2012年初中数学毕业班模拟试题(一) 人教新课标版
- 格式:doc
- 大小:504.00 KB
- 文档页数:12
2012年白云区初中毕业班综合测试(一)数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数据3,1,5,2,7,2的极差是(*)(A)2(B)7(C)6(D)52.单项式-22x y的系数为(*)(A)2(B)-2(C)3(D)-33.不等式组26020xx-<⎧⎨+≥⎩的解集是(*)(A)x>3(B)-2≤x<3(C)x≥-2(D)-2<x≤34.一个多边形的内角和与它的外角和相等,则这个多边形的边数为(*)(A)4(B)5(C)6(D)75.如图1,△ABC中,∠C=90°,∠A的正切是(*)(A)B CA B(B)B CA C(C)A CB C(D)A CA B6.已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为(*)(A)4cm (B)6cm (C)8cm (D)10cm7.64的算术平方根与64的立方根的差是(*)(A)-12(B)±8(C)±4(D)48.如图2,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)(A)50°(B)40°(C)45°(D)100°9.如图3,梯形ABCD中,AD∥BC,AC、BD交于点O,AD=1,BC=3,则S△AOD︰S△BOC等于(*)(A)1︰2(B)1︰3(C)4︰9(D)1︰910.若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值(*)(A)增大3 (B)减小3 (C)增大9 ( D)减小9第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知∠α=50°,则∠α的余角的度数为 * °. 12.不等式-26x >的解集为 * .13.点P (-2,1)关于原点对称的点P '的坐标为 * .14.在一次数学测验中,某学习小组的六位同学的分数分别是54,85,92,73,61,85.这组数据的平均数是 * ,众数是 * ,中位数是 * . 15.计算并化简式子2224()22y x x xx yyy⋅-÷的结果为 * .16.如图4,A D 是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为A D 上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为 * (结果用根号表示).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:32435x y x y +=⎧⎨-=⎩.18.(本小题满分9分)已知,如图5,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.19.(本小题满分10分)先化简,再求值:2(2)(3)(3)x x x +-+-,其中x =-32.y1x1O图6BAABCDEF 图5OC B A图2图1 CB A ODCB A 图3 图4BC P DA²20.(本小题满分10分)如图6,等腰△OAB的顶角∠AOB=30°,点B在x 轴上,腰OA=4. (1)B点的坐标为: ;(2)画出△OAB关于y 轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标;(3)求出经过A1点的反比例函数解析式.(注:若涉及无理数,请用根号表示)21.(本小题满分12分)在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ;(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数y 随自变量x 的增大而增大的概率为 .22.(本小题满分11分)在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.23.(本小题满分13分) 如图7,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB. (1)∠ABC= °;(2)AC与⊙O有什么关系?请证明你的结论;(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.24.(本小题满分14分)如图8,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).(1)PQ+DQ的最小值是 ;(2)说出PQ+DQ取得最小值时,点P、点Q的位置,并在图8中画出;(3)请对(2)中你所给的结论进行证明.25.(本小题满分14分)已知抛物线y =2x +kx +2k -4.(1)当k =2时,求出此抛物线的顶点坐标;(2)求证:无论k 为什么实数,抛物线都与x 轴有交点,且经过x 轴上的一定点; (3)已知抛物线与x 轴交于A(x 1,0)、B(x 2,0)两点(A在B的左边),|x 1|<|x 2|,与y 轴交于C 点,且S△ABC =15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.A B CD E 图8C参考答案及评分建议(2012一模)一、选择题二、填空题三、解答题 17.(本小题满分9分) 解:324 35 x y x y +=⎧⎨-=⎩①②解法一(加减法):①-②³3,………………………………………………3分 得(32)3(3)435x y x y +--=-⨯3239415x y x y +-+=-………………………………………………………5分 1111y =-…………………………………………………………………………6分 y =-1,…………………………………………………………………………7分代入②式,得x =2,……………………………………………………………8分 ∴原方程组的解为:21x y =⎧⎨=-⎩.…………………………………………………9分解法二(代入法):由②得:35 x y =+③,……………………………………………………3分-5542-2-4-6Oyx1备用图把③代入①式,……………………………………………………………………5分得3(35y+)+2y=4,………………………………………………………6分解得y=-1,……………………………………………………………………7分代入③式,得x=2,……………………………………………………………8分∴原方程组的解为:21xy=⎧⎨=-⎩.…………………………………………………9分18.(本小题满分9分)证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°.