水力喷射器的流动特性计算及其设计
- 格式:doc
- 大小:14.00 KB
- 文档页数:4
水喷射器设计计算实例例:佳木斯市XXX 小学,供热面积为1867平方米,热指标为60W ,供热负荷为112560W 。
一次水供水温度为95 0C ,回水温度为60 0C 。
用户二次水供水温度为71.6 0C ,回水为55 0C ,用户系统压力损失为△P 为2000Kg/m 2试设计一台用户入口水喷射器。
1、 根据已知条件计算混水系数:0gg hμT -T =T -Tμ:混水系数T 0:一次水供水温度 Tg 用户二次水供水温度 T h 用户二次水回水温度μ= 9571.671.655-=-μ=1.42、计算水喷射器最佳截面比:F 2/ F 24b b ac-±-F 2: 混合室截面积M 2F 0: 喷口截面积M 2a= 0.975b=-[0.975+1.19×(1+U )2-0.78 U 2]=[0.975+1.19×(1+1.4)2-0.78×1.42] =-6.3C=1.19(1+U )2=1.19(1+1.4)2=6.85F 3/ F 0= 26.3(6.3)40.975 6.86±-⨯⨯ 5.073、计算喷管出口工作流体应有的压降△P g : 用户系统内部压力损失 Kg/m 20200.88gF F ∆P =⨯∆P △P 0:工作水流经喷管的压力损失 Kg/m 25.070.882000∆P =⨯020005.070.88∆P =⨯△P 0=11522 Kg/m 2△P 0=1.15 Kg / C m 24、计算工作水流量 0 3.64.186QG =⨯∆TG 0:工作水流量 Kg /hQ :供热负荷 W Q=1867×60=101220W△T :工作水温差 0C △T=95-60=35 0CG 0 =3.610122024874.18635⨯=⨯K g /h=0.69 Kg /s5、计算喷管出口截面积F 012GV g ϕ⨯∆P 1ϕ:工作水流速度系数 1ϕ=0.95V 0:工作水流比容 Kg/m 3g :重力加加速度m /s 2F 0=29.80.690.0010.9511522⨯⨯= 4.8×10-5m26、计算喷管出出口直径D 0=1.13 0F 54.810-⨯7、计算混合室截面积25.07F F = 255.074.810F -=⨯ F 2=4.8×10-5×5.07=2.4×10-5 m 28、计算混合室截直径D 23F 42.410-⨯9、计算混合室截长度L 2=(6—10) D 3=8 D 3=8×17.6=140 mm10、 计算喷管出口与混合室入口轴向距离L K =(1—1.5)D 2=1.2 D 2=1.2×17.6=21 mmL K :计算喷管出口与混合室入口轴向距离 mm11、 计算扩散管出出口截面积()03331u G V F W +=F 3: 扩散管出出口截面积 m 3V 3: 混合水比容 Kg/m 3w 3:混合水流流速 m /s w 3取1 m /s()31 1.40.690.0011F +⨯⨯==1.6×10-3m 312、计算扩散管出口直径D 3=1.13 3F 31.610-⨯5×10-2=45.2 mm12、 计算扩散管长度3232g D D L t θ-=⨯θ: 扩散角 θ取40345.217.620.6993L -=⨯ =197.3 mm13、 计算水喷射泵特性方程002g F F ∆P =∆P ×()02202021.750.71.071F F F F μμ-⎡⎤+-+⎢⎥⎣⎦2F F =5.0702F F =10.1975.07= 020F F -= 20020.1970.24510.1971F F F F ==--g∆P ∆P =0.197()221.750.70.245 1.070.1971μμ⎡⎤+⨯-⨯+⎣⎦g ∆P ∆P =0.345+0.0338()220.04151μμ-+当 1.4μ=时:g ∆P ∆P =0.345+0.0338×1.4()220.04151 1.4-+g ∆P ∆P =0.17214、 水喷射泵特性曲线g∆P ∆P = ()f μμ0.5 1 1.42 2.5 P G /△P 00.2610.213 0.1730.1080.051水喷射器特性曲线0.10.20.30.40.50.511.52 2.5u10.34515、 混水系数与用户供水温度关系Tg=01hT T μμ+=+μ0.5 1 1.4 2 2.5 Tg81.6 75 71.668.366.4水喷射器混水系数与用户供水温度曲线01020304050607080901000.511.422.5混水系数用户供水温度折线图 2详情请百度芬尼克兹。
喷射泵计算公式
喷射泵(也称为喷射器或蒸汽喷射泵)的设计和计算通常涉及多个参数和公式,以下是一些基本的计算公式和设计考虑因素:
