牛妊娠相关糖蛋白9(bPAG9)的真核表达及纯化
- 格式:pdf
- 大小:1.25 MB
- 文档页数:8
文章编号:1007-8738(2003)04-400-04TGF 2βR Ⅱ/Fc 融合蛋白的纯化及其生物学活性鉴定李圣青1,李焕章1,杨乔欣2,倪殿涛1(第四军医大学1西京医院呼吸内科,2基础部微生物学教研室,陕西西安710032)收稿日期:2002-12-23; 修回日期:2003-03-27作者简介:李圣青(19702),女,安徽芜湖人,博士生.Tel.(029)3375237/3373682Purif ication and characterization of thef usion protein TGF 2βR Ⅱ/FcL I S heng 2qi ng 1,L I Huan 2z hang 1,Y ang Qiao 2xi n 2,N I Dian 2tao11Department of Respiration ,Xijing Hospital ,2Department of Mi 2crobiology ,Fourth Military Medical University ,Xi ’an 710032,ChinaAbstractAIM :T o expre ss the fusion protein TGF 2βR Ⅱ/Fc in largeamounts by using recombinant Bac 2TR Ⅱbaculovirus expre ssion system constructed by our laboratory and to purify and charac 2terize it.Then ,to verify whether the fusion protein TGF 2βR Ⅱ/Fc can be able to block the biological activity of cytokine TGF 2β1.METH ODS :The viral titer was determined by plaque form 2ing te st.The recombinant baculovirus was amplified by in fecting sf9cells.The fusion protein was purified by FPLC using protein G column.The purified product was analyzed by SDS 2PAGE and the amount of target protein calculated by gray scanning.We st 2ern blot and sandwich E LISA were used to affirm the expre ssion of the fusion protein.MTT colorimetry was used to te st whetherthe fusion protein can block the inhibition effect of cytokine TG F 2β1on the growth of L929cells.I t was to verify whether the fusion protein can reduce the fibronectin production in L929cells ac 2celerated by TGF 2β1by we stern blot.RESU LTS :The titer ofrecombinant Bac 2TR Ⅱbaculavirus in the primary culture fluid was 2×1012pfu/L.A fter electrophore sis ,gray scanning analy 2sis showed that the target protein accounted for 10percent of the total protein.We stern blot analysis and sandwich E LISA de 2tection proved that the target protein has been expre ssed.The fusion protein could block the inhibitive effect of cytokine TGF 2β1on the growth of L929cells and fibronectin production in L929cells.CONC L USION :The fusion protein TGF 2βR Ⅱ/Fc can in 2hibit the biological activity of TGF 2β1in vitro.This study will behelpful to the mass production of the fusion protein ,and will fa 2cilitate its further use in the therapy of pulmonary fibrosis.K eyw ords :transforming growth factor 2beta ;pulmonary fibrosis ;fusion protein摘要目的:用重组Bac 2TR Ⅱ杆状病毒表达系统大量表达融合蛋白TGF 2βR Ⅱ/Fc ,并对其进行纯化及鉴定;验证该融合蛋白是否能够阻断细胞因子TGF 2β1的生物学作用。
江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2023ꎬ39(3):753 ̄761http://jsnyxb.jaas.ac.cn张久盘ꎬ宋雅萍ꎬ姜㊀超ꎬ等.牛LATS2基因启动子克隆及转录调控分析[J].江苏农业学报ꎬ2023ꎬ39(3):753 ̄761.doi:10.3969/j.issn.1000 ̄4440.2023.03.016牛LATS2基因启动子克隆及转录调控分析张久盘1ꎬ宋雅萍2ꎬ姜㊀超2ꎬ王㊀锦1ꎬ魏大为2(1.宁夏农林科学院动物科学研究所ꎬ宁夏银川750002ꎻ2.