…………………………………………4分在△ABE和△CDF中,……………………………………………………5分∵A E C FA CA B C D=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),……………………8分∴BE=DF(全等三角形对应边相等).…………………………………9分证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,…………………………………………………3分又∵AE=CF,∴AD-AE=BC-CF,……………………………5分即ED=BF,…………………………………………………………………6分而ED∥BF,∴四边形BFDE为平行四边形………………………………………………8分∴BE=DF(平行四边形对边相等).……………………………………9分19.(本小题满分10分)解:2(2)(3)(3)x x x+-+-=2244(9)x x x++--………………………………………………………5分=22449x x x++-+…………………………………………………………6分=413x+………………………………………………………………………7分当x=-32时,………………………………………………………………8分原式=4³(-32)+13=-6+13……………………………………………………………9分=7………………………………………………………………………10分20.(本小题满分10分)解:(1)(4,0);…………………………………………………………1分(2)如图1,过点A作AC⊥x轴于C点.………………………………2分在Rt△OAC中,∵斜边OA=4,∠AOB=30°,∴AC=2,OC=OA²cos.………………………………………………5分由轴对称性,得A点关于y轴的对称点A1,………………………………………………6分B点关于y轴的对称点B1的坐标为(-4,0);…………………………7分(3)设过A1点的反比例函数解析式y=kx,……………………………8分把点A1,2)代入解析式,,∴k从而该反比例函数的解析式为y=-x.…………………………………10分21.(本小题满分12分)解:(1)6;……………………………………………………………………3分(2)树形图如下:所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分列表法:y1x1O图1BAA1B1 C 点P的横坐标点P的纵坐标-2-3 4-3-2 4 -24-3……………6分……………………………………………………………………………………………6分所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分(3)13.……………………………………………………………………………12分22.(本小题满分11分)解:设王真骑自行车的速度为x千米/时,……………………………………1分则李浩的速度为1.2x千米/时.根据题意,得1510151.260x x+=.…………………………………………………6分即151151.26x x+=,两边同乘以6x去分母,得75+x=90,………………………………………………………………8分解得x=15.……………………………………………………………………9分经检验,x=15是该分式方程的根.………………………………………10分答:王真的速度为15km/时.………………………………………………11分23.(本小题满分13分)解:(1)120°;……………………………………………………………1分(2)AC是⊙O的切线.……………………………………………………3分证法一∵AB=OB=OA,∴△OAB为等边三角形,…………………………4分∴∠OBA=∠AOB=60°.……………………………………………5分∵BC=BO,∴BC=BA,∴∠C=∠CAB,……………………………………………………………6分又∵∠OBA=∠C+∠CAB=2∠C,即2∠C=60°,∴∠C=30°,………………………………………7分在△OAC中,∵∠O+∠C=60°+30°=90°,∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;证法二:∵BC=OB,∴点B为边OC的中点,……………………………………4分即AB为△OAC的中位线,…………………………………………………5分∵AB=OB=BC,即AB是边OC的一半,……………………………6分∴△OAC是以OC为斜边的直角三角形,…………………………………7分∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;(3)存在.……………………………………………………………………9分 方法一:如图2,延长BO交⊙O于点D,即为所求的点.…………………………10分 证明如下:连结AD,∵BD为直径,∴∠DAB=90°.…………………………11分 在△CAO和△DAB中,∵C A O D A B A O A B A O C A B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAO≌△DAB(ASA),………………12分 ∴AC=AD.…………………………………………………………………13分 (也可由OC=BD,根据AAS证明;或HL证得,或证△ABC≌△AOD) 方法二:如图3,画∠AOD=120°,……………………………………………10分 OD交⊙O于点D,即为所求的点.…………………………………………11分 ∵∠OBA=60°,∴∠ABC=180°-60°=120°. 在△AOD和△ABC中,∵O A B A A O D A B C O D B C =⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△ABC(SAS),………………12分 ∴AD=AC.…………………………………………………………………13分24.(本小题满分14分) 解:(1)(2)如图4,过点D作DF⊥AC,垂足为F,………………………3分 DF与AE的交点即为点Q;………………………………………………4分 过点Q作QP⊥AD,垂足即为点P;……………………………………5分 (3)由(2)知,DF为等腰Rt △ADC底边上的高, ∴DF=AD²sin45°=4³2=∵AE平分∠DAC,Q为AE上的点, 且QF⊥AC于点F,QP⊥AD于点P, ∴QP=QF(角平分线性质定理),……………………………………7分∴PQ+DQ=FQ+DQ=DF=CD C下面证明此时的PQ+DQ为最小值: 在AE上取异于Q的另一点Q1(图5).…………………………………9分 ①过Q1点作Q1F1⊥AC于点F1,………………………………………10分 过Q1点作Q1P1⊥AD于点P1,…………………………………………11分 则P1Q1+DQ1=F1Q1+DQ1, 由“一点到一条直线的距离”,可知,垂线段最短, ∴得F1Q1+DQ1>FQ+DQ,即P1Q1+DQ1>PQ+DQ.