1.工作原理:
喷射泵利用高压流体(如蒸汽)在喷嘴处加速并减压,产生真空以吸入低压流体或气体。
吸入流体与工作流体混合后,在扩散器中速度降低、压力升高,并最终排出。
2.主要设计参数及计算关系:
喉部面积比(Ae/Ad):喷嘴喉部面积与扩散器喉部面积之比,影响混合效率和抽吸能力。
膨胀比(ER):工作流体在喷嘴出口处的速度动能与其在入口处的压力能之比,即ER=v²/(2·γ·ΔP),其中v是喷嘴出口速度,γ是工作流体的比热比,ΔP是工作蒸汽前后压差。
压缩比(CR):喷射泵进口处的绝对压力与混合室出口处的绝对压力之比。
混合室长度和直径:影响混合效率和性能稳定性的关键几何尺寸。
工作蒸汽消耗量:根据所需的抽气能力和膨胀比计算得到。
3.计算实例:
工作蒸汽流量Qs的计算可能基于能量守恒定律,通过已知的入口和出口条件以及理想气体方程来估算。
抽吸能力(如抽气速率Qa或抽吸压力)可以根据经验公式或者更为详细的两相流动模型进行计算。
实际工程应用中,喷射泵的设计需要综合运用上述原理并通过实验数据校核。
由于设计过程相当复杂且受到许多变量的影响,通常会使用专门的软件或详细的设计手册来进行精确计算。
书山有路勤为径,学海无涯苦作舟一种水喷射泵的简易计算方法本文详细地介绍了水喷射泵性能试验装置的系统根据试验数据的综合,得出能实际计算水喷射泵性能的一些相关的公式。
为了计算喷射泵的性能,应首先给出已知条件:即工作介质水的压力Pp及其温度tp 吸入压力PH,被抽吸的介质空气的质量流量GH,喷射泵出口断面相对排水井内水平面的标高h 及喷射泵的几何参数f3/f1 (式中f1 和f3 为喷咀出口断面积与混合室圆柱段入口断面积)。
喷咀出口直径d1,混合室圆柱段入口直径d3,因此f3/f1= d32/d12 。
水喷射泵的工作原理如水喷射泵的结构示意从几个计算方案可找到最佳的方案。
其计算方法是在试验数据的基础上得出的。
其试验装置的系统关于水喷射泵的计算方法,早在1914 年,由C. Pfleiderer 学者提出来的。
用能量守恒定律给出水空气混合物的一维流动模型。
其能量损失用能量损失系数来表达。
实际上确定它很困难,可靠性较差。
故人们多从实际着手研究。
前苏联学者Л.Д.БЕРМАН教授在上世纪60 年代作过很多实验研究。
并综合试验结果,给出可用的计算方法。
我们在1993 年为抚顺矿务局暧气厂研制35 t/h 热水锅炉真空除氧设备时也曾研制过水喷射泵系统。
当然在确定方案时还可以利用双喷射器,一个工作,一个备用。
也有用四个喷咀或四个扩散器的。
对于水喷射泵我国于2003 年制订了《水喷射真空泵》行业标准。
该标准规定了水喷射真空泵的型式与基本参数、技术要求及试验方法、检验规则、标志、包装和运输。
该标准适用于压力为0.20 MPa~0.60 MPa,抽气量32 m3/h~2000 m3/h 的水喷射真空泵,即工作介质为水、被抽介质为空气或以不凝结性气体为主,凝。
液体喷射的流动力学分析液体喷射是指将液体通过喷嘴或喷枪等设备以一定速度喷射出来的过程。
这种现象在日常生活中随处可见,例如洗车喷水枪、水泵喷射、水柱射击等。
液体喷射的流动力学是对液体喷射行为进行研究,以了解其流动特性及力学原理,对于工程实践以及相关领域的研究具有重要意义。
一、背景介绍液体喷射的流动力学分析主要集中在以下几个方面:液体喷射的速度、喷头形状和尺寸对喷射性能的影响、液体在喷射过程中的流动特性以及喷射后液体的分布和扩散等。
液体喷射的流动力学分析形成了一整套可行的理论模型和计算方法,可以帮助人们更好地理解和掌握液体喷射现象。
二、液体喷射速度对喷射性能的影响液体喷射的速度是影响喷射性能的重要因素之一。
速度过高会造成喷射不稳定、液滴断裂、溅射等问题,速度过低则影响液体喷射的距离和效果。
因此,在实际应用中需要合理选择液体喷射的速度,以达到最佳的喷射效果。
三、喷头形状和尺寸对喷射性能的影响喷头的形状和尺寸对液体喷射的性能同样具有重要影响。
喷头的不同结构和孔径大小会导致液体的流速和流量的变化,从而影响喷射的范围和速度。
因此,在设计喷头时需要考虑流体力学原理,选择合理的形状和尺寸,以实现所需的喷射效果。
四、液体在喷射过程中的流动特性液体在喷射过程中的流动特性是液体喷射的关键问题之一。
研究表明,液体的流动是复杂的非定常流动过程,受到多种因素的共同影响。
对于不同粘度和密度的液体,其流动特性也存在差异。
因此,在进行液体喷射流动力学分析时,需要考虑流体的流变性质以及流动的稳定性等因素。
五、喷射后液体的分布和扩散喷射后液体的分布和扩散是液体喷射过程中的另一个重要问题。
由于液体喷射后会受到惯性、重力和表面张力等力的作用,液体在空气中会出现分散、迁移和聚集等现象。