宁夏大学农学院ꎬ宁夏银川750021)收稿日期:2022 ̄06 ̄15基金项目:宁夏自然科学基金项目(2021AAC05007)ꎻ宁夏重点研发计划项目(2020BEB04011)ꎻ宁夏青年科技人才托举工程项目(TJGC2019076)作者简介:张久盘(1985-)ꎬ女ꎬ河南商丘人ꎬ硕士ꎬ助理研究员ꎬ研究方向为动物遗传育种ꎮ(E ̄mail)zhangjiupan@163.com通讯作者:魏大为ꎬ(E ̄mail)weidaweiwdw@163.com㊀㊀摘要:㊀本研究旨在探究牛LATS2基因组织表达规律ꎬ利用相对荧光素酶活性数值确定其启动子核心区域并初步鉴定其核心区域关键转录因子ꎬ以阐明牛LATS2基因的转录调控机制ꎮ利用RT ̄qPCR检测牛LATS2基因在心㊁脾㊁肝㊁肾㊁肺㊁背最长肌㊁皮下脂肪㊁皱胃㊁大肠及睾丸等中的相对表达量ꎬ构建LATS2蛋白进化树ꎮ克隆LATS2基因5ᶄ端非翻译区上游1.7kb序列ꎬ利用逐段缺失引物ꎬ巢式扩增其7个启动子区不同截断体缺失片段(-1792~+179㊁-1475~+179㊁-1098~+179㊁-727~+179㊁-515~+179㊁-248~+179和-56~+179)ꎬ并将不同截断体构建至双荧光素酶报告载体pGL3 ̄Basic上ꎮ重组的LATS2基因启动子双荧光素载体分别转染小鼠成肌细胞(C2C12)和小鼠脂肪细胞(3T3 ̄L1)细胞系ꎬ鉴定其启动子核心区域ꎮ进一步借助在线软件JASPAR(http://jaspar.genereg.net/)和Genomatix(http://www.genomatix.de/cgi ̄bin//mat ̄inspector)分析启动子核心区域序列特征ꎬ并预测关键转录因子结合位点ꎮ结果显示ꎬLATS2基因在肝和背最长肌中表达量极显著高于脾(P<0 01)ꎻLATS2蛋白构建的进化树显示反刍动物单独聚为1支ꎬ表明LATS2基因在反刍动物进化过程中保守性较高ꎻ蛋白质互作分析筛选出的与LATS2蛋白互作紧密的前10种蛋白质均为Hippo信号通路中的关键蛋白质ꎮLATS2基因启动子核心区域位于-248~-56ꎬ预测其启动子核心区域有与肌肉发育相关的转录因子TEAD1㊁MEF2A㊁FOSL1㊁MyoG和Myod1的结合位点ꎬ表明LATS2基因在牛肌肉生长发育中扮演重要角色ꎮ以上结果为探究牛LATS2基因在肌肉生长发育中转录调控机制奠定基础ꎮ关键词:㊀牛ꎻLATS2基因ꎻ组织表达ꎻ启动子ꎻ转录调控中图分类号:㊀S823.8+1㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2023)03 ̄0753 ̄09PromotercloningandtranscriptionalregulationofbovineLATS2geneZHANGJiu ̄pan1ꎬ㊀SONGYa ̄ping2ꎬ㊀JIANGChao2ꎬ㊀WANGJin1ꎬ㊀WEIDa ̄wei2(1.InstituteofAnimalScienceꎬNingxiaAcademyofAgriculturalandForestrySciencesꎬYinchuan750002ꎬChinaꎻ2.SchoolofAgricultureꎬNingxiaUni ̄versityꎬYinchuan750021ꎬChina)㊀㊀Abstract:㊀ThepurposeofthisstudywastoexplorethetissueexpressionofbovineLATS2geneꎬandidentifyitscorepromoterregionandkeytranscriptionfactorsꎬsoastoclarifythetranscriptionalregulationmechanismofbovineLATS2gene.TherelativeexpressionlevelsofbovineLATS2weredetectedinheartꎬspleenꎬliverꎬkidneyꎬlungꎬlongissimusdorsimuscleꎬsubcutaneousfatꎬabomasumꎬlargeintestineandtestisbyRT ̄qPCRꎬandtheevolutionarytreeofLATS2proteinwasconstructed.The1.7kbsequenceupstreamofthe5ᶄ ̄untranslatedregionofLATS2genewasclonedꎬandthepromotersequenceregionsofsevensegmentswith-1792-+179ꎬ-1475-+179ꎬ-1098-+179ꎬ-727-+179ꎬ-515-+179ꎬ-248-+179and-56-+179missingsegmentswereamplifiedꎬandthedual ̄luciferasereportervectorpGL3 ̄Basicwasconstructedrespectively.TherecombinantLATS2genepromotervectorsweretransfectedintoC2C12and3T3 ̄L1celllinesꎬrespectivelyꎬandthecorepromoterregionswereidentified.Withthehelpofonlinesoftware357GenomatixandJASPARꎬthesequencecharacteristicsofcorepromoterwereanalyzedtopredictthebindingsitesofkeytranscriptionfactors.TheresultsshowedthattheexpressionofbovineLATS2geneinliverandlongissimusdorsimusclewassignificantlyhigherthanthatinspleen(P<0 01).Ruminantswereclusteredintoonebranchintheevolutionarytreecon ̄structedaccordingtoLATS2proteinꎬwhichindicatedthatLATS2genewashighlyconservedintheevolutionaryprocessofruminants.ThetoptenproteinscloselyinteractingwithLATS2proteinscreenedbyproteininteractionanalysiswerethekeyproteinsinHipposignalingpathway.ThecoreregionoftheLATS2genepromoterwaslocatedat-248--56.Itwaspredic ̄tedthatthecorepromoterregionofbovineLATS2genehadbindingsitesoftranscriptionfactorsTEAD1ꎬMEF2AꎬFOSL1ꎬMyoGandMyod1relatedtomuscledevelopment.ItshowedthatLATS2geneplayedanimportantroleinthegrowthandde ̄velopmentofbovinemuscle.Theaboveresultslayafoundationforexploringthetranscriptionalregulationmechanismofbo ̄vineLATS2geneinmusclegrowthanddevelopment.Keywords:㊀cattleꎻLATS2geneꎻtissueexpressionꎻpromoterꎻtranscriptionalregulation㊀㊀骨骼肌是动物躯体最重要的组成部分ꎬ其生长发育直接影响甚至决定家畜的产肉量ꎬ骨骼肌的生物学特性是衡量家畜潜在经济性能的标准[1]ꎬ另外ꎬ骨骼肌是动物体动作和能量代谢的主要参与者ꎬ在机体的代谢平衡维持中起十分重要的作用[2]ꎮ骨骼肌发生发育过程极其复杂精细ꎬ从静息肌卫星细胞的激活㊁成肌细胞的增殖分化ꎬ到肌纤维形成的终末阶段[3 ̄4]ꎬ全过程除了受遗传㊁环境及营养水平调控外ꎬ更多取决于基因的控制[5]ꎬ且细胞信号分子㊁转录因子㊁非编码RNA等诸多调节因子精准地参与其中复杂的网络调控[6 ̄11]ꎮ目前ꎬ为促进骨骼肌的生长发育以改善肉质从而实现肉牛的遗传改良ꎬ基因的功能鉴定和筛选已成为一种热门且有效的手段ꎮ哺乳动物中调节细胞生长的Hippo信号通路十分保守ꎬ通过关键因子Salvador1(Sav1)㊁MST1/MST2㊁Yep等相关基因及大肿瘤抑制基因1/2(LATS1/LATS2)调控细胞的增殖㊁分化㊁凋亡以及干细胞的自我更新ꎬ从而实现对器官体积大小的控制[12 ̄13]ꎮLATS2基因作为Hippo信号通路的核心成员之一ꎬ与通路中的其他关键因子共同调控动物体器官的生长发育ꎬ主要表现在影响心脏肌肉的发育[14 ̄15]ꎮ目前ꎬ关于LATS2基因功能研究主要集中在其参与肿瘤细胞发生及调控细胞增殖的机理方面[16 ̄18]ꎬ但LATS2基因对动物体骨骼肌生长发育中的调控有重要作用且研究较少ꎮ王利宏等[19]㊁鲍建军等[20]发现LATS2基因多态性与湖羊肌肉生长发育有显著关联ꎬ同时还发现YAP1基因在正常表型羊和双肌臀羊中的表达存在差异ꎬ且LATS1/LATS2基因可与YAP1基因互作抑制肌肉生长发育[21]ꎮ此外ꎬ我们前期研究发现LATS1基因在牛背最长肌等多个组织中高表达ꎬ且其核心启动区结合了肌肉生长发育相关的Myod1和MEF2A转录因子并调控其转录活性ꎬ初步阐明了LATS1基因参与牛的肌肉生长发育转录调控机制[22]ꎮLATS2基因与LATS1基因同属LATS基因家族ꎬ其分子序列及结构相似ꎬ因此我们推测LATS2在牛肌肉生长发育中扮演重要角色ꎬ但其转录机制不清ꎮ鉴于此ꎬ本研究拟构建LATS2基因在牛不同肌肉组织或器官中的表达谱ꎬ克隆并鉴定其启动子核心区域ꎬ预测LATS2基因启动子核心区域的关键转录因子ꎬ以期为探究牛LATS2基因在肌肉生长发育过程中的转录调控机制奠定基础ꎮ1㊀材料与方法1.1㊀试验样品采集3头20月龄秦川牛公牛的肝(右叶)㊁背最长肌㊁睾丸㊁肺(中叶)㊁肾(皮质)㊁皮下脂肪㊁心(心房)㊁皱胃(胃壁)㊁大肠(盲肠段)㊁脾(实质)和颈部静脉血样ꎬ迅速置于液氮带回实验室备用ꎮ1.2㊀主要试剂pMD ̄19T(Simple)载体㊁PrimeSTAR GXLPremix㊁基因组DNA提取试剂盒㊁DH5α感受态细胞㊁DNA凝胶回收试剂盒㊁限制性内切酶KpnⅠ和XhoⅠ㊁T4DNA连接酶㊁RNA提取试剂盒㊁反转录及荧光定量试剂均购自宝生物工程(大连)有限公司ꎻ去内毒质粒提取试剂盒购自OmegaBio ̄Tek公司ꎻDual ̄Luciferase双荧光素酶报告系统购自普洛麦格(北京)生物技术有限公司ꎻDMEM培养基㊁磷酸缓冲盐溶液(PBS)㊁OPTI ̄MEM㊁Lipofectamine3000Re ̄agent脂质体转染试剂盒及胎牛血清(FBS)购自赛默飞世尔科技公司ꎻ双荧光检测试剂盒购自普洛麦格(北京)生物技术有限公司ꎻpGL3 ̄Basic及pRL ̄457江苏农业学报㊀2023年第39卷第3期TK载体㊁小鼠成肌细胞(C2C12)和小鼠脂肪细胞(3T3 ̄L1)为本实验室保存ꎮ1.3㊀RT ̄qPCR检测首先提取不同组织或器官总RNAꎬ并按照反转录试剂盒说明书将各个RNA进行反转录ꎬ检测cD ̄NA质量ꎮ利用Primer5.0软件设计RT ̄qPCR引物ꎬ以GAPDH作为内参基因(引物见表1)ꎬ使用7500FastRealTime仪器(美国应用生物系统公司产品)进行定量PCRꎮ反应总体系为20 0μlꎬ其中上/下游引物各0 8μl(引物浓度为10μmol/L)㊁cDNA模板2 0μl(模板质量浓度为50ng/μl)㊁PrimixExTaqⅡ10 0μl㊁ROXReferenceDyeⅡ0 4μlꎬ剩余用ddH2O补齐ꎮRT ̄qPCR反应程序为:95ħ预变性30sꎻ95ħ变性5sꎬ60ħ退火34sꎬ循环40次ꎬ生物学重复3次ꎬ采用2-әәCt法处理分析相对表达量数据[23]ꎬ数据采用SPSS20.0软件进行单因素差异性分析ꎮ1.4㊀生物信息学分析结合NCBI数据库(https://www.ncbi.nlm.nih.gov)及UCSC(https://genome.ucsc.edu/)网站参考牛基因组信息ꎬ确定LATS2基因启动子区域ꎮ利用Uniprot(https://www.uniprot.org/)和MEGA5.0(ht ̄tps://www.megasoftware.net/index.php)构建出LATS2蛋白进化树ꎬ使用ExcertSyProtParm(ht ̄tps://web.expasy.org/protparam/)在线程序进行蛋白质序列分析ꎬ使用String(http://string ̄db.org/)预测与LATS2蛋白互作的蛋白质ꎮ1.5㊀启动子克隆及逐段缺失片段扩增根据牛LATS2基因启动子序列信息ꎬ设计其启动子全长扩增引物LATS2 ̄PF/PR(表1)ꎬ引物长度为1972bpꎬ包括-1792~+179序列ꎮ以基因组DNA为模板ꎬ参考PrimeSTAR GXLPremix操作手册进行PCRꎬ总体系20 0μlꎬ其中ꎬ4 0μldNTPMixtureꎬ10 0μl2ˑPrimeSTARGXLBufferꎬ上/下游引物各0 8μl(浓度为10μmol/L)ꎬ1 0μlPrime ̄STARGXLDNA聚合酶ꎬ底物1 0μl(质量浓度为50ng/μl)ꎬ2 4μlddH2OꎮPCR扩增程序使用3步法:98ħ10sꎬ60ħ20sꎬ68ħ15sꎬ循环35次ꎮPCR扩增产物用1%琼脂糖凝胶电泳检测ꎬ预期片段纯化回收后与pMD ̄19T(Simple)载体连接ꎬ转化后筛选阳性克隆进行测序鉴定ꎮ根据测序结果ꎬ设计5ᶄ端逐段缺失片段的上游引物(F1~F7)和1条固定的下游引物(R)ꎬ在引物5ᶄ端添加KpnⅠ和XhoⅠ双酶切位点(表1)ꎬ以LATS2基因-1792~+179序列为模板进行缺失片段的PCR扩增反应(扩增体系㊁程序同上)ꎬ将扩增片段分别连接pMD ̄19T(Simple)载体进行测序鉴定ꎮ得到的逐段缺失片段分别命名为:LATS2 ̄P1㊁LATS2 ̄P2㊁LATS2 ̄P3㊁LATS2 ̄P4㊁LATS2 ̄P5㊁LATS2 ̄P6和LATS2 ̄P7ꎮ表1㊀引物信息Table1㊀Primersusedintheseexperiments项目㊀引物名称㊀㊀㊀引物序列(5ᶄң3ᶄ)退火温度(ħ)扩增片段长度(bp)扩增区域收录号荧光定量PCRGAPDH ̄FGAPDH ̄RCCAACGTGTCTGTTGTGGATCTGCTTCACCACCTTCTTGA60.080320~521NM_001034034.2LATS2 ̄FLATS2 ̄RAGGACGGCAGTGAGGACAGCGCATCGGAACGGGTGACCATTG60.01313213~3344XM_025000092.1启动子区域克隆LATS2 ̄PFLATS2 ̄PRAGACCCAGAGCAACCAATAATGCACAGAAATCCCAACTAACT65.51972-1792~+179NC_037336.1LATS2 ̄F1GGGGTACCCGACTGAGCGACTGAACTGAAG61.01972-1792~+179NC_037336.1LATS2 ̄F2GGGGTACCTAAGTGGATCGCCAGTGTTGC60.51655-1475~+179NC_037336.1LATS2 ̄F3GGGGTACCCTTCCCCTAAGAACGAACACCC61.51278-1098~+179NC_037336.1LATS2 ̄F4GGGGTACCAGGACAGAATGTCAATCTTGGAT64.0907-727~+179NC_037336.1LATS2 ̄F5GGGGTACCGGGAGTGCTTGATACTGAGAA62.5695-515~+179NC_037336.1LATS2 ̄F6GGGGTACCTCACTACTCCCCACAGAGAAC60.0428-248~+179NC_037336.1LATS2 ̄F7GGGGTACCACATTGCACAGCGGCCTCGG59.5236-56~+179NC_037336.1LATS2 ̄RCCGCTCGAGGCACAGAAATCCCAACTAACTNC_037336.1F为上游引物ꎬR为下游引物ꎬ斜体碱基表示KpnⅠ(GGGGTACC)和XhoⅠ(CCGCTCGAG)酶切位点ꎮ557张久盘等:牛LATS2基因启动子克隆及转录调控分析1.6㊀双荧光素报告载体构建使用内切酶KpnⅠ和XhoⅠ将LATS2 ̄P1~LATS2 ̄P7片段和pGL3 ̄Basic载体在37ħ条件下酶切1hꎬ酶切完成后进行目的片段纯化回收ꎮ进一步将LATS2 ̄P1~LATS2 ̄P7片段分别和pGL3 ̄Basic载体用T4DNA连接酶(16ħ条件下)连接1hꎮ将产物转化至DH5α感受态细胞培养后筛选阳性克隆并鉴定ꎬ进一步使用去内毒质粒提取试剂盒提取质粒ꎬ备用ꎮ1.7㊀细胞培养、转染及测定酶活性复苏C2C12和3T3 ̄L1ꎬ培养基为10%胎牛血清(FBS)+90%DMEM培养基ꎬ待其生长状态良好且密度达到70%~80%后进行传代培养ꎮ传代生长后选择形态良好的细胞进行24孔板铺板ꎬ按照Lipo ̄fectamine3000Reagent脂质体转染试剂盒说明书ꎬ分别将构建好的双荧光素报告载体LATS2 ̄pGL3 ̄P1~LATS2 ̄pGL3 ̄P7800ng重组质粒和20ng内参质粒pRL ̄TK共转染至C2C12和3T3 ̄L1ꎬ进行3次重复ꎬ阴性对照为pGL3 ̄Basic质粒ꎮ在转染48h后进行细胞收集ꎬ利用双荧光检测试剂盒进行荧光素酶和海肾荧光素酶活性测定ꎬ计算二者的比值ꎬ确定LATS2基因的启动子核心区域ꎮ1.8㊀关键转录因子预测通过JASPAR(http://jaspar.genereg.net/)和Genomatix(http://www.genomatix.de/cgi ̄bin//mat ̄inspector)在线软件分析启动子核心区域序列ꎬ预测阈值设置为90%以上ꎬ选取2个网站预测结果的共同部分ꎬ筛选LATS2基因的启动子核心区域关键的转录因子结合位点ꎮ1.9㊀数据分析数据结果以平均值ʃ标准差表示ꎬ数据显著性检验使用SPSS18.0软件进行单因素方差分析(P<0 01为差异极显著ꎻP<0 05为差异显著)ꎮ2㊀结果与分析2.1㊀LATS2基因组织表达规律㊀㊀RT ̄qPCR结果(图1)显示ꎬLATS2基因在肝㊁背最长肌㊁睾丸㊁肺㊁肾㊁皮下脂肪㊁心㊁皱胃㊁大肠和脾中均检测出表达信号ꎬ以脾中的表达量作为对照ꎬ该基因在肝和背最长肌中的表达极显著地高于脾(P<0 01)ꎬ其次在睾丸中高表达(P<0 05)ꎬ在肺㊁肾㊁皮下脂肪㊁心㊁皱胃㊁大肠和脾中表达量较低ꎮ∗表示差异显著(P<0 05)ꎻ∗∗表示差异极显著(P<0 01)ꎮ图1㊀LATS2基因在牛不同组织或器官中的mRNA相对表达量Fig.1㊀TherelativeexpressionofLATS2geneindifferenttissuesororgansofcattle2.2㊀牛LATS2基因的结构特征及进化树构建LATS2基因位于第12号染色体ꎬ全长51096bpꎬ包括9个外显子和8个内含子ꎬ共转录3048bp的mRNA序列ꎬ可编码1015个氨基酸(图2)ꎬLATS2蛋白分子式为C4882H7628N1418O1425S35ꎬ其相对分子质量为110110ꎬ等电点(pI)为8 84ꎮ㊀㊀以LATS2蛋白序列为对象ꎬ利用MEGA5.0软件构建牛㊁绵羊㊁山羊㊁马㊁猪㊁小鼠等物种的系统进化树(图3)ꎮ构建出的系统进化树表明LATS2蛋白在牛㊁绵羊㊁山羊㊁马㊁猪㊁小鼠等物种中进化较为保守ꎬ反刍动物在进化过程中单独聚为1支ꎬ上述结果表明LATS2具有重要功能且在反刍动物进化过程中极度保守ꎮ2.3㊀牛LATS2蛋白互作分析使用String(http://string ̄db.org/)预测与LATS2蛋白互作的蛋白质ꎬ得到图4所示的蛋白质互作网络ꎮ网络中与LATS2蛋白互作紧密的前10种蛋白质分别为YAP1㊁MOB1A㊁MOB1B㊁SAV1㊁AMOTL2㊁WWC1㊁WWTR1㊁AMOT㊁AMOTL1㊁NF2ꎬ分析其信息ꎬ与KEGG收录的Hippo信号通路成员及Biogrid收录的与YAP1互作的蛋白质进行比对后ꎬ发现筛选出的上述蛋白质均为Hippo信号通路中的关键蛋白质ꎮ2.4㊀LATS2基因启动子核心区域鉴定通过PCR扩增到牛LATS2基因启动子1.7kb序列ꎬ根据逐段缺失引物进行PCR扩增ꎬ获得7个逐段缺失的LATS2基因启动子片段(逐段缺失片段扩增电泳见图5)ꎮ进一步连接pGL3 ̄Basic载体ꎬ构建得到了逐段缺失重组质粒ꎬ将其命名为:pLATS2-1792~+179㊁pLATS2-1475~+179㊁pLATS2-1098~+179㊁pLATS2657江苏农业学报㊀2023年第39卷第3期图2㊀牛LATS2基因结构示意图Fig.2㊀TheschematicdiagramofbovineLATS2genestructure图3㊀基于牛LATS2蛋白序列构建进化树Fig.3㊀EvolutionarytreebasedonbovineLATS2proteinsequence图4㊀牛LATS2蛋白相互作用预测Fig.4㊀PredictionofproteinsinteractingwithLATS2incattle-727~+179㊁pLATS2-515~+179㊁pLATS2-248~+179和pLATS2-56~+179ꎮ测序鉴定后ꎬ使用Lipofectamine3000Reagent脂质体分别将pGL3 ̄Basic质粒和7个重M:DL4500DNAmarkerꎻ泳道1~7分别为LATS2-1792~+179㊁LATS2-1475~+179㊁LATS2-1098~+179㊁LATS2-727~+179㊁LATS2-515~+179㊁LATS2-248~+179㊁LATS2-56~+179扩增片段电泳图ꎬ片段长度分别为1972bp㊁1655bp㊁1278bp㊁907bp㊁695bp㊁428bp㊁236bpꎮ图5㊀牛LATS2基因启动子逐段缺失片段扩增电泳图Fig.5㊀GelelectrophoresisofbovineLATS2genepromoter组质粒转染至3T3 ̄L1和C2C12细胞系ꎬ检测启动子的活性ꎮ相对荧光素酶活性数值(图6)显示ꎬLATS2基因757张久盘等:牛LATS2基因启动子克隆及转录调控分析启动子区域的1 7kb序列在C2C12和3T3 ̄L1细胞系中均有较高的转录活性ꎮ当缺失-1098~-727片段后ꎬpLATS2-727~+179较pLATS2-1098~+179酶活性在C2C12细胞系中显著下降(P<0 05)ꎻ进一步缺失启动子片段-248~-56ꎬ发现pLATS2-56~+179较pLATS2-248~+179酶活性在C2C12和3T3 ̄L1细胞系中均极显著下降(P<0 01)ꎬ分别下降了79 4%和75 6%ꎮ上述研究结果表明ꎬLATS2基因启动子区域的1 7kb序列活性较高ꎬ具备调控基因转录活性的功能ꎻ-248~-56为LATS2基因启动子核心区域ꎻLATS2基因在C2C12细胞系的转录活性高于3T3 ̄L1ꎮ2.5㊀启动子核心区域的关键转录因子鉴定利用Genomatix和JASPAR软件对LATS2基因启动子区和核心区域(-248~-56)进行分析并对潜在的关键转录因子进行预测ꎬ结果(图7)显示ꎬLATS2基因启动子核心区域包含转录增强因子TEF1(TEAD1)㊁肌肉细胞特异性增强因子2A(MEF2A)㊁FOS样抗原1(FOSL1)㊁肌细胞生成素(Myog)和生肌决定因子(Myod1)ꎬ初步推测转录因子TEAD1㊁MEF2A㊁FOSL1㊁Myog和Myod1可能对LATS2基因的转录活性有重要的调控作用ꎮ左边为LATS2基因启动子双荧光素逐段缺失片段示意图ꎬ右边为酶活性检测数值ꎮLuc表示双荧光素酶报告载体ꎮC2C12表示小鼠成肌细胞ꎻ3T3 ̄L1表示小鼠脂肪细胞ꎮ∗表示差异显著(P<0 05)ꎻ∗∗表示差异极显著(P<0 01)ꎮ图6㊀LATS2基因启动子核心区域缺失片段报告载体相对荧光素酶活性Fig.6㊀RelativeluciferaseactivityofLATS2genecorepromoterdeletionfragmentreportervector3㊀讨论骨骼肌是动物躯体最重要的组成部分ꎬ占胴体质量的40%左右ꎬ其发育程度直接影响甚至决定家畜的产肉量ꎬLATS2基因对细胞的增殖㊁凋亡以及骨骼肌的形成有重要的调控作用ꎬ而调控机制并不清楚ꎮ已有文献报道ꎬLATS1基因[21]㊁LATS2基因[19]与湖羊肌肉生长发育显著相关ꎮ因此ꎬ本试验开展了牛LATS2基因有关研究ꎬ成功克隆了牛LATS2基因启动子ꎬ检测了启动子活性并鉴定到启动子核心区域ꎬ预测到该基因启动子核心区域中的重要转录因子ꎬ为探究牛LATS2基因在肌肉生长发育中的转录调控机制奠定基础ꎮ本研究中ꎬ牛LATS2基因在肝㊁背最长肌㊁睾丸㊁肺㊁肾㊁皮下脂肪㊁心㊁皱胃㊁大肠和脾等不同组织或器官中均有表达ꎬ在肝中的表达量最高ꎬ背最长肌其次ꎬ在心㊁肺㊁皮下脂肪㊁肾㊁皱胃㊁大肠和脾等组织或器官中相对表达量较低ꎮ上述研究结果表明LATS2基因在牛不同组织或器官中的相对表达量有差异ꎬ该基因的高表达可能影响肝以及肌肉组织的857江苏农业学报㊀2023年第39卷第3期下划线为引物序列ꎬ方框表示相对应的转录因子结合位点ꎬ箭头指示转录起始位点ꎮFEAD1:转录增强因子TEF1ꎻMEF2A:肌肉细胞特异性增强因子2AꎻFOSL1:FOS样抗原1ꎻMyog:肌细胞生成素ꎻMyod1:生肌决定因子ꎮ图7㊀牛LATS2基因启动子核心区域的转录因子预测Fig.7㊀PredictionoftranscriptionfactorsinthecoreregionofbovineLATS2genepromoter正常发育ꎬ这同LATS2基因表达量与湖羊肌肉生长发育显著相关[19]的结果一致ꎮ系统进化树结果显示ꎬLATS2基因在反刍动物进化过程中保守性较高ꎻ预测出的前10种互作蛋白质均为Hippo信号通路中重要的转录调控因子ꎮHippo通路的核心是一个激酶级联反应ꎬ其中ꎬSAV1和MOB1形成一种复合体并在细胞质中被磷酸化来调控LATS1/2表达ꎬ待LATS1/2被激活后ꎬ其激酶反过来去磷酸化并抑制转录共激活因子YAP和TAZꎮ去磷酸化的YAP/TAZ进入细胞核后与TEAD1 ̄4等多种转录因子发生互作ꎬ从而抑制凋亡的基因表达并诱导细胞增殖[24 ̄25]ꎮ研究发现LATS1/2和Mst1/2可通过KIBRA㊁NF2㊁RASSF等多种上游信号分子调控Hip ̄po信号通路的活性ꎬ如AMOT等因子通过结合LATS1/2将YAP/TAZ等因子紧密连接在细胞质中ꎬYAP/TAZ的磷酸化可进行细胞信号调控ꎮYAP/TAZ和LATS1/2的稳定性可通过蛋白质泛素化进行调控[26]ꎮ综上ꎬLATS2基因在细胞信号转导及细胞增殖分化中起重要作用ꎮ通过启动子逐段缺失载体活性检测ꎬ发现牛LATS2基因启动子核心区域位于-248~-56ꎬ进一步预测牛LATS2基因启动子核心区域有TEAD1㊁MEF2A㊁FOSL1㊁Myog和Myod1等转录因子结合位点ꎮ研究结果表明ꎬTEAD1可调控肌肉特异性基因TNNT2㊁Mhc㊁α ̄actin[27]和COL1A1[28]的表达ꎬ在心肌㊁骨骼肌㊁平滑肌的发育方面有至关重要的调控作用[27 ̄29]ꎮTEAD1蛋白还可以与Hippo信号通路中YAP蛋白形成蛋白质复合物ꎬ从而抑制细胞增殖㊁促进细胞凋亡[30]ꎮMEF2A作为肌肉发生的重要核心因子ꎬ对骨骼肌和心肌细胞的增殖和分化有重要调控作用[31]ꎬ同时能够促进生长因子㊁肌球蛋白重链及胶原对损伤骨骼肌的修复[32]ꎻ该因子能够特异性识别并结合大多数肌肉基因启动子中的A/T序列ꎬ从而增强相关基因的表达[33]ꎮFOSL1是转录因子AP ̄1复合体的组分之一ꎬ参与细胞的增殖和分化ꎬ抑制细胞凋亡ꎬ可介导Kras通路调控细胞周期蛋白质ꎬ诱导骨骼的发育[34]ꎮMyog和Myod1作为调控肌肉细胞增殖㊁分化及肌纤维形成的关键基因[35]ꎬ突变会显著影响肌肉纤维和肉质特性[36]ꎮ其中ꎬMyod1对发育初级阶段肌肉的可塑性和再生起关键作用[35]ꎬ当Myod1与PAX7共表达时ꎬ可激活基底膜静息的肌肉卫星细胞使其增殖[37]ꎻMyog通过调节肌肉肌酸激酶影响骨骼肌的发生发育[38]ꎬ研究结果表明ꎬ敲除小鼠Myog基因后骨骼肌发育受损ꎬ出生后肌肉会出现萎缩现象[39]ꎮ以上研究结果表明ꎬTEAD1㊁MEF2A㊁FOSL1㊁Myog和Myod1转录因子在个体生长发育以及肌肉形成过程中起重要作用ꎬ结合本研究关于转录因子结合位点的预测ꎬ我们可以推断出上述5种转录因子对LATS2基因的转录可能起重要调控作用ꎮ但对于这一推断将来还需要结合定点突变㊁凝胶迁移(EMSA)㊁染色质免疫共沉淀(ChIP)等技术手段进行深入研究ꎮ4㊀结论牛LATS2基因启动子核心区域位于-248~-56ꎬ启动子核心区域预测到TEAD1㊁MEF2A㊁957张久盘等:牛LATS2基因启动子克隆及转录调控分析FOSL1㊁Myog和Myod1转录因子结合位点ꎮLATS2基因的组织表达规律㊁启动子核心区域的转录因子结合位点预测及LATS2蛋白互作分析结果均表明LATS2基因在牛肌肉生长发育中扮演重要角色ꎮ以上结果为探究牛LATS2基因在肌肉生长发育中的转录调控机制奠定基础ꎮ参考文献:[1]㊀BERRYDPꎬWALLEꎬPRYCEJE.Geneticsandgenomicsofreproductiveperformanceindairyandbeefcattle[J].Animal:AnInternationalJournalofAnimalBioscienceꎬ2014ꎬ8(1):105 ̄121. [2]㊀HJORTHMꎬPOURTEYMOURSꎬGÖRGENSSWꎬetal.Myo ̄statininrelationtophysicalactivityanddysglycaemiaanditseffectonenergymetabolisminhumanskeletalmusclecell[J].ActaPhysiologicaꎬ2016ꎬ217(1):45 ̄60.