…………………………………………12分 ②若P2是AD上异于P1的任一点,………………………………………13分 可知斜线段P2Q1>垂线段P1Q1,………………………………………14分 ∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ. 从而可得此处PQ+DQ的值最小.25.(本小题满分14分) 解:(1)当k =2时,抛物线为y =2x +2x ,…………………………1分 配方:y =2x +2x =2x +2x +1-1 得y =2(1)x +-1,∴顶点坐标为(-1,-1);………………………………………………3分(也可由顶点公式求得) (2)令y =0,有2x +kx +2k -4=0,………………………………4分 此一元二次方程根的判别式⊿=2k -4²(2k -4)=2k -8k +16=2(4)k -,…………………5分 ∵无论k 为什么实数,2(4)k -≥0,方程2x +kx +2k -4=0都有解,…………………………………………6分 即抛物线总与x 轴有交点.P Q A B C D E 图4 F P Q A B C D E图5 FP 2 Q1F 1 P 1由求根公式得x=42k k-±-,………………………………………………7分当k≥4时,x=(4)2k k-±-,x1=(4)2k k-+-=-2,x2=(4)2k k---=-k+2;当k<4时,x=(4)2k k-±-,x1=(4)2k k-+-=-k+2,x2=(4)2k k---=-2.即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),而点(-2,0)是x轴上的定点;…………………………………………8分(3)过A,B,C三点的圆与该抛物线有第四个交点.…………………9分设此点为D.∵|x1|<|x2|,C点在y轴上,由抛物线的对称,可知点C不是抛物线的顶点.……………………………10分由于圆和抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形.……………………11分∵x轴上的两点A、B关于抛物线对称轴对称,∴过A、B、C三点的圆与抛物线的第四个交点D应与C点关于抛物线对称轴对称.……………………………………12分由抛物线与x轴的交点分别为(-2,0)和(-k+2,0):当-2<-k+2,即k<4时,……………………………………………13分A点坐标为(-2,0),B为(-k+2,0).即x1=-2,x2=-k+2.由|x1|<|x2|得-k+2>2,解得k<0.根据S△ABC=15,得12AB²OC=15.AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,∴12(4-k)(4-2k)=15,化简整理得267k k--=0,解得k=7(舍去)或k=-1.此时抛物线解析式为y=26x x--,其对称轴为x=12,C点坐标为(0,-6),它关于x=12的对称点D坐标为(1,-6);………………………………14分当-2>-k+2,由A点在B点左边,知A点坐标为(-k+2,0),B为(-2,0).即x 1=-k +2,x 2=-2. 但此时|x 1|>|x 2|,这与已知条件|x 1|<|x 2|不相符, ∴不存在此种情况.故第四个交点的坐标为(1,-6). (如图6)-2-4-6O y x C 1 D B A 图6。
2012中考数学模拟试题(共150分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题均有四个选项,其中只有一项符合题目要求。
)1. 4的平方根是( ) (A)±16 (B)16(C )±2 (D)22.如图所示的几何体的俯视图是( )3. 在函数12y x -自变量x 的取值范围是( ) (A)12x ≤(B) 12x < (C) 12x ≥(D) 12x > 4. 近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为( ) (A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是( ) (A )2x x x += (B) 2x x x ⋅=(C)235()x x = (D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根,则下列关于判别式 24n mk-的判断正确的是( )(A) 240n mk -< (B)240n mk -= (C)240n mk -> (D)240n mk -≥7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=( ) (A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示,则下列判断正确的是( ) (A)0m > (B)0n < (C)0mn < (D)0m n ->BCD E ABCDE309. 为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是( ) (A)6小时、6小时(B) 6小时、4小时(C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm ,若点0到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) (A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题,共120分)二、填空题:(本大题共8个小题,每小题4分,共32分) 11. 分解因式:.221x x ++=________________。
12abc(第4题)2012年初中毕业班模拟考试数学试卷(完卷时间:120分钟满分:150分)一.选择题(每小题3分,满分21分)1.-2的相反数是()A.2 B.-2 C.12D.-122.下列计算正确的是()A.a2·a3=a6B.(ab)2=a2bC.(ab3)2=ab6D.a6÷a2 =a43.如图,下列几何体中主视图、左视图、俯视图都相同的是()A.半圆B.圆柱C.球D.六棱柱4.如图,直线a∥b,直线c与a、b均相交,如果∠1=50°,那么∠2的度数是()A.50°B.100°C.130°D.150°5.“a是实数,∣a∣≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件6.下列四边形中,对角线不可能...相等的是()A.直角梯形B.正方形C.等腰梯形D.长方形7.如图,直线y=-33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′的点B′坐标是()A.(4,23)B.(23,4)C.(3,3)D.(23+2,23)二.填空题(每题4分,满分40分)8.-8的立方根是.9.分解因式:x2-9= .10.不等式2x-4≤0的解集是.11.