研究分析液体喷射后的分布和扩散行为,有助于优化喷射设备和流体参数的选择,提高喷射效果。
六、总结液体喷射的流动力学分析是一个复杂而有挑战性的领域,涉及流体力学、物理学和工程学等多个学科的知识。
毕业论文(设计)题目名称:井下水力喷射泵喷嘴头的设计与计算题目类型:毕业论文学生姓名:宁伟院 (系):机械工程学院专业班级:机械11101班指导教师:易先中辅导教师:易先中时间: 2015.3.10 至 2015.6.10目录目录 (Ⅰ)长江大学毕业设计(论文)任务书 (Ⅱ)毕业设计开题报告 (Ⅲ)指导教师评审意见 (Ⅳ)评阅教师评语 (Ⅴ)答辩记录及成绩评定 (Ⅵ)井下水力喷射泵喷嘴头的设计与计算....................................... V II 1正文.. (IX)1.1前言 (IX)1.2射流泵研究与应用概述 (IX)1.2.1 射流泵理论发展状况 (X)1.2.2 射流泵水动力学特性 (XII)1.2.3射流泵的最优参数 (XV)1.2.4 湍流模式理论...................................................................................................... X VI1.2.5 射流泵研究存在的问题 (XVIII)1.3论文研究的主要内容 (XIX)2 射流泵基本特性研究 (XIX)2.1射流泵的工作原理及基本特性参数 (XIX)2.1.1射流泵的结构及工作原理............................................................................... X IX2.1.2射流泵基本特征指数......................................................................................... X XI2.2射流泵的基本特性方程.......................................... X XIV2.2.1特性方程理论研究 (XXIV)2.2.2 射流泵的效率......................................................................... 错误!未定义书签。
自动喷水灭火系统支管特性系数水力计算法摘要鉴于目前常用的自动喷水灭火系统特性系数水力计算法所存在的缺陷,在理论推导了配水支管起端水压与同支管末端喷头出流量关系的基础上,提出了支管特性系数水力计算法,并介绍了利用EXCEL软件简化计算的方法。
关键词自动喷水灭火系统;支管特性系数水力计算法;EXCELHydraulic Calculation Method on Range Pipe Characteristic Coefficient for Fire Protection SprinklerSystemAbstract:Due to a defect in the common hydraulic calculation method of fire protection sprinkler system on characteristic coefficient,hydrauliccalculation method on range pipe characteristic coefficient is put forward basedon theoretical deduction on relationship between pressure at starting point of arange pipe and nozzle flow at the end of the pipe,also by using software ofEXCEL ways are introduced to simplify calculation.Key words:Fire Protection Sprinkler System;Hydraulic Calculation Method on Range Pipe Characteristic Coefficient;EXCEL1 问题的提出便捷准确、便于设计人员应用的自动喷水灭火系统的水力计算方法,对于提高设计质量、保证系统在火灾时有效运行具有重要意义。
水力喷射器的流动特性计算及其设计
流动特性计算超低位高真空水力喷射器水力喷射器是具有抽真空、冷凝、排水为一体的重要有效能转换的装置,是真空浓缩系统中重要的设备。
它是利用一定压力的水流通过对称均布成一定倾斜度的喷嘴喷出,聚合在混合室喉部的焦点上,由于喷射水流速度很高,于是在其周围形成负压,使喷射器内产生真空并抽吸空气与二次蒸汽。
