流量计标定实验
- 格式:docx
- 大小:31.88 KB
- 文档页数:2
气体流量计检验标准表气体流量计是一种用于测量气体流量的仪器,广泛应用于工业生产、环保监测、科研实验等领域。
为了确保气体流量计的准确性和可靠性,需要进行定期的检验和校准。
下面是气体流量计检验标准表,供大家参考。
1. 检验项目,外观检查。
检验标准,气体流量计外观应无明显变形、损坏、腐蚀等情况,表面清洁,标识清晰可辨。
2. 检验项目,测量精度。
检验标准,在标定工况下,气体流量计的测量误差应符合国家标准要求。
3. 检验项目,线性度。
检验标准,在整个量程范围内,气体流量计的输出应与输入信号成线性关系。
4. 检验项目,重复性。
检验标准,在相同工况下,气体流量计的多次测量结果应具有一定的重复性。
5. 检验项目,零点漂移。
检验标准,在长时间使用后,气体流量计的零点漂移应在允许范围内。
6. 检验项目,温度影响。
检验标准,在不同温度下,气体流量计的测量结果应具有一定的稳定性。
7. 检验项目,压力影响。
检验标准,在不同压力下,气体流量计的测量结果应具有一定的稳定性。
8. 检验项目,介质适应性。
检验标准,气体流量计应能适应不同介质的测量要求,不受介质影响。
9. 检验项目,安全性能。
检验标准,气体流量计在使用过程中应具有一定的安全性能,不易发生泄漏、爆炸等情况。
以上是气体流量计检验标准表的内容,希望能够对大家在使用和维护气体流量计时有所帮助。
在进行检验时,要严格按照标准操作,确保检验结果的准确性和可靠性。
同时,定期的检验和维护对于延长气体流量计的使用寿命和保证测量精度都具有重要意义。
希望大家能够重视气体流量计的检验工作,确保其在工业生产和科研实验中的准确性和可靠性。
教案
开课单位:化学化工学院
课程名称:化工基础实验
专业年级:2013级化学专业
任课教师:周邦智/吕昕
教材名称:化工基础实验
2015——2016学年第2学期
图8-2塔顶回流示意图
对第一块板作物料、热量衡算:
112V L V L +=+
图8-3 全回流时理论板数的确定部分回流操作
教案编制说明
1.一门课程一般按章或单元编制若干个授课教案,每个教案应当包括授课内容、讲授学时、教学目的要求、教学重点难点、教学方法手段、教学内容提纲、课外学习要求、教学后记等主要内容。
2.每年的秋季学期为一个学年的第1学期,春季学期为一个学年的第2学期。
3.“授课内容”填写章或单元的目次及标题。
4.“教学方法手段”填写把知识传授给学生的方法和手段,要尽量填写具体。
5.“教学内容提纲”填写本章或单元讲授的主要知识信息,是教学大纲的分解、细化,是教师对课堂讲授内容的具体组织和表达。
6.“课外学习要求”填写要求学生在课外完成的作业、思考题,阅读的书目及预习的内容等。
7.“教学后记”是教师对教案执行情况的总结,目的在于改进和调整教案,为下一轮授课设计更加良好的教学方案。
填写内容主要包括:教学目的是否达到、教学方法的选择及应用效果、学生的反映、疑难问题、典型错误、经验体会、存在问题、今后教学建议等。
8.设计栏目不得出现空项,每个栏目的行高可自行增减。
9.授课教案当附在课程讲义之前。
流量计校核实验报告一、实验目的1、熟悉孔板流量计和文氏流量计的构造及工作原理;2、掌握流量计标定方法之一——称量法;3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;4、测定孔板流量计和文氏流量计的流量与压差的关系。
二、实验原理常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。
如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。
孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。
(一)孔板流量计孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。
在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得:2221122u u p p ρ--=(1) 或= (2)由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。