化简:48-3= .12.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为千米.13.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为.14.已知菱形的两条对角线的长分别为6、8,则此菱形的周长为.15.一条排水管的截面如图所示,已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是.A BC第13题图16.已知x =-1是一元二次方程x 2+mx +n =0的一个根,则m 2-2mn +n 2的值为____________.17.如图,点A 是反比例函数y =-2x在第二象限内图象上一点,点B是反比例函数y =4 x在第一象限内图象上一点,直线AB 与y 轴交于点C ,且AC =BC ,连接OA 、OB ,则△AOB 的面积是 . 三、解答题(满分89分)18.(满分9分)计算:∣-2∣+128+(-3.14)0-(13)-119.(满分9分)先化简,再求值:(x +1)2+x (x -2),其中x = 220.(满分9分)如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .证明:△ABE ≌△FCE21.(满分9分)某市教育局为了了解初一学生第一学期参加社会实践活动的天数,随机抽查本市部分初一学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中提供的信息,回答下列问题:(1)a =__________%,并写出该扇形所对圆心角的度数为___________;补全条形图; (2)在这次抽样调查中,众数是___________;中位数是___________;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?22.(满分9分)某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字. (1)求第一位抽奖的同学抽中文具与计算器的的概率分别是多少?BC D FE天和7天以上 5第17题图翻奖牌背面翻奖牌正面1234海宝计算器计算器文具(2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗? 并用列表格或画树状图的方式加以说明.23.(满分9分)如图,在△ABC 中,AB =AC ,以AC 为直径的半圆O 分别交AB 、BC 于点D 、E (1)求证:点E 是BC 的中点 (2)若∠COD =80°,求∠BED 的度数。
2012年中考数学模拟题(含答案)(试卷满分 120分,考试时间120分钟)一.选择题 (每小题4分,共40分)1. 下列图形中,不是中心对称图形是( )A.矩形B.菱形C.正五边形D.正八边形2. 函数y =中,自变量x 的取值范围是( )A.x ≥0 B .x >0且x ≠1 C .x >0 D.x ≥0且x ≠1 3. -5的相反数是( )A.-5B.5C.D.-4. 如果一个角是36°,那么 ( )A.它的余角是64° B .它的补角是64° C .它的余角是144° D .它的补角是144°5. 若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )A.2对B.3对C.4对D.6对 6. 棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A.36cm 2B.33cm 2C.30cm 2D.27cm 27. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影长比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长 8. 已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( )A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2) 9. “比a 的23大1的数”用代数式表示是( ) A. 23a +1 B. 32a +1 C. 25a D. 23a -1 10. 下列命题中错误的命题是 ( ) A.的平方根是B.平行四边形是中心对称图形C.单项式与是同类项 D.近似数有三个有效数字二.填空题 (每小题3分,共24分)11. 两个同心圆的圆心为点O ,半径分别为3cm 和5cm ,一直线l 与小圆相切于点C ,交大圆于两点A 、B ,则AB 的长为_________cm.12. 在Rt ΔABC 中 ,∠C = 90°,AC = 3 , BC = 4 ,若⊙A .⊙B .⊙C 两两外切 ,则⊙C 的半径为 ____________13.用计算器计算:。
2012年萝初中毕业班综合测试(一)数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 16的平方根为( ﹡ ).A .4B .4±C .2D .2± 2.下面给出的三视图表示的几何体是( ﹡ ).A .圆锥B .正三棱柱C .正三棱锥D .圆柱3.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是216.8s=甲,219.8s =乙,2 1.28s =丙.导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( ﹡ ).A .甲团 B.乙团 C.丙团 D.甲或乙团4.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( ﹡ ).A .1种B .2种C .4种D .无数种5.不等式组10420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( ﹡ ).6.在平面直角坐标系中,ABCD Y 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、 (4,2),则顶点D 的坐标为( ﹡ ). A.(7,2)B.(5,4)C.(1,2)D.(2,1)7.一靓仔每天骑自行车或步行上学,他上学的路程为3000米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x 米/分钟.根据题意,下面列出的方程正确的是( ﹡ ).A .30430003000=-x x . B .30300043000=-x x . C .30530003000=-x x . D .30300053000=-xx .8.二次函数22y x x k =-++的部分图象如图所示,若关于x 的一元二次方程220x x k -++=的一个解13x =,则另一个解2x =( ﹡ ).A .1B .1-C .2-D .0o E 第10题第9题第8题CA CBA9.