生物,比如多毛类㊁甲壳类㊁双壳类㊁腹足类㊁头足类,同样占总砷的大部分[36]㊂因此, AsB是海洋生物体内主要的存在形态㊂AsB在海洋生物体内高累积的原因到底是什么?首先,砷的生物累积随着盐度的增加而增加,研究发现贝类动物可以有效从海水中吸收AsB,而虾和鱼等高等动物只可从食物中(包括浮游植物等)积累AsB[37-38]㊂远洋鱼类中发现总砷随盐度增加的趋势,主要以AsB形式存在,表明盐度与AsB的吸收和累积密切相关[17,37]㊂阿拉伯湾西部的对虾(Penae-us semiisulcatus)和长须鱼(Arius thalassinus)中总砷和AsB含量相对较高,可能是由于海湾西部相对较高的盐度所致[39]㊂AsB的滞留取决于周围水的盐度,表明AsB可以部分替代重要的细胞渗透物甜菜碱(一种渗透压调节代谢物)[29,40]㊂我们发现海洋鱼类中AsB含量与环境盐度显著正相关,盐度可以控制砷的迁移,是关键控制因子,可能由于AsB是甜菜碱的结构类似物,可帮助海洋鱼类抵抗高盐海水的胁迫[29]㊂因此,盐度与海洋生物体内AsB的累积密切相关㊂虽然AsB含量与环境盐度有关系,而盐度调控鱼类砷生物转化机制研究匮乏㊂现有研究大多局限于对海洋和淡水鱼类砷不同形态与盐度野外调查现象的描述,而对规律与调控机制的认识尚不足㊂第二,通过研究砷沿着不同食物链传递过程,植食性食物链(大型海藻石莼(Ulva lactuca)㊁龙须菜(Gracilaria lemaneiformis)和粗江蓠(Gracilaria gigas) 黄斑篮子鱼(Siganus fuscescens))㊁肉食性食物链(沙蚕(Nereis succinea)㊁牡蛎(Saccostrea cucul-lata)和蛤(Asaphis violascens) 鲈鱼(Lateolabrax ja-ponicus))和海洋底栖食物链(沉积物 沙蚕(N.suc-cinea)和蛤(A.violascens) 诸氏鲻虾虎鱼(Mugil-ogobius chulae))㊂发现砷在沿这3类食物链传递过程中,食物中的无机砷较难被鱼体吸收,并且它们在鱼体(黄斑篮子鱼㊁鲈鱼和诸氏鲻虾虎鱼)组织中被生物转化成有机砷而不是直接累积;然而,食物中的AsB可以直接通过鱼体消化器官的上皮细胞膜,容易被鱼体吸收,而且是砷在鱼体组织中最终的存储形式㊂因此,不同形态砷沿食物链传递过程中,AsB 比无机砷更容易沿食物链传递和吸收,AsB的生物可利用性比无机砷高[33,41]㊂我们运用放射性同位素(73As)示踪技术和先进理论模型-药代动力学模型(PBPK),研究了砷在海洋鱼类体内的生物转运过程,通过PBPK模拟发现,交换率(k)(水到鳃)比k(水到肠道)低2倍,而且血液与鳃之间有最高的交换率,表明鳃不是主要的吸收器官㊂k(血液到肠道) (2.69d-1)是k(肠道到血液)(0.0039d-1)的700倍,表明AsB更容易分布于肠道,肠道是主要的吸收器官㊂同时,在暴露过程中,肠道中As(Ⅴ)(38.8%~ 45.1%)是主要形态,而在净化过程中AsB(81.7%~ 96.0%)成为主要形态,而且AsB在肠道中的含量比在肝脏中高,表明肠道是无机砷转化为AsB的主要代谢器官㊂肠道是砷的主要吸收和转化合成AsB 的器官㊂肠道吸收的不同形态砷,由血液转运至头㊁鳃㊁肝脏㊁肌肉各组织,最终主要以AsB形式贮存于靶器官肌肉组织中㊂因此,解析了肠道中合成的AsB和肌肉中存储的AsB是海洋鱼类高砷富集的主要原因[42]㊂罗非鱼(Oreochromis mossambicus)肠道菌能够促进鱼类砷代谢,分离并鉴定出影响鱼类砷代谢的关键肠道菌嗜麦芽寡养单胞菌(Stenotroph-omonas maltophilia SCSIOOM),其能合成AsB,而且betIBA调控S.maltophilia SCSIOOM体内AsB的合成[43]㊂同时,我们解析了AsB和As(Ⅴ)在海洋鱼类不同组织器官之间显著的生物转运差异,精确揭示了AsB的吸收㊁肝肠循环㊁存储和排泄过程,As(Ⅴ)表现出快速通过肠道膜㊁快速转运和排出的能力,而AsB通过肠道膜的能力较弱,被缓慢吸收并最终储第2期张伟等:砷甜菜碱的合成途径和代谢过程191㊀存在肌肉中[44]㊂综上所述,海洋生物,特别是海洋鱼类具有高AsB 富集能力,主要归因于AsB 的累积与环境盐度密切相关,食物中AsB 比无机砷更容易沿食物链传递和吸收,肠道是砷的主要吸收和转化合成AsB 