因此,用孔板孔径处流速0u 来代替式(2)中的2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。
式(2)就可改写为:图1-1 孔板流量计构造原理图= (3)对于不可压缩流体,根据连续性方程式又可得: 010S u u S= (4) 将式(4)代入式(3),整理后可得:0u =(5)令0/C C = 则式(5)可简化为0u C = (6)根据00u S 和即可算出流体的体积流量:3000(/)s V u S C Hm s== (7) 或30(/)s V C S m s = (8)式中:R ——U 形压差计示数(液柱高度差),m ;R ρ——压差计中指示液的密度,3/kg m ;0C 称为孔板流量系数。
实验十七 湿式气体流量计的校正一.实验目的1.掌握实验室使用的毛细管流量计和湿式气体流量计的校正方法。
2.了解和熟悉气体流量测量仪器的使用。
二. 气体流量仪器简介 化工生产的原料和产品,绝大多数都是气体和液体,要严格控制原料配比,计量所得气体产物等,必须用合适的计量仪器仪表,学会使用校正各种气体流量测量仪器是相当重要的。
常用仪器有湿式气体流量计(有叫气量表)、转子流量计、毛细管气体流量计等。
(1) 湿式气体流量计 1.结构与原理如图17—1所示:图17—1 湿式气体流量计结构图其结构主要有鼓形壳体,转鼓及转动记数机构所组成,转鼓由四块弯曲形状的叶片所构成,四块叶片构成四个体积相等的小室,鼓的下半部浸没在水中, 气体从背面中央进入园柱形室,再进入小室中,此时小室一个内孔恰好露出水面,而其它三个小室 则淹没在水中,进入小室的气体对室壁产生压力推动鼓轮沿着顺时针方向转动,转动一定角度之后该小室的内孔被水淹没在水中,气体不能继续进入此室,而水就把此室中气体排挤出去,从鼓轮与外壳间的空间引出,在鼓轮旋转过程中其余小室陆续自水中上升,外来气体进入第二个小室再将其排出,这样依次循环就使鼓轮不断地转动,因每个小室容积固定,因而鼓轮每转一周流过气体量也就一定。
流量计指针旋转一周总体积为2升。
校正湿式气体流量计可用一升容量瓶。
流量计每次测量流过体积为V W 则误差为∆V =1—V W ,实验测量5次,则平均校正系数为C W =WV V∑∑∆; W V ∑为5次测量流过流量计体积之和,流量计实际体积流量V S =V w +C W V W2.实验装置图 如图17—2所示。
图17—2 湿式气体流量计实验装置图3.实验步骤先检查流量计是否水平,并调节好,然后加水,充水量由水位器指示,(无水位器的应见到溢流管活塞处有水溢出), 检查系统是否漏气。
往高位瓶注水至2/3瓶高,记录流量计指示体积数,然后开启螺旋夹A1使高位瓶的水沿着胶管流入容量瓶中至刻度标线止,排入流量计的气体恰好一升。
转子流量计的标定转子流量计是一种常用的流量测量仪器,它通过测量介质流过转子的体积来确定流量大小。
标定是转子流量计使用过程中的一项重要工作,它能够保证测量结果的准确性和可靠性。
本文将介绍转子流量计的标定方法和标定的重要性。
一、转子流量计的标定方法转子流量计的标定通常分为静态标定和动态标定两种方法。
1. 静态标定静态标定是将转子流量计放置在定量容器中,通过测量容器中流过的液体体积和流过转子的脉冲数来确定转子流量计的脉冲系数。
在进行静态标定时,需要保证流量计与容器之间的连接紧密,避免液体泄漏。
通过多次重复测量并求取平均值,可以提高标定结果的准确性。
2. 动态标定动态标定是将转子流量计安装在流量管道上,通过与标准流量计进行比较,确定转子流量计的测量误差。
在进行动态标定时,需要保证转子流量计与标准流量计的测量范围、流速和流量特性相似。
通过改变流体的流速和流量,可以绘制出转子流量计的流量-脉冲关系曲线,从而确定转子流量计的脉冲系数和修正因子。
二、标定的重要性转子流量计的标定是保证其测量准确性和可靠性的基础。
标定可以消除转子流量计的系统误差和随机误差,提高测量结果的精度。
通过标定,可以确定转子流量计的脉冲系数和修正因子,使其能够更准确地反映实际流量。
标定的频率取决于使用环境和要求。
一般来说,转子流量计在首次使用前需要进行标定,以确定初始的脉冲系数和修正因子。
随着时间的推移,由于使用条件的变化和设备的磨损,转子流量计的测量误差会逐渐增大。