如图,O ⊙是ABC △的外接圆,60BAC ∠=°,若O ⊙的半径OC 为2,则弦BC 的长为( ﹡ ).A .1B 3C .2D .310.如图,ABC △中,6AB AC ==,8BC =,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则BDE △的周长是( ﹡ )A .75B .10C .425+D .12第二部分 非选择题(共120分)二、填空题(本大题共5小题,每小题3分,满分15分.)12A .1 02B .1 02C .1 02D .11.在梯形ABCD中,AD∥BC,中位线长为5,高为6,则它的面积是﹡.12.下列函数中,当0x>时y随x的增大而减小的有﹡.(1)1y x=-+,(2)2y x=,(3)2yx=-,(4)2y x=-,13.如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为﹡.第15题第14题14.如图,一次函数bkxy+=(0k<)的图象经过点A.当3y>时,x的取值范围是﹡.15.小明同学从A地出发,要到A地的北偏东60o方向的C处.他先沿正东方向走了200m到达B地,再从B地沿北偏东30o方向走,恰好能到达目的地C(如图),那么,由此可确定B、C两地相距________m.三、解答题(本大题共9小题,满分105分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分6分)解方程:31222x x+=--17.(本小题满分6分)先化简,再求值:22x4x6x9-++÷x22x6-+,其中x5=-.18.如图,ABC∆的三个顶点都在55⨯的网格(每个小正方形的边长均为1个单位长度)的格点上.(1)在网格中画出将ABC∆绕点B顺时针旋转90°后的△A′BC′的图形.(2)求点A在旋转中经过的路线的长度.(结果保留π)19.(本小题满分10分)如图,AB是O⊙的直径,AC是弦,直线EF是过点C的O⊙的切线,AD EF⊥于点D.(1)求证:BAC CAD∠=∠;(2)若3012B AB∠==°,,求AD与»AC的长.BDOCAF E第19题图20.(本小题满分10分)在不透明的袋中有大小、形状和质地等完全相同的4个小球,它们分别标有数字1、2、3、4.从袋中任意摸出一小球(不放回),将袋中的小球搅匀后,再从袋中摸出另一小球.(1)请你用列表或画树状图的方法表示摸出小球上的数字可能出现的所有结果;(2)规定:如果摸出的两个小球上的数字都是方程27120x x-+=的根,则小明赢;如果摸出的两个小球上的数字都不是方程27120x x-+=的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.第18题某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?第22题第23题在矩形AOBC中,6OB=,4OA=.分别以OB OA,所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B C,重合),过F点的反比例函数(0)ky kx=>的图象与AC边交于点E.(1)设点,E F的坐标分别为:11()E x y,,22()F x y,,AOE△与FOB△的面积分别为1S,2S,求证:12S S=;(2)若21y=,求OEF△的面积OEFS△;(3)当点F在BC上移动时, OEF△与ECF△的面积差记为S,求当k为何值时,S有最大值,最大值是多少?23.(本小题满分12分)如图,在Rt ABC△中,AD是边BC上的中线,过点A作AE BC∥,过点D作DE AB∥,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD EC=;(2)求证:四边形ADCE是菱形;(3)若AB AO=,求tan OAD∠的值.EOC如图,一次函数112y x =+的图象与x 轴交于点A ,与y 轴交于点B ;二次函数212y x bx c =++的图象与一次函数112y x =+的图象交于B C ,两点,与x 轴交于D E ,两点,且D 点坐标为(1,0). (1)求二次函数的解析式;(2)求线段BC 的长及四边形BDEC 的面积S ;(3)在坐标轴上是否存在点P ,使得PBC △是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.第24题如图,边长为4的正方形OABC 的顶点O 在坐标原点,顶点A C 、分别在x 轴、y 轴的正半轴上,点E 是OA 边上的动点(不与点,O A 重合),EP CE ⊥,且EP 交正方形外角的平分线AP于点P .(1)如图1,当点E 是OA 边的中点时,证明CE EP =;(2)如图1,当点E 是OA 边的中点时,在y 轴上是否存在点M ,使得四边形BMEP 是平行四边形?若存在,求出点M 的坐标;若不存在,说明理由;(3)如图2,当点E 是OA 边上的任意一点时(点E 不与点,O A 重合),设点E 坐标为(,0)(04)E t t <<,探究CE EP =是否成立,若成立,请给出证明,若不成立,说明理由.25题图1PBxy OE25题图2PBxy OE。
12354A B CDEF第2题图2012年花都区初中毕业班数学综合练习(一)一、选择题(每小题3分,共30分) 1.3-的绝对值是( ▲ ) A .3B .3-C .13 D .13- 2.如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是 ( ▲ ) A .∠1 B .∠2 C .∠4 D .∠53.股市有风险,投资需谨慎。
截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为(▲ )×106×107×108×10910页,其中语文2页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ▲ ) A.21B.103C.52D.101 5.抛物线2(2)3y x =-+的对称轴是( ▲ )x = -2x =2 C.直线x =x =36.下列运算中,结果正确的是 ( ▲)A .a a a 34=-B .5210a a a =÷C .532a a a =+D .1243a a a =⋅ 7.有一组数据3,4,2,1,9,4,则下列说法正确的是( ▲ ) A .众数和平均数都是4 B .中位数和平均数都是4 C .极差是8,中位数是3.5 D .众数和中位数都是48.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图, 那么他所画的三视图中的俯视图应该是( ▲) A .两个相交的圆 B .两个内切的圆 C .两个外切的圆D .两个外离的圆9.已知C B A ,,是⊙O 上不同的三个点,︒=∠50AOB ,则ACB ∠=( ▲) A .︒50B .︒25 C .︒50或︒130D .︒25或︒155第8题图主视方向A D HGCFBE 第15题图10、如图所示,函数y 1=|x |和y 2=13x +43的图象相交于(-1,1),(2,2)两点,当y 1>y 2时,x 的取值X 围是( )A .x <-1B .-1<x <2C .x >2D .x <-1或x >2二、填空题:(每小题3分,共18分)11.分解因式:2xy x -=___▲_______.12. 已知三角形的两边长分别为3和6,那么第三边长的取值X 围是___▲_______. 13、函数x y -=2的自变量的取值X 围是 ▲。