[3]㊀FRONTERAWRꎬOCHALAJ.Skeletalmuscle:abriefreviewofstructureandfunction[J].CalcifiedTissueInternationalꎬ2015ꎬ96(3):183 ̄195.[4]㊀TAJBAKHSHS.Skeletalmusclestemcellsindevelopmentalver ̄susregenerativemyogenesis[J].JournalofInternalMedicineꎬ2009ꎬ266(4):372 ̄389.[5]㊀BOUKHAAꎬBONFATTIVꎬCECCHINATOAꎬetal.Geneticpa ̄rametersofcarcassandmeatqualitytraitsofdoublemuscledPi ̄emontesecattle[J].MeatScienceꎬ2011ꎬ89(1):84 ̄90. [6]㊀WEIDWꎬFENGLSꎬZHANGWZꎬetal.CharacterizationofthepromoterregionofbovineSIX4:rolesofE ̄boxandMyoDintheregulationofbasaltranscription[J].BiochemicalandBiophysi ̄calResearchCommunicationsꎬ2018ꎬ496(1):44 ̄50. [7]㊀WEIDWꎬMAXYꎬZHANGSꎬetal.CharacterizationofthepromoterregionofthebovineSIX1gene:rolesofMyoDꎬPAX7ꎬCREBandMyoG[J].ScientificReportsꎬ2017ꎬ7(1).DOI:10.1038/S41598 ̄017 ̄12787 ̄5.[8]㊀WEIDWꎬGUILSꎬRAZASHAꎬetal.NRF1andZSCAN10bindtothepromoterregionoftheSIX1geneandtheireffectsbodymeasurementsinQinchuancattle[J].ScientificReportsꎬ2017ꎬ7(1).DOI:10.1038/S41598 ̄017 ̄08384 ̄1.[9]㊀RAZASHAꎬKASTERNꎬKHANRꎬetal.TheroleofmicroR ̄NAsinmuscletissuedevelopmentinbeefcattle[J].Genesꎬ2020ꎬ11(3).DOI:10.3390/genes11030295.[10]YUEBLꎬLIHꎬLIUMꎬetal.CharacterizationoflncRNA ̄miR ̄NA ̄mRNAnetworktorevealpotentialfunctionalceRNAsinbovineskeletalmuscle[J].FrontiersinGeneticsꎬ2019ꎬ10.DOI:10.3389/fgene.2019.00091.[11]FUYYꎬLISꎬTONGHLꎬetal.WDR13promotesthedifferenti ̄ationofbovineskeletalmuscle ̄derivedsatellitecellsbyaffectingPI3K/AKTsignaling[J].CellBiologyInternationalꎬ2019ꎬ43(7):799 ̄808.[12]LIANLꎬKIMJꎬOKAZAWAHꎬetal.TheroleofYAPtranscrip ̄tioncoactivatorinregulatingstemcellself ̄renewalanddifferentia ̄tion[J].Genes&Developmentꎬ2010ꎬ24(11):1106 ̄1118. [13]ZHANGLꎬYUETꎬJIANGJ.Hipposignalingpathwayandorgansizecontrol[J].Fly(Austin)ꎬ2009ꎬ3(1):68 ̄73.[14]YIJꎬLULꎬYANGERKꎬetal.Largetumorsuppressorhomologs1and2regulatemouseliverprogenitorcellproliferationandmatu ̄rationthroughantagonismofthecoactivatorsYAPandTAZ[J].Hepatologyꎬ2016ꎬ64(5):1757 ̄1772.[15]FURTHNꎬAYLONY.TheLATS1andLATS2tumorsuppressors:beyondtheHippopathway[J].CellDeath&Differentiationꎬ2017ꎬ24(9):1488 ̄1501.[16]姚春和ꎬ张荣.miR ̄372靶向LATS2对结肠癌SW620细胞增殖㊁迁移侵袭的影响[J].广西医科大学学报ꎬ2021ꎬ38(10):1906 ̄1911.[17]MCNEILLHꎬREGINENSIA.Lats1/2regulateYap/Taztocontrolnephronprogenitorepithelializationandinhibitmyofibroblastfor ̄mation[J].JournaloftheAmericanSocietyofNephrologyꎬ2017ꎬ28(3):852 ̄861.[18]冯瑞军ꎬ郑远航ꎬ盛智梅.外泌体miR ̄574 ̄5P通过下调大肿瘤抑制基因2促进胶质瘤增殖㊁侵袭和迁移[J].中国生物化学与分子生物学报ꎬ2021ꎬ38(11):1520 ̄1527.[19]王利宏ꎬ王庆增ꎬ鲍建军ꎬ等.Hippo信号通道中Lats2基因表达与湖羊肌肉生长发育的关系[J].南京农业大学学报ꎬ2018ꎬ41(3):519 ̄525.[20]鲍建军ꎬ苏㊀锐ꎬ王庆增ꎬ等.Smads与Hippo通道中YAP1基因在湖羊肌肉组织中时空表达研究及关联分析[J].中国农业科学ꎬ2016ꎬ49(11):2203 ̄2213.[21]张玉龙.Hippo信号通道中Lats1基因对湖羊肌肉生长性状遗传调控的初步研究[D].扬州:扬州大学ꎬ2013.