的器官,AsB 穿过肠道膜的能力较弱,缓慢吸收,循环和存储在肌肉组织中,生物转化和转运对AsB 的富集起决定性作用㊂因此,无机砷在肠道中合成AsB ,食物中和合成的AsB 缓慢穿过肠道膜,缓慢循环以及高的肌肉存储速率是导致海洋鱼类高AsB 富集的主要原因(图1)㊂然而,AsB 的合成细节和途径尚未完全解析㊂图1㊀海洋鱼类高AsB 富集原因示意图注:AsB 表示砷甜菜碱,MMA 表示一甲基砷,DMA 表示二甲基砷㊂Fig.1㊀Schematic diagram of causes of high AsB concentrations in marine fishNote:AsB means arsenobetaine,MMA means monomethylarsonic acid,and DMA means dimethylarsinic acid.1.2㊀海洋生物体内砷甜菜碱可能的合成途径(Pos -sible synthesis pathways of arsenobetaine in marine or -ganisms)目前关于AsB 合成的过程主要依赖于潜在的生物合成前体和中间体的检测[45]㊂在不同生物体内,AsB 有几种可能的合成途径:(1)从二甲基化砷糖(DMAsSs)或三甲基化砷糖(TMAsSs)合成AsB ㊂据推测,DMAsSs 通过二甲基砷钠乙醇(DMAE)和二甲基砷钠乙酸(DMAA)转化为AsB ,而TMAsSs 直接转化为AsB [46]㊂(2)从AsC 转化为AsB ㊂沉积物中的微生物可以将AsC 转化为AsB[47],微生物枯草杆菌(B.subtilis )也可以将AsC 转化为AsB [1],AsC 是AsB的关键前体[48]㊂在水生动物中只发现微量的AsC [49-50],这表明它主要作为一种代谢中间物存在㊂AsC 是AsB 的代谢前体,接种标记AsC 后,在水生鱼类和贻贝中迅速吸收并转化为AsB [51-54]㊂(3)DMAE 和AsC 共同决定AsB 的合成㊂DMAE 作为中间体,甲基化生成AsC ,然后氧化生成AsB ㊂另外,DMAE 可能被氧化形成DMAA ,然后甲基化形成AsB [55]㊂此外,三甲基二氧砷基核糖苷可以定量转化为AsC ,而AsC 又可以定量转化为AsB [50,56]㊂(4)假设AsB 由DMA III ㊁2-氧酸㊁糖基酸和丙酮酸合成,从而形成DMAA 和AsB [14,46]㊂AsB 也由DMA III 合成,DMAA 的前体(可能由乙醛酸或丙酮酸合成),然后在海洋生物中甲基化形成AsB [57]㊂因此,通过已有研究发现,在水生生物体内AsB 最有可能来源于AsC ㊂微生物可能参与AsB 的合成㊂已有研究报道了海洋和土壤细菌对AsB 的代谢[56,58-60]㊂AsB 是由海洋沉积物中砷糖的微生物降解形成的,导致中间产物(如DMAE),随后可能被食腐动物和食草动物消耗,导致AsB 的合成[50,61]㊂细菌假单胞菌(Pseud -omonas sp.)在海洋生物中可将二甲基胂基醋酸盐转192㊀生态毒理学报第18卷化为AsB[62]㊂在生物体中发现的砷形态,二甲基砷核糖苷㊁硫砷核糖苷和三甲基砷核糖苷的降解也可能形成AsB[63-64]㊂因此,AsB合成的可能生物转化途径(图2),其中一些关键中间体㊁关键合成蛋白和基因尚未确定,微生物可能在AsB合成过程中发挥重要的作用,仍有待深入探究㊂图2㊀已知和推测的AsB合成和降解过程注:DMAE表示二甲基砷钠乙醇,AsC表示砷胆碱,DMAsSs表示二甲基化砷糖,TMAsSs表示三甲基化砷糖,DMAA表示二甲基砷钠乙酸,TMA表示四甲基砷,TMAO表示氧化三甲胺㊂Fig.2㊀Known and presumed processes of AsB synthesis and degradationNote:DMAE means dimethylarsinoylethanol,AsC means arsenocholine,DMAsSs means dimethylated arsenosugars,TMAsSs means trimethylated arsenosugars,DMAA means dimethylarsinoyl acetic acid,TMA means tetramethyl arsine,and TMAO means trimethylarsine