2012年中考模拟试卷数学卷数学考生须知:1.本试卷满分120分, 考试时间100分钟.2.答题前, 在答题纸上写某某和某某号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4.考试结束后, 试题卷和答题纸一并上交.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.(2010某某某某)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是2.(原创)2010年5月1日至10月31日某某世博会参观者7308万人,7308万人用科学计数发表示为()人×106×107 C×106 ×1083.(原创)在227, ,9,0.1 010 010 001,14,38,sin60°中,有理数的个数是()A.1. B.2 C.3 D.44.(某某某某)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.1图(A) (B) (C) (D)5.(原创)下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.②有两边和其中一边的对角对应相等的两个三角形全等;③方程1312112-=+--x x x 的解是0=x ;④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d ⑤若00a b >>,,则0a b +>; 其中真命题的个数有( )6.(原创)在平面直角坐标系中,形如)(2n m ,的点(其中n m 、为整数),称为标准点,那么抛物线922+-=x x y 上有这样的标准点( )个. A .2个 B.4个 C.6个 D.无数个7.(改编)“祝福”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“”、“奥运”字样的三X 卡片.他们分别从自己的一套卡片中随机抽取一X ,抽取得三X 卡片中含有“祝福”“”“奥运”的概率是( ) A.127 B.19 C.29 D.138.(原创)将一X 纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ (如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1的形状,则CPD ∠的大小是( )A .120B .90C .60D .459.(2010 某某某某)如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为 ( )10.(2010·某某)已知:如图,在正方形ABCD 外取一点E ,连结AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB = 5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD=4+ 6.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.(原创)因式分解:2ax 2-4ax +2a = ▲ .12.(原创)某小组16名同学的身高(厘米)平均数是164,中位数是158,众数是162。
2012年中考模拟试卷数学卷请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟;2、所有答案都必须写在答题卷标定的位置上,务必题号对应。
一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.如果3是a-3的相反数,那么a 的值是( )(原创) (A )0 (B )3 (C )6 (D )-6 2.下列图形中,中心对称图形有( )(改编)A .1个B .2个C .3个D .4个3.下列运算正确的是( )(原创) A .(x -y )2=x 2-y 2B .x 2+y 2=x 2 y2C .x 2y +xy 2 =x 3y3D .x 2÷x 4 =x -24.下列图象中,以方程22=+-y x 的解为坐标的点组成的图象是( )(改编)5.下列说法不正确...的是( )(改编) A .“打开电视机,正在播世界杯足球赛”是不确定事件。
B .“掷一枚硬币正面朝上的概率是12 ”表示每抛掷硬币2次就有1次正面朝上。
C .一组数据2,3,4,4,5,6的众数和中位数都是4。
D .甲组数据的方差S 甲2=0.24,乙组数据的方差S 甲2=0.03,则乙组数据比甲组数据稳定。
6.已知反比例函数)0(≠=k xky ,在每个象限内y 随着x 的增大而增大,点P (a -1, 2)在这个反比例函数上,a 的值可以是( )(原创) A .0 B .1 C .2 D .37.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )(改编)8.如图,过边长为1的等边△ABC 的边AB 上一点P , 作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时, 连PQ 交AC 边于D ,则DE 的长为( )(原创) A .13 B .12 C .23D .不能确定 9.如图,点P (3a ,a )是反比例函y = kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )(改编) A .y =3xB .y =x10 C .y =12xD .y =x2710.已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a +b +c >0;③- b2a >0.其中正确的结论有( ) (改编)A .只有①B .①②C .①③D .①②③二、认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。