因此,定期对转子流量计进行标定是必要的,以保证测量结果的准确性。
三、标定的注意事项在进行转子流量计的标定时,需要注意以下几点:1. 标定环境的选择:标定环境应尽量接近实际使用环境,以确保标定结果的准确性。
同时,标定环境要保持稳定,避免外界因素对测量结果的影响。
2. 标定设备的选择:选择合适的标定设备是进行标定的关键。
标定设备应具有高精度和可靠性,并与转子流量计的测量范围和特性相匹配。
试验三 流量计的校正一、 实验目的1、了解转子流量计的构造和工作原理;2、掌握转子流量计的使用方法和校正方法;3、测定流量与转子高度的校正曲线。
二、 实验原理转子流量计的构造如图3-1所示。
它是由一根垂直的略显锥形的玻璃管和转子(或称浮子)组成的。
锥形玻璃管截面积由上而下逐渐缩小,流体由下而上流过。
流量与环隙截面积大小成比例。
当流体以一定流量通过环隙,且作用于转子下端与上端的压力差、流体对转子的浮力和转子的重力三者相平衡时,转子就停留在一定的位置上。
流量发生变化时,转子将移到新的位置,继续维持新的平衡。
转子的位置高度反映流体的流量。
图3-1 转子流量计一定条件下,对于一定的流体,通过转子流量计的体积流量q v 与转子所在位置的高度H 成正比:v q KH (3-1)式中:v q —— 流体的体积流量L/min (实测值)H —— 转子所处的高度(格数) K —— 常数(即校正系数)通过实验可作出q v 与H 的校正曲线供使用,同时可求出校正系数K 。
使用转子流量计时应注意以下几点: 1)流量计应垂直安装;2)为防止混入机械杂质,在流量计上游应安装过滤装置;3)读取不同形状转子的流量计刻度时,均应以转子最大截面处作为度数基准。
三、实验装置本实验装置如图3-2所示。
用离心泵3将贮水槽1的水直接送到实验管路中,经涡轮流量计计量后分别进入到转子流量计、文丘里流量计,最后返回贮水槽1。
用文丘里流量计测量时把阀门5打开,阀门6关闭;转子流量计测量时把阀门6打开,阀门5关闭。
流量由调节阀5、6来调节,温度由铜电阻温度计测量。
测定时选定转子的高度,通过涡轮流量计或文丘里流量计计量水的流量,可知转子在这一高度上的实际流量。
通过多次改变转子的高度,测定相应高度的实际流量,即可作出转子流量计的校正曲线,求出校正系数K。
图3-2流量计实验流程示意图1-水箱;2-放水阀;3-离心泵;4-排水阀;5-文丘里流量计调节阀;6-转子流量计调节阀;7-转子流量计;8-文丘里流量计;9-平衡阀;10-压力传感器;11-涡流流量计四、实验步骤1 关闭泵流量调节阀5、6,启动离心泵。
气体质量流量计标定方法1. 哎呀呀,你知道吗,气体质量流量计标定可以用标准表法呀!就像你跑步找个标准速度的人来对比一样。
比如说,把要标定的流量计和一个超级标准的流量计放在一起,同时测量同一种气体,然后一对比,不就知道准不准啦!2. 嘿!还有一种主副基准法呢!这就好像有个老大带着小弟一起干活儿。
用主基准去校准副基准,然后再用副基准去标定我们要用的流量计,是不是很妙!比如在实验室里,主基准就是那个厉害的“老大”,带着其他流量计一起准确工作。
3. 哇塞,传递比较法也很牛啊!这不就是接力赛跑嘛。
把标准流量计的数值通过一系列传递,最后到要标定的流量计上。
就像接力棒一样,一个传一个,到终点就知道结果啦!比如从这边的标准设备传递到那边的待标定仪表。
4. 你看哦,固定点质量法也不错呀!想象一下有个固定的点,在那一直很靠谱。
就像有个固定的参照点一样,我们通过这个点来确定流量计的准确性。
好比有个特别的位置,总是能给我们最准确的数据。
5. 哎,离线标定法也能行呢!把流量计拆下来,单独去标定,就像运动员离开赛场专门去训练一样。
比如说在工厂里,把流量计拆下来,仔细地去给它校准。
6. 哇哦,在线实流标定法可厉害啦!这就像是实时监控啊,在实际使用的时候直接就给流量计来个精准“调教”。
比如在生产线上,一边让气体流过,一边就把流量计校准好了。
7. 咦,还有使用称重法来标定呢!这就好像给东西称重一样,知道确切的重量才能判断嘛。
比如对一定量的气体进行称重,然后和流量计的数据对比。
8. 哈哈,直接测量法也能用上呀!就是简单直接地去测量,没有那么多弯弯绕绕。
就像直截了当地去做一件事,干脆利落。
比如直接测量气体的某些数据来确定流量计对不对。
9. 嘿呀,综合标定法更是牛了,把各种方法结合起来用!就像把各种工具组合在一起,发挥最大的作用。