oxide.2㊀哺乳动物体内的砷甜菜碱代谢过程(Arsenobe-taine metabolism processes in mammals)目前,海产品中的AsB在哺乳动物中的转化仍存在争议㊂关于人体中AsB的吸收和代谢仍了解尚少[51]㊂尽管无机砷在哺乳动物中的生物分布㊁生物转化和毒性已被广泛研究,但对AsB在哺乳动物中的生物转化知之甚少[65-66]㊂人体中几个关于砷代谢的基本假设如下㊂(1)哺乳动物体内没有形成AsB㊂在小鼠和人类体内几乎没有AsB的生成[66-67]㊂(2)哺乳动物体内形成AsB㊂在无AsB的饮食中,3/5的志愿者的尿液中检测到AsB,AsB浓度范围为0.2~12μg㊃L-1㊂AsB累积的可能原因有2个:组织中累积的AsB释放缓慢和从大米中摄取的无机砷形成AsB[68]㊂(3)哺乳动物体内吸收的AsB排泄得快和完全,且形态无改变㊂通过口服给药后,AsB通过胃肠道被有效地吸收,大部分通过尿液被排泄,而且形态没有发生变化[69-70]㊂经口摄入的AsB,在小鼠㊁大鼠和兔子的胃肠道中几乎完全吸收,但在体内不经代谢以尿液排出,98.5%AsB在2d内被排出体外[70]㊂小鼠㊁大鼠㊁兔子和仓鼠口服AsB后,在它们体内不代谢,但几乎完全从胃肠道吸收,并通过尿液不加改变地排出[71-72]㊂人体摄入AsB不会增加尿液中无机砷㊁MMA或DMA的浓度,支持AsB没有代谢㊁通过尿液排泄的假设[73]㊂志愿者只食用含有AsB的海产品,之后他们的排泄物(粪便和尿液)样本中只检测到AsB[68,74]㊂摄入的AsB快速通过尿液排泄出人体外,而且形态没有改变,从而减轻健康危害[15-17]㊂(4)在哺乳动物体内,AsB是否会降解为毒性更强的甲基砷和无机砷(图2)?也有研究报道少量的AsB发生了代谢[75-76]㊂每天给大鼠注射AsB,7个月后,AsB部分代谢为四甲基铵(TeMA)和氧化三甲胺(TMAO)[76]㊂AsB在有氧系统中与人类粪便一起共存7d后,降解为DMAA㊁DMA和TMAO[60]㊂AsB处理大鼠4d后,其尿液中检测到TeMA㊁AsB和TMAO,推测这一降解过程可能是由大鼠盲肠中的肠道微生物介导的[77]㊂我们最新的研究发现,小鼠长期暴露AsB,可导致AsB和As(Ⅴ)在小鼠组织中积累㊂AsB在吸收前被降解为As(Ⅴ),然后通过血液循环运输到其他组织㊂虽然吸收和生物转化受肠道微生物的调控,但aqp7㊁sam和as3mt基因以及去甲基化和甲基化过程在小鼠肠道组织中存在㊂基因㊁微生物组和代谢组学分析表明,葡萄球菌(Staph-ylococcus)和真杆菌(Blautia)㊁花生四烯酸㊁胆碱和鞘氨醇参与了小鼠肠道中AsB向As(Ⅴ)的降解㊂因此,长期食用AsB会增加小鼠体内As(Ⅴ)含量㊂通过食用海鱼长期摄入AsB可能对人类健康造成潜在危害[78]㊂因此,我们的研究结果引起了人们对人第2期张伟等:砷甜菜碱的合成途径和代谢过程193㊀类从海鱼中长期摄入砷的健康危害的高度关注㊂为水产品安全和人类健康风险提供了早期预警㊂未来的研究亟待探究消费海洋食物如何增加甲基砷和无机砷的负担㊂小鼠体内的微生物组成与人体内的差异很大,可能对AsB在人体内的降解过程有影响㊂因此,人体微生物在AsB生物降解过程中的作用有待进一步研究㊂需要注意的是,人类本身可能没有将AsB降解的能力,但是肠道微生物可能在这个过程中发挥着重要的作用㊂AsB可以在人类胃肠道中被微生物转化,DMA和TMAO是主要的降解产物[79]㊂在模拟胃肠消化过程中MMA和DMA的去甲基化被发现[80]㊂人类食用海产品中的AsB,可被微生物降解为毒性较高的砷形态[59]㊂人肠道中的微生物可以将AsB转化为各种甲基化的砷化合物,从而潜在地形成有毒的代谢产物㊂在与肠道菌群进行体外温育后,有氧肠道细菌在7d后将AsB分解为DMA㊁DMAA和TMAO,但降解的AsB在30d后会再次出现在样品中,研究表明人类肠道内存在能够降解AsB的微生物,然而,转化所需的时间比生理肠道的通过时间长得多,因此,在体内尚未观察到[60]㊂因此,哺乳动物和人类肠道中的微生物在AsB的降解过程中发挥了重要的作用㊂3㊀环境中微生物在砷甜菜碱降解过程中发挥的作用(The role of environmental microorganisms in the degradation of