[22]WEIDꎬRAZASHAꎬWANGXꎬetal.Tissueexpressionanaly ̄sisꎬcloningꎬandcharacterizationofthe5ᶄ ̄regulatoryregionofthebovineLATS1gene[J].FrontiersinVeterinaryScienceꎬ2022ꎬ9.DOI:10.3389/fvets.2022.853819.[23]LIVAKKJꎬSCHMITTGENTD.Analysisofrelativegeneexpres ̄siondatausingreal ̄timequantitativePCRandthe2-әәCtmethod[J].Methodsꎬ2001ꎬ25(4):402 ̄408.[24]BADOUELCꎬMCNEILLH.SnapShot:thehipposignalingpath ̄way[J].Cellꎬ2011ꎬ145(3).DOI:10.1016/j.cell.2011.04.009. [25]ZHAOBꎬTUMANENGKꎬGUANKL.Thehippopathwayinor ̄gansizecontrolꎬtissueregenerationandstemcellself ̄renewal[J].NatureCellBiologyꎬ2011ꎬ13(8):877 ̄883.[26]OᶄHAYREMꎬDEGESEMSꎬGUTKINDJS.NovelinsightsintoGproteinandGprotein ̄coupledreceptorsignalingincancer[J].CurrentOpinioninCellBiologyꎬ2014ꎬ27:126 ̄135.[27]LIUFꎬWANGXꎬHUGꎬetal.ThetranscriptionfactorTEAD1repressessmoothmuscle ̄specificgeneexpressionbyabolishingmyocardinfunction[J].TheJournalofBiologicalChemistryꎬ2014ꎬ289(6):3308 ̄3316.[28]AMBROSINOCꎬIWATATꎬSCAFOGLIOCꎬetal.TEF ̄1andC/EBPβaremajorp38αMAPK ̄regulatedtranscriptionfactorsin067江苏农业学报㊀2023年第39卷第3期proliferatingcardiomyocytes[J].TheBiochemicalJournalꎬ2006ꎬ396(1):163 ̄172.[29]WENTꎬLIUJHꎬHEXQꎬetal.TranscriptionfactorTEAD1isessentialforvasculardevelopmentbypromotingvascularsmoothmuscledifferentiation[J].CellDeath&Differentiationꎬ2019ꎬ26(12):2790 ̄2806.[30]HURASKINDꎬEIBERNꎬREICHELMꎬetal.Wnt/β ̄cateninsignalingviaAxin2isrequiredformyogenesisandꎬtogetherwithYAP/TazandTead1ꎬactiveinIIa/IIxmusclefibers[J].Develop ̄mentꎬ2016ꎬ143(17):3128 ̄3142.[31]NINGLꎬNELSONBRꎬBEZPROZVANNAYASꎬetal.Require ̄mentofMEF2AꎬCꎬandDforskeletalmuscleregeneration[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmericaꎬ2014ꎬ111(11):4109 ̄4114.[32]SCHIAFFINOSꎬDYARKAꎬCALABRIAE.SkeletalmusclemassiscontrolledbytheMRF4 ̄MEF2axis[J].CurrentOpinioninClinicalNutritionandMetabolicCareꎬ2018ꎬ21(3):164 ̄167. [33]TAYLORMVꎬHUGHESSM.Mef2andtheskeletalmuscledif ̄ferentiationprogram[J].SeminarsinCell&DevelopmentalBiolo ̄gyꎬ2017ꎬ72:33 ̄44.[34]VALLEJOAꎬPERURENANꎬGURUCEAGAEꎬetal.Aninte ̄grativeapproachunveilsFOSL1asanoncogenevulnerabilityinKRAS ̄drivenlungandpancreaticcancer[J].NatureCommunica ̄tionsꎬ2017ꎬ8.DOI:10.1038/ncomms14294.[35]ZAMMITPS.FunctionofthemyogenicregulatoryfactorsMyf5ꎬMyoDꎬMyogeninandMRF4inskeletalmuscleꎬsatellitecellsandregenerativemyogenesis[J].SeminarsinCell&DevelopmentalBiologyꎬ2017ꎬ72:19 ̄32.[36]COLESCAꎬWADESONJꎬLEYTONCPꎬetal.Proliferationratesofbovineprimarymusclecellsrelatetoliveweightandcarcaseweightincattle[J].PLoSOneꎬ2015ꎬ10(4).DOI:10.1371/jour ̄nal.pone.0124468.[37]BUCKINGHAMMꎬRIGBYPW.Generegulatorynetworksandtranscriptionalmechanismsthatcontrolmyogenesis[J].Develop ̄mentalCellꎬ2014ꎬ28(3):225 ̄238.[38]XUDQꎬWANGLꎬJIANGZZꎬetal.AnewhypoglycemicmechanismofcatalpolrevealedbyenhancingMyoD/MyoG ̄media ̄tedmyogenesis[J].LifeSciencesꎬ2018ꎬ209:313 ̄323. [39]BODINESCꎬLATRESEꎬBAUMHUETERSꎬetal.Identifica ̄tionofubiquitinligasesrequiredforskeletalmuscleatrophy[J].Scienceꎬ2001ꎬ294(5547):1704 ̄1708.(责任编辑:陈海霞)167张久盘等:牛LATS2基因启动子克隆及转录调控分析。
蛋白表达纯化实验步骤(待改进)1、取适当相应蛋白高表达的动物组织提total-RNA。
2、设计蛋白表达引物。
引物要去除信号肽,要加上适当的酶切位点和保护碱基。
3、RT-PCR,KOD酶扩增获取目的基因c DNA.4、双酶切,将cDNA.克隆入PET28/32等表达载体。
5、转化到DH5α感受态细菌中扩增,提质粒。