2012年初中毕业数学中考模拟试题(一)(满分120分)学校班别姓名得分一.选择题:(本大题共12小题,每小题3分,共36分)1. 的绝对值是()A .B .C .D .2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形B.正三角形 C.等腰梯形D.菱形3.点P(-2,1)关于y轴对称的点的坐标为()A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1)4.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()5.若m+n=3,则Array的值为()A.12 B.C.3D.06、下列函数中,自变量x 的取值范围是的函数是()A.B.C.D.7.二次函数的图象的顶点坐标是()A. B. C. D.8.请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个9.已知⊙O是的外接圆,若AB=AC=5,BC=6,则⊙O的半径为()A.4 B.3.25 C.3.125 D.2.2510.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A. B. C. D.11.如图,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.小明仔细观察骰子,发现任意相对两面的点数和都相等.这枚骰子向上的一面的点数是5,它的对面的点数是()A.1 B.2 C.3 D.612.某公司员工的月工资如下表:员工经理副经理职员A职员B职员C职员D职员E职员F职员G月工资/元4800 3500 2000 1900 1800 1600 1600 1600 1000则这组数据的平均数、众数、中位数分别为()A.2200元 1800元 1600元B.2000元 1600元 1800元C.2200元 1600元 1800元D.1600元 1800元 1900元二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:a2+2a=__.14.在不透明的袋子中装有4个红球和7个黄球,每个球除颜色外都相同,从中任意摸出一个球,摸到_ _球的可能性大.15. 在钦州保税港区的建设中,建设者们发扬愚公移山、精卫填海的精神,每天吹沙填海造地约40亩.据统计,最多一天吹填的土石方达316700方,这个数字用科学计数法表示为_ _方(保留三个有效数字).16.如图,将一副三角板叠放在一起,使直角顶点重合于O点,则.17. 如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC的面积为2,则k=_ _.18.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 .三.解答题:19.计算(6分):已知a=3 +1,b=3。
数 学 试 题一、选择题:本题共13小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题3分,错选、不选或选出的答案超过一个,均不得分.1、如图,直线AB 、CD 相交于点E ,DF∥AB.若∠AEC=100°,则∠D 等于( ) A .70° B .80° C .90° D .100°2、用两个全等的等边三角形,可以拼成下列哪种图形( )A.菱形B. 正方形C. 矩形D.等腰梯形3、为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( )A .8种B .9种C .16种D .17种4、下列事件是必然事件的是( ) A .随机掷一枚质地均匀的硬币,正面朝上 B .播下一颗种子,种子一定会发芽C .买100张中奖率为1%的彩票一定会中奖D .400名同学中,一定有两个人生日相同 5、若解关于x 的方程2133=+-+x ax x 有增根x= -1,则a 的值为( )A .3B .-3C .3或1D .-3或-1 6、如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为)1(+a cm 的正方形a >0,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22)52(cm a a +B .2)96(cm a +C .2)156(cm a +D .2)153(cm a +7、有五张写有53、3-、0、2π、1+2的不透明卡片,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率是( )A.51 B.52 C.53 D.548、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( ) CA.3:4B. 1:2C.9:16D. 5:89、如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )10、如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm ,墙上悬挂晾衣架的两个铁钉A 、B之间的距离为,则∠1等于( )A .30°B .45°C .60°D .90°11、如图,将△ABC 沿DE 折叠,使点A 与BC 边F 的中点重合,下列结论中:① EF∥AB 且EF=21AB ;②∠BAF=∠CAF ;③DEAF S ADFE⨯=21四边形;④∠BDF+∠FEC=2∠BAC ,正确的个数是( ) A .4 B .3C .2D .112、如图,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意可列方程( )A .()()810602610602x ++=+ππB .()66028602⨯=+ππxC .()()8602610602⨯+=⨯+x ππD .()()66028602⨯+=⨯-x x ππ第10题13、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6.其中正确结论的序号是( )A .①④B .①②C .③④D .①③二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.14、102012)51()5(97)1(-+-⨯+---π=_______________.15、如果关于x 的方程()012122=++++a x a x 有一个小于1的正数根,那么实数a 的取值范围是 .16、a 、b 满足042=-++b a ,分解因式:(x 2+y 2)-(axy+b)= . 17、三角形的每条边的长都是方程0862=+-x x 的根,则三角形的周长是 . 18、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2012个图形需____________根火柴棒.三、解答题:本大题共7小题,共61分.解答要写出必要的文字说明、证明过程或演算步骤.19、(本题满分8分)解不等式1315>--x x .20、(本题满分8分)如图,在平面直角坐标系中,图形①与②关于点P 成中心对称. (1)画出对称中心P ,并写出点P 的坐标;(2)将图形②向下平移4个单位,画出平移后的图形③,并判断图形③与图形①的位置关系.