arsenobetaine)AsB的微生物转化不限于哺乳动物和人类微生物群㊂环境细菌在环境中AsB及其代谢产物的循环中起关键作用㊂在海洋生态系统中,已经进行了许多有关微生物AsB降解的研究[81]㊂Hanaoka等[82]研究AsB在海洋环境中的命运,来自海洋沉积物的微生物首先将AsB降解为TMAO,然后降解为MMA或As(Ⅴ)㊂在海洋环境中,微生物多样性是降解AsB的关键,好氧微生物促进了AsB向TMAO 的转化,而当消化系统中的微生物在液体培养物中培养时,AsB代谢为DMA和DMAA,而不是TMAO,表明存在不同的AsB降解途径,其取决于微生物群落的组成[59,83]㊂在混合了海洋沉积物的ZoBell介质中,发现了AsB降解为TMAO,并进一步转化为As(Ⅴ)的过程[84]㊂AsB也被降解为TMAO㊁DMA和As(Ⅴ)㊂DMAA被证明是AsB降解为DMA的中间产物[59,85]㊂AsB在数小时内转化,最初转化为二甲基胂基醋酸盐,然后转化为DMA[85]㊂在海洋微生物混合培养的作用下,已检测到AsB的生物转化[58]㊂基于不同中间体的形成,提出了不同降解AsB途径[85]㊂AsB降解为无机砷有2种途径(TMAO或DMAA)㊂不同的AsB降解途径取决于微生物群落的组成[27]㊂已从土壤和水中分离出去甲基化微生物[48,83,86-87]㊂因此,环境微生物在AsB的降解过程中同样发挥了重要作用㊂AsB的合成和降解是一个复杂的过程,而且受到众多基因的调控㊂从目前砷代谢相关基因的研究结果来看,As3MT㊁PNP㊁GSTM1㊁GSTT1和MTHFR 等基因的多态性都与砷代谢有一定的相关性㊂砷暴露后转录活性的改变导致基因表达的显著变化,表明基因对砷代谢存在不同的调控途径[88],比如As3MT基因对砷代谢存在不同调控方式[89]㊂因此,如果要彻底研究清楚AsB的合成和降解过程,利用当前和未来的宏基因组学㊁元转录组学㊁宏蛋白质组学和代谢组学方法破译微生物砷生物转化过程,将提高我们对微生物如何促进AsB生物转化过程的理解[90]㊂因此,关于AsB的生物转化过程,包括甲基化㊁AsB合成和降解AsB,应用基因组学方法,特别是相关酶和基因的鉴定,尚有很多亟待探索的未知过程㊂4㊀结语和展望(Conclusion and outlook)由于砷在环境中普遍存在及其与各种人类疾病的关系,引起了全球对其公共卫生影响的关注㊂本综述重点讨论了AsB的生物转化(合成和降解)过程,对于深入了解AsB在环境中的命运及评估其对人体健康的风险至关重要㊂同时,了解影响AsB转化过程是制定降低砷暴露健康风险的关键策略㊂该研究领域未来的研究趋势主要集中在以下几个方面:(1)需要深入研究AsB的环境命运和代谢途径,开发先进的分析技术,用以对各种砷化合物之间的转化进行全方面的研究;(2)确定微生物和非生物介导的AsB合成和降解过程;(3)AsB降解为无机砷会增加其毒性,更多研究应着眼于转化动力学,以更好地理解环境中的砷循环;(4)海洋生物可以将有毒的无机砷转化为无毒的AsB,但其合成途径尚不清楚;微生物在AsB的降解过程中发挥重要作用,但其分子转化机制尚不清楚,因此,利用基因组学方法深入研究AsB的合成和降解过程至关重要㊂因此,了解AsB在海洋生物㊁哺乳动物和人类组织中的合成和降解有助于控制其在环境中的迁移循环过程,对于防控砷污染和降低人类健康危害至194㊀生态毒理学报第18卷关重要㊂将砷的环境行为研究经验,用于预测环境如何改变砷㊂相应的,砷的生物转化如何改变环境?总之,AsB的来源㊁生物合成㊁降解和命运需要继续深入探究,才能更全面解析AsB的合成途径和代谢过程㊂参考文献(References):[1]㊀Acharyya S K,Chakraborty P,Lahiri S,et al.Arsenic poi-soning in the Ganges delta[J].Nature,1999,401(6753):545-547[2]㊀Stokstad E.Bangladesh.Agricultural pumping linked toarsenic[J].Science,2002,298(5598):1535-1537[3]㊀Rodríguez-Lado L,Sun G F,Berg M,et al.Groundwaterarsenic contamination throughout China[J].Science,2013,341(6148):866-868[4]㊀Lin M C,Liao C M.Assessing the risks on human healthassociated