比如在一些复杂的情况下,用多种方法一起给流量计一个最准确的判定。
总之,这么多种气体质量流量计标定方法,各有各的好处和适用场景,我们可得好好了解和运用呀!。
流量计校核实验报告流量计校核一、实验操作1. 熟悉实验装置,了解各阀门的位置及作用。
2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。
3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8,9个点,大流量时测量5,6个点。
为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。
4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。
二、数据处理1.数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d(mm):15.347 0查出实验温度下水的物性:密度ρ= 996.2542 kg/m3 粘度μ= 0.000958 PaS2.数据处理du,d,VV,44 ,,,,Re2,,,d,,du0 则 V,uA,CA2,p/,C,000002,p/,孔板流量计试验数据处理水箱时间高度流量流速雷诺数33-1-1 左/cm 右/cm ΔR/m t/s h/cm 体积V/m Qv/m?s V/m?s 空流系数C0 Re min 57.0 57.0 4qvV= Qv=h.S/t max 33.1 45.3 d2V=C. Re=dvρ/μ 2gR0,1.1078 0.7049 16916.60 1 33.7 46.3 0.126 40 6.7 0.0081932.05E-04 0.9833 0.7445 15014.92 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.9264 0.7307 14146.29 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.8662 0.7734 13228.02 4 42.5 48.9 0.064 40 5.2 0.006406 1.60E-04 0.7964 0.7601 12160.84 5 43.8 49.4 0.056 414.9 0.006037 1.47E-04 0.7313 0.7620 11168.12 6 45.6 50.3 0.047 41 4.5 0.005544 1.35E-04 0.6338 0.7764 9679.04 7 47.9 51.3 0.034 41 3.9 0.004805 1.17E-04 0.5688 0.7678 8686.32 8 49.4 52.2 0.028 41 3.5 0.004312 1.05E-04 0.4713 0.8165 7197.23 9 51.6 53.3 0.017 41 2.9 0.0035738.71E-05 0.4998 0.8189 7631.55 1 50.9 52.8 0.019 40 3.0 0.0036969.24E-05 0.6013 0.7976 9182.68 2 48.7 51.6 0.029 41 3.7 0.004558 1.11E-04 0.6663 0.7825 10175.40 3 47.1 50.8 0.037 40 4.0 0.004928 1.23E-04 0.7638 0.7566 11664.48 4 44.7 49.9 0.052 41 4.7 0.00579 1.41E-04 0.8451 0.7605 12905.39 5 42.5 48.8 0.063 41 5.2 0.006406 1.56E-040.9101 0.7661 13898.11 6 40.8 48.0 0.072 41 5.6 0.006899 1.68E-041.0239 0.7503 15635.37 7 37.6 47.1 0.095 41 6.3 0.007762 1.89E-04 1.1214 0.7672 17124.45 8 35.3 46.2 0.109 41 6.9 0.0085012.07E-04 1.1161 