(直接写出结果)第16题(第一个图形) (第二个图形) (第三个图21、(本题满分9分)如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B.请在射线BF上找一点M,使以点B、M、C为顶点的三角形与△ABP相似(请注意...:全等图形是相似图形的特例) .22、(本题满分9分)某校为组建篮球队,对甲、乙两名备选同学进行定位投篮测试,每次投10个球共投10次,甲、乙两名同学测试情况如图所示:(1)根据上图所提供的信息填写下表:甲(2)如果你是篮球队长,会选择哪名同学进入篮球队?请说明理由.23、(本题满分9分)如图是某城市一个主题雕塑的平面示意图,它由置放于地面l上两个半径均为2米的半圆与半径为4米的⊙A构成.点B、C分别是两个半圆的圆心,⊙A 分别与两个半圆相切于点E、F,BC长为8米.求EF的长.24、(本题满分9分)已知:在△ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.25、(本题满分9分)已知:抛物线y=12x2-x+k与x轴有两个交点.(1)求k的取值范围;(2)设抛物线与x轴交于A、B两点,且点A在点B的左侧,点D是抛物线的顶点,如果△ABD是等腰直角三角形,求抛物线的解析式;(3)在(2)的条件下,抛物线与y轴交于点C,点E在y轴的正半轴上,且以A、O、E为顶点的三角形和以B、O、C为顶点的三角形相似,求点E的坐标.数学参考答案及评分标准二、填空题(每空4分,共20分)14、2 15、211-<<-a 16、()()22-+++y x y x 17、6或10或12 18、12078三、解答题:19、解:3315>--x x …………………………………………………………………3分42>x …………………………………………………………………6分2>x …………………………………………………………………8分20、解:(1)画点P , …………………………………………………………………2分(15)P ,; …………………………………………………………………4分 (2)画图形③, …………………………………………………………………6分图形③与图形①关于点(13)Q ,成中心对称.…………………………………………………8分21、解:在射线BF上截取线段3161=BM,连接CM 1,……………………………………………1分⎪⎪⎭⎪⎪⎬⎫====316341BM BP BC AB ⇒BPBC ABBM ===3443161,…………………………………………………………2分⎭⎬⎫⊥⊥BC AB BP BF ⇒1CBMABP ∠=∠, …………………………………………………………………3分∴BCM 1∆~ABP∆. …………………………………………………………………4分 在射线BF 上截取线段32==BP BM ,连接CM 2,………………………………………………6分⎪⎭⎪⎬⎫==∠=∠==3422BM BP CBM ABP BC AB ⇒ABPCBM∆≅∆2.(全等必相似) …………………………………………8分 ∴在射线BF 上取3161=BM或32=BM时,1M ,2M 都为符合条件的M. ……………9分22、解:(1)1分,共 6分 (2)会选甲同学进入篮球队. ……………………………………………………………7分因为甲、乙二人的平均数相同,尽管乙同学在十次投篮中有四次投入8球,而甲同学三次投入8球,但甲同学的方差却小于乙的方差,说明甲的投篮水平相对稳定,所以选甲入队. …………………9分23、解:∵ ⊙A 分别与两个半圆相切于点E 、F ,点A ,B ,C 分别是三个圆的圆心, ∴AE =AF =4,BE =CF =2,AB=AC =6. ……………………………………………………3分 则在△AEF和△ABC 中,∠EAF=∠BAC,4263A E A F A BA C===. ……………………………4分∴△AEF ∽△ABC , …………………………………………………………………6分 故E F A E B CA B=. …………………………………………………………………8分则EF =A E B C A B⋅=216833⨯=. …………………………………………………………………9分24、证明:(1)连结AD ,∵A B A C =,∠BAC =90° ,D 为BC 的中点,∴AD ⊥BC ,BD =AD ,∴∠B =∠DAC =45° …………………………………………………………………1分 又BE =AF ,∴△BDE ≌△ADF …………………………………………………………………2分∴ED=FD ,∠BDE =∠ADF …………………………………………………………………3分 ∴∠EDF =∠EDA +∠ADF =∠EDA+∠BDE=∠BDA =90° ……………………………………4分∴△DEF 为等腰直角三角形 ………………………………………………………………………5分 (2)若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD , ………………………………………………………6分 ∵AB =AC ,∠BAC =90° ,D 为BC 的中点∴AD =BD ,AD ⊥BC ,∴∠DAC =∠ABD =45° ∴∠DAF =∠DB E =135°,又AF =BE ,∴△DAF ≌△DBE ……………………………7分 ∴FD =ED ,∠FDA =∠EDB ∴∠EDF =∠EDB +∠FDB =∠FDA+∠FDB=∠ADB =90°……………………………………8分∴△DEF 仍为等腰直角三角形 ……………………………………………………………………9分25、(1)根据题意得:△=k 21->0,∴k <12,∴k的取值范围是k <12; …………………………………………………………………2分(2)设A (x 1,0)、B (x 2,0),则x 1+ x 2=2,x 1x 2=2k .∴AB =12x x -=()212214x x x x -+,由y =12x 2-x +k =12(x -1)2+k -12得顶点D (1,k -12)……………………………………3分当△ABD 是等腰直角三角形时得:12k -=12,∵k <12,∴12-k =12,解得k 1=-32………………………………………………………………………………4分 ∴所求抛物线的解析式是y =12x 2-x -32;…………………………………………………………5分 (3)设E (0,y ),则y >0, 令y =0得12x 2-x -32=0,∴x 1=-1,x 2=3,∴A (-1,0)、B (3,0),令x=0得y =-32,∴C (0,-32), ………………………………………………………6分 当△AOE∽△BOC时,OBOA OCOE =,则OE=21,……………………………………………………7分 当△AOE∽△COB时,OCOA OBOE =, 则OE=2,………………………………………………………8分∴点E 的坐标为(0,21)或(0,2) ……………………………………………………………9分。