由于二次蒸汽与喷射水流直接接触,进行热交换,绝大部分的蒸汽凝结成水,极少量未被冷凝的蒸汽与不凝结的气体与高速喷射的水流互相摩擦、混合与挤压,通过扩散管被排除,使喷射器内形成更高的真空。
多喷嘴水力聚焦喉部的集束度是其抵抗外压与封水能力,进而保证较高负压的关键。
目前喷射器厂家的产品性能和实际应用,均要求该设备安装高度4、5米以上,且排水尾管长3米以上,如果直连上冷却塔装置,安装高度达7、5 米以上,这对单层建筑使用极为不便,独立安装则需搭建较高铁架,安装及维修均很不利。
就其原因是喷射器的多喷嘴水力抵抗外大气压的能力较低,必须借助安装的高位差,使下水管产生一定的抽水效应,帮助喷射器能在较高的真空状态(-0、085MPa~-0、092MPa)下正常工作,否则将会倒进水而使真空破坏。
以下就喷射器的普遍水力特性进行计算,并提出能安装高度1、5米左右,若不用循环水泵,直连冷却塔装置而安装高度只需不到4 米的解决方案。
1 喷射器排水尾管的下水能力排水尾
管下水能力是指混合室喉管直径确定后,多喷嘴打出的水通过喉部的顺畅程度,即通过流量Q所需要的最小喉管直径d。
喉径过小则下水能力不足,过大则喷射器水力抵抗外大气压的能力大为下降。
喷射器射流集束度即聚焦好坏与喉径密切相关,对一台制成的喷射器,其抵抗外压的能力是确定的。
1、1 喷射器下水过程高速喷射的水流形成的负压会抽吸周围大量的空气,从而使射流夹带空气冲向集水混合室的“喇叭”入口端,形成大量的白水泡泡和剧烈的水流旋滚区,这是水力机械能损失最大的地方,如果水流不能及时下行,旋滚区高度h会上升,此时能量损失更大。
旋滚区水流借助重力和喷射水压挤向集水混合室的喉部,再从扩散管排出。
喷射水流股由于水力特性,都会有一个圆心张角,即使设计加工时喷嘴的水力焦点完全重合,也会因此形成喷射束环D0比设计时大不少,D0值与喷嘴内部加工精度和流线性能密切相关、图(1-1)喷射器水力特性分析示意图1、2 喷射器水力损失能喷射器水流在高速射向喉部混合室时,由于吸入大量空气形成一定高度h的剧烈旋滚区,这是水力能损失最大的地方。
该旋滚区水流特性类似于管道流动突然扩大时的旋滚区,借助这种水力相似原则确定喷射器水力损失能可表示如下:
式中,d 喷射束环直径;v 单位时间扩散过气膜的蒸汽摩尔数(mol/s) Kp,T —以压差(MPa)为动力的传质系数,p为气相主体的压强,p*为一定温度下液相平衡分气压,可查表。
在一定传质条件下,该传质系数为常数。
A -气液接触的液相总吸
收面积(m2)、对喷射水柱的液相吸收面积A0,由于喷射水的圆心张角的影响,可近似认为其是喷射水圆台柱的侧面积的倍,即(m2)式中,面积系数1、5~2、0,r0-喷嘴半径(m);Lh-喷射水柱长(m); =0、3~0、5,tan0、0052~0、0087,对N个喷嘴形成水流柱的吸收面积可计算如下:喷嘴流速,流速系数=0、96,有Ap= ,得(m)于是,液相总吸收面积(3-3)(m2)最后,喷射水可吸收的最大蒸汽量为:= (mol/s)(3-4)公式(3-4)的意义是在喷射器工作条件确定情况下,由已知的蒸发量求取传质系数Kp,T,进而在其它喷射器设计时根据情况,确定喷射器水柱长度Lh,即喷射器的高度尺寸。
如对一个确定的喷射器和工作条件,蒸发量dn/dt =1200kg/h=
18、5mol/s,Q=0、0139m3/s,N=7,Lh=0、8m,v=Q/NAP =0、0139/(5、510-4)=
25、3m/s,p-p* =0、008-0、0035MPa(27℃水饱和蒸汽压)=0、0045MPa,可求得传质系数Kp,T=8、32103(mol/m2MPas)4 喷射器两个真空现象的解释4、1 进料好后开蒸汽时真空下降,过后迅速提升的现象进完料后真空通常达到-0、08MPa以上,但开蒸汽时真空会较快下降达-0、06MPa左右,此后会慢慢回升,待浓缩器内料液即将沸腾时迅速提升。
这种现象是喷射器射流吸收气体的性质决定,当开蒸汽时,逐渐产生的蒸气驱赶浓缩器内的空气等不凝性气体,此时喷射器内的真空度仍然很高,但空气等不凝性气体难被喷射水流吸收、夹带,这时气体扩散为液膜控制,以致浓
缩器内真空较快下降;待被赶挤至喷射器内的空气等慢慢被喷射水流夹带、挤压至喉管并几乎完全排出后,接着的水蒸气迅速被喷射水吸收,此时浓缩器内的真空就被迅速提升。
4、2 料液沸腾时真空度更高而不会破坏并进水的现象浓缩器内料液沸腾蒸发时形成的水蒸气以高速u在导汽盘的导向下飞向喷射水流,并凝结成一定的水流量q,该水流具有的动量与喷射水流的动量共同作用,按喷射器抵抗外压的方程(2-3),相当于多一股水流动量作用,所以喷射器内能具有更高的真空度,喉管打出的水更有力,抵抗外压的能力也更强。