0.7218 17043.80 9 33.4 45.6 0.122 40 6.7 0.008254 2.06E-04 孔板流量计R-Qv双对数坐标图lgQv-0.600-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-0.800-1.000-1.200y = 2.233x + 7.302-1.400lgR-1.600-1.800-2.000孔板流量计C0-Re图0.84000.8200y = -0.2058x + 1.6040.8000空流系数C00.78000.76000.74000.72000.70000.68003.83.944.14.24.3雷诺数的对数logRe文丘里流量计实验数据处理水箱高时间度体积流量流速33-1-1 左/cm 右/cm ΔR/m t/s h/cm V/m Qv/m?s V/m?s 空流系数C 雷诺数Re 0 min 66.3 66.3 4qvV= Qv=h.S/t max 19.0 57.8 d2V=C. Re=dvρ/μ 2gR0,4.472 1.756 55449.87 1 29.6 62.7 0.331 40 17.70 0.02185.45E-044.032 1.663 50001.92 2 34.1 64.1 0.3 41 16.36 0.0202 4.92E-043.739 1.663 46364.86 3 40.3 66.1 0.258 40 14.80 0.0182 4.56E-043.385 1.634 41979.00 4 44.4 66.3 0.219 40 13.40 0.0165 4.13E-043.060 1.607 37941.22 5 48.4 66.9 0.185 36 10.90 0.0134 3.73E-042.981 1.762 36966.58 6 52.5 67.1 0.146 40 11.80 0.01453.63E-042.282 1.639 28301.82 7 56.5 66.4 0.099 41 9.26 0.0114 2.78E-041.768 1.752 21929.33 8 60.5 65.7 0.052 40 7.00 0.00862.16E-041.251 1.997 15507.17 1 63.3 65.3 0.02 40 4.95 0.0061 1.52E-041.960 1.763 24298.00 2 59.4 65.7 0.063 41 7.95 0.00982.39E-042.395 1.728 29698.57 3 56.4 66.2 0.098 40 9.48 0.0117 2.92E-042.784 1.651 34523.03 4 51.9 66.4 0.145 40 11.02 0.0136 3.39E-043.486 1.757 43232.10 5 45.3 65.4 0.201 40 13.80 0.01704.25E-04 3.456 1.577 42856.17 6 40.7 65.2 0.245 40 13.68 0.0169 4.21E-043.979 1.699 49340.98 7 37.0 65.0 0.28 40 15.75 0.01944.85E-044.042 1.587 50124.17 8 32.1 65.2 0.331 41 16.40 0.0202 4.93E-04 4.371 1.627 54196.76 9 27.1 63.9 0.368 40 17.30 0.0213 5.33E-04 文丘里流量计R-Qv双对数坐标图lgQv-0.800-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-1.000-1.200y = 2.233x + 7.302-1.400-1.600-1.800lgR-2.000文丘里流量计C0-Re单对数坐标图2.500y = -0.4311x + 3.66692.000C01.5001.0000.5000.0004.104.204.304.404.504.604.704.80lgRe3.结果分析由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。