with inorganic arsenic intake from groundwa-ter-cultured milkfish in southwestern Taiwan[J].Foodand Chemical Toxicology,2008,46(2):701-709[5]㊀Moe B,Peng H Y,Lu X F,et parative cytotoxicityof fourteen trivalent and pentavalent arsenic species deter-mined using real-time cell sensing[J].Journal of Environ-mental Sciences,2016,49:113-124[6]㊀Luvonga C,Rimmer C A,Yu L L,et anoarsenicalsin seafood:Occurrence,dietary exposure,toxicity,andrisk assessment considerations-A review[J].Journal ofAgricultural and Food Chemistry,2020,68(4):943-960 [7]㊀Fontcuberta M,Calderon J,VillalbíJ R,et al.Total andinorganic arsenic in marketed food and associated healthrisks for the Catalan(Spain)population[J].Journal ofAgricultural and Food Chemistry,2011,59(18):10013-10022[8]㊀Zhang W,Wang W rge-scale spatial and interspeciesdifferences in trace elements and stable isotopes in marinewild fish from Chinese waters[J].Journal of HazardousMaterials,2012,215-216:65-74[9]㊀Zhang W,Wang W X,Zhang L.Arsenic speciation andspatial and interspecies differences of metal concentrationsin mollusks and crustaceans from a South China Estuary[J].Ecotoxicology,2013,22(4):671-682[10]㊀Amlund H,Ingebrigtsen K,Hylland K,et al.Dispositionof arsenobetaine in two marine fish species following ad-ministration of a single oral dose of[14C]arsenobetaine[J].Comparative Biochemistry and Physiology Toxicology&Pharmacology,2006,143(2):171-178[11]㊀Sele V,Sloth J J,Lundebye A K,et al.Arsenolipids inmarine oils and fats:A review of occurrence,chemistryand future research needs[J].Food Chemistry,2012,133(3):618-630[12]㊀Wolle M M,Conklin S D.Speciation analysis of arsenicin seafood and seaweed:PartⅠ Evaluation and optimi-zation of methods[J].Analytical and Bioanalytical Chem-istry,2018,410(22):5675-5687[13]㊀Sakurai T,Kojima C,Ochiai M,et al.Evaluation of in vi-vo acute immunotoxicity of a major organic