6、将质粒转化入表达菌株,挑菌检测并保种。
表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。
7、蛋白的诱导表达。
1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM到1m M。
37度诱导过夜(一般3h以上即有大量表达)。
2)SDS-PAGE电泳检测目的蛋白的表达。
注:目的蛋白包涵体表达量一般会达到菌体蛋白的50%以上,在胶上可以看到明显的粗大的条带。
3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。
甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。
4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm),诱导过夜作为包涵体检测样品。
注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。
葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。
2.保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。
8、包涵体检测。
方案见附件29、如有上清表达,则扩大摇菌。
1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种的活性而异,也可过夜摇菌。
2)将上一步中的8ml加入300ml培养基中37度,250rpm摇至OD= 1.0左右(约2.5h~3h),然后加IPTG(浓度同包涵体检测中使用的浓度。
)注:菌液浓度要适当的浓一些,否则第二天收集不到足够的菌体,因为低温低转速细菌生长非常缓慢。
变性条件下从大肠杆菌中纯化多聚组氨酸标签蛋白(主要以包涵体的形式表达)的样品制备1、用1X PBS重悬细胞沉淀(约每毫升沉淀加5ml 1 MBS),并按上述方法进行超声破菌。
2、12000 rpm离心10 min收集包涵体。
若有必要,用1 >PBS洗包涵体几次。
3、用Binding/Wash Buffer (约每毫升沉淀加5ml 1 XPBS)溶解包涵体,并在室温下孵育30〜60分钟。
若使沉淀充分溶解,有必要进行机械或超声均质。
4、12000rpm离心30min,取上清至一干净管中。
His 标签蛋白的重力纯化流程1ml柱子的总体积为10ml,只需加入介质。
如果样品体积大于柱子体积,可重复利用,注意不要超过树脂的结合能力。
1、平衡柱子的工作温度。
应在室温或4C下进行纯化。
2、取出底帽,倒出多余的液体,直立固定好柱子,让柱子顶部朝上。
3、用2 倍树脂体积的Binding/Wash Buffer 平衡柱子,以0.5〜1 ml/min 的流速过柱。
4、从柱子上部加入经Binding/Wash Buffer 处理的大肠杆菌裂解物或蛋白提取物,收集流出液。
若需要,让流出液重新过柱一次,以最大限度地提高结合力。
5、用两倍树脂体积的Binding/Wash Buffer洗涤树脂并收集流出液。
重复该步骤,用一新的收集管收集流出液。
直到流出液的吸光度在280 nm基线处。
6、用两倍树脂体积的Elution Buffer 将His 标签蛋白从树脂上洗脱下来。
重复此步骤两次,并单独收集每次洗脱出来的液体。
7、用Modified Coomassie Bradford Assay Kit (No SK3041)。
洗脱的蛋白可直接进行SDS-PAGE 分析。
注意:洗脱获得的蛋白可用凝胶过滤(如No BSP090 gravity Desalting Column)或透析去除咪唑以便后续应用。
SDS-PAGE分析前,含6M盐酸胍的样品必须用含8 M 尿素的缓冲液透析。
一、包涵体的纯化和复性总结(二)关于包涵体的纯化是一个令人头疼的问题,包涵体的复性已经成为生物制药的瓶颈,关于包涵体的处理一般包括这么几步:菌体的破碎、包涵体的洗涤、溶解、复性以及纯化,内容比较庞杂。
一、菌体的裂解1、怎样裂解细菌?细胞的破碎方法1。
高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度.此法适用于动物内脏组织、植物肉质种子等.2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50—100毫克菌体/毫升浓度,在1KG至10KG 频率下处理10—15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。
对超声波及热敏感的蛋白和核酸应慎用.4。
反复冻融法:将细胞在—20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取.这是标准配方:裂解液:50mM Tris—HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml 溶菌酶。
收稿日期:2023-04-28基金项目:国家自然科学基金青年基金项目(31902348)作者简介:王瑞睿(1996—),女,布依族,硕士,研究方向为虾蟹性别决定与性别分化机制,E-mail:rrww28@广东农业科学2023,50(7):156-163Guangdong Agricultural SciencesDOI:10.16768/j.issn.1004-874X.2023.07.016王瑞睿,马克异. 罗氏沼虾Doublesex 基因的原核表达与蛋白纯化[J]. 广东农业科学,2023,50(7):156-163.罗氏沼虾Doublesex 基因的原核表达与蛋白纯化王瑞睿1,2,马克异3(1. 上海海洋大学 农业农村部淡水水产种质资源重点实验室,上海 201306;2. 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;3. 中国水产科学研究院东海水产研究所,上海 200090)摘 要:【目的】Doublesex 属于DMRT 基因家族成员之一,在控制性别特异性分化中起关键作用。
克隆罗氏沼虾(Macrobrachium rosenbergii )Doublesex 基因(MrDsx )的开放阅读框序列,构建重组质粒并诱导其表达,纯化获取罗氏沼虾重组蛋白MrDsx,可为后续开展罗氏沼虾 M rDsx 基因的功能研究提供基础数据。
【方法】基于罗氏沼虾MrDsx 的开放阅读框序列,通过特异PCR 产物与表达载体pET-32a(+)连接,获得重组质粒 p ET-32a-MrDsx ,将其转化大肠杆菌 BL21(DE3)感受态细胞,构建罗氏沼虾MrDsx 基因的原核表达细胞。
利用异丙基-β-D-硫代半乳糖苷(IPTG)对阳性转化细胞进行诱导表达,并以SDS-PAGE 电泳,Western blot 和质谱分析检测诱导表达的重组蛋白。
【结果】以罗氏沼虾性腺cDNA 为模板,利用MrDsx 基因的特异引物,PCR 扩增获得了约660 bp 大小的单一DNA 条带。