实验五液体流量测定与流量计校验一.实验目的流量的测定和其他基本物理量,如温度、压力等的测定一样,在科学研究、工业生产,甚至在日常生活中,都是十分重要的。
流体流量的测定:包括不可压缩流体和可压缩流体两类流体流量的测定。
在测量方法和仪表方面,两者有不同,但也有通用的仪器,如常用的孔板流量计和转子流量计,既可用于测量不可压缩流体,也可用于可压缩流体。
这些测量仪表又大都安装在流体输送管道上。
工厂使用的流量计大都是按照标准规范制造的,不需校验,照其规定就可使用。
在实验室里,情况则不然,通常测量的都是小流量,并且被测流体的种类和性质也常随工作对象的变化而变更,所以使用标准规范的流量计很困难。
这就往往需要根据实际情况(主要是流量大小、流体性质、使用条件等)自己制作一些非标准化的流量计,然后用实验方法进行校验标定,以求得具体的计算式子或标绘出流量曲线。
本实验采用自制的孔板流量计和文丘里流量计测定流体流量,用直接容量法进行标定;同时测定孔流系数与雷诺数之间的关系,并比较两种流量计的阻力损失。
通过实验,不仅可学习到液体流量的测定方法,流量计的使用和校验方法,也必将有助于巩固所学的理论知识。
更重要的还在于对学习者今后要去从事的科学研究或其他实验工作来说,更有实际意义。
二.实验原理1、孔板流量计:孔板流量计的构造原理如下图示,在管路中装有一孔板,孔板两侧接出测压管,分别与U形压差计相连接。
图1 实验装置图孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管道的直径为d ,孔板锐孔直径为1d ,流体流经孔板后形成缩脉的直径为2d ,流体密度为ρ。
在截面积Ⅰ、Ⅱ处,即孔板前导管处和缩脉处的速度和压强分别为1u ,2u 与21,p p ,根据柏努利方程式可得:H p u u p ∆==--ρ2121222 (1) 或H u u ∆=-22122 (2)由于缩脉位置因流速而变,截面积2A 又难予知道,而孔板孔径的面积0A 是已知的,测压器的位置在设备一旦制成后,也是不变的。
涡轮流量计q
(m^3/h)
孔板流量计△p(kPa) 文丘里流量计△p(kPa)
3.58 16.16 6.21
3.33 13.55 5.45
3.11 11.73 4.78
2.86 9.61 4.27
2.58 7.28 3.70
2.36 6.26 3.03
2.14 5.13 2.37
1.90 3.92 1.89
1.67 3.60 1.30
1.39 2.44 1.00
1.17 1.50 0.83
0.99 1.09 0.55
0.91 0.88 0.52
0.70 0.54 0.24
0.46 0.27 0.13
涡轮流量计q(m^3/s) 雷诺数Re 孔板流量计 △p(Pa) 文丘里流量计
△p(Pa)
流量系数
孔板Co 文丘里Cv
0.000994 8122.9 16160 6210 0.556575 0.89784
0.000925 7555.7 13550 5450 0.565375 0.891472
0.000864 7056.5 11730 4780 0.567509 0.889013
0.000794 6489.2 9610 4270 0.576588 0.864995
0.000717 5853.9 7280 3700 0.597607 0.838263
0.000656 5354.8 6260 3030 0.589504 0.847329
0.000594 4855.6 5130 2370 0.590496 0.868763
0.000528 4311.0 3920 1890 0.599753 0.863743
0.000464 3789.2 3600 1300 0.550081 0.915391
0.000386 3153.9 2440 1000 0.556137 0.868713
0.000325 2654.7 1500 830 0.597038 0.802617
0.000275 2246.3 1090 550 0.59263 0.834287
0.000253 2064.8 880 520 0.606264 0.788681
0.000194 1588.3 540 240 0.595337 0.893005
0.000128 1043.7 270 130 0.553271 0.797348