arsenic com-pound arsenobetaine in seafood[J].International Immu-nopharmacology,2004,4(2):179-184[14]㊀Caumette G,Koch I,Reimer K J.Arsenobetaine forma-tion in plankton:A review of studies at the base of the a-quatic food chain[J].Journal of Environmental Monito-ring,2012,14(11):2841-2853[15]㊀Molin M,Ulven S M,Meltzer H M,et al.Arsenic in thehuman food chain,biotransformation and toxicology-Re-view focusing on seafood arsenic[J].Journal of Trace El-ements in Medicine and Biology,2015,31:249-259 [16]㊀Thomas D J,Bradham K.Role of complex organic arsen-icals in food in aggregate exposure to arsenic[J].Journalof Environmental Sciences,2016,49:86-96[17]㊀Taylor V,Goodale B,Raab A,et al.Human exposure toorganic arsenic species from seafood[J].Science of theTotal Environment,2017,580:266-282[18]㊀Food and Agriculture Organization of the United Nations(FAO).The State of the World Fisheries and Aquaculture:Meeting the Sustainable Development Goals[R].Rome:Food and Agriculture Organization of the United Nations,2018:6[19]㊀Francesconi K A,Hunter D A,Bachmann B,et al.Uptakeand transformation of arsenosugars in the shrimp Crangoncrangon[J].Applied Organometallic Chemistry,1999,13(10):669-679[20]㊀Francesconi K A,Khokiattiwong S,Goessler W,et al.Anew arsenobetaine from marine organisms identified byliquid chromatography-mass spectrometry[J].ChemicalCommunications,2000(12):1083-1084[21]㊀Madsen A D,Goessler W,Pedersen S N,et al.Character-ization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies[J].Journal of Analytical Atomic Spectrometry,2000,15(6):657-662[22]㊀Anita G,Somkiat K,Walter G,et al.Identification of thenew arsenic-containing betaine,trimethylarsoniopropi-onate,in tissues of a stranded sperm whale Physeter cat-odon[J].Journal of the Marine Biological Association ofthe United Kingdom,2002,82(1):165-168[23]㊀Grotti M,Soggia F,Lagomarsino C,et al.Arsenobetaine。