第四章-木材分析
- 格式:ppt
- 大小:4.94 MB
- 文档页数:111
木材检验和试验管理制度范文第一章总则第一条为了规范木材检验和试验工作,保障产品质量,提高企业竞争力,制定本制度。
第二条本制度适用于所有涉及木材检验和试验的企事业单位。
第三条木材检验和试验工作应严格按照相关法律法规和规范要求进行。
第二章木材检验第四条木材检验应按照国家标准进行,确保产品质量。
检验项目包括但不限于木材种类、尺寸、含水率、强度等。
第五条木材检验应由经过培训并取得相关资格证书的专业人员进行。
第六条木材检验应在检验环境符合标准要求的检验室内进行,确保检验结果准确可靠。
第七条如果木材未通过检验,应采取相应措施,如修复、退回或重新采购等。
第八条木材检验结果应进行记录并保存,以备后续查阅,并定期进行数据汇总和分析。
第三章木材试验第九条木材试验是为了研究木材的性能和特点,以指导生产和销售。
第十条木材试验应选择合适的木材样本进行试验,并进行标准化处理。
第十一条木材试验应严格按照试验方法要求进行,确保试验结果准确可靠。
第十二条木材试验应由经过培训并取得相关资格证书的专业人员进行。
第十三条木材试验结果应进行记录并保存,以备后续查阅,并定期进行数据汇总和分析。
第四章木材检验和试验管理第十四条木材检验和试验工作应有相应的管理制度和操作流程。
第十五条木材检验和试验应严格按照相关文件和标准要求进行。
第十六条木材检验和试验结果应及时报告,以便及时采取措施。
第十七条木材检验和试验工作应定期进行质量评估,确保检验和试验结果的准确可靠。
第十八条木材检验和试验人员应定期参加培训,不断提高专业技能和知识水平。
第五章附则第十九条对于违反本制度和相关法律法规的行为,应给予相应的纪律处分和经济处罚。
第二十条本制度的解释权归企事业单位的主管部门所有。
第二十一条本制度自发布之日起执行,以后如有修订,应经主管部门批准方可生效。
以上为木材检验和试验管理制度范文,供参考使用。
实际使用时需要根据具体情况进行修改和完善。
第四章木材的微观构造The Minute Structure of Wood针叶树材第一节针叶树材的微观构造一、轴向管胞t r a c h e i d(1)排列:横切面上管胞沿径向排列比较整齐,因它们是起源于同一形成层纺锤形原始细胞。
2、管胞壁上的纹孔⏹纹孔的分布:早材管胞径面壁上很多,主要在管胞两端,通常1列或2列;弦面壁上少或无(与晚材交界处有)。
晚材管胞径面壁与弦面壁上都有,多为一列,纹孔内口为透镜形,但是弦面壁上纹孔稀少。
⏹纹孔的排列、大小和形状:胞壁上多为单行排列;或互列及对列(见图4-9)。
常见纹孔呈圆形,但有特殊纹孔(见图)。
管胞上的具缘纹孔图4-9对列纹孔与互列纹孔特种纹孔雪松型3、螺纹加厚sprial thickening管胞壁上的螺纹加厚螺纹加厚与螺纹裂隙的不同⏹在应压木中,有些管胞壁上具有一种贯穿胞壁的螺纹裂隙,称为螺纹裂隙.⏹螺纹加厚仅限于细胞壁内层,螺纹裂隙往往穿透次生壁而至复合胞间层;同时倾斜度也大,裂纹的相互距离不等.螺纹裂隙常发生在松、雪松、侧柏等属的木材.4、眉条crassulae5.索状管胞和树脂管胞(特种细胞)(1)索状管胞s t r a n d t r a c h e i d:是从纺锤形原始细胞分生后的细胞保持原有的形态(未分化成正常的管胞),而只是从断面分裂,形成多个短细胞。
这种短细胞就叫索状管胞。
由于它是轴向成串,又称其为串行管胞。
常见于树脂道附近或生长轮的外围。
⏹其特点:形体短,长矩形,细胞径壁和两端壁都有具缘纹孔,腔内不含树脂。
(2)树脂管胞resinous tracheid⏹树脂沉积在管胞的腔中,常位于心材部位。
二、木射线⏹体积约占7%。
⏹射线细胞(r a y c e l l)——构成木射线的每个单独细胞。
⏹木射线(w o o d r a y)——由多数射线细胞相互连续聚合而成的组织。
1、木射线的种类(1)单列木射线:(2)纺锤形木射线:2、木射线的组成(1)射线管胞:在松科某些属(松、云杉、落叶松、铁杉、雪松、黄杉等属)中有射线管胞(2)射线薄壁细胞射线管胞的特征射线管胞(r a y t r a c h e i d)——木射线中的横向管胞.a.形体与射线薄壁细胞大致类似,多数较不规则,长度约为轴向管胞的1/10;b.具缘纹孔,少而小;c.胞腔不含树脂;d.多数位于射线的上边缘,成1~2列;e.内壁平滑或有锯齿状加厚。
木材学笔记:(有整理的一定要会,其他的还要自己结合书和笔记)第一章:木材的宏观构造与识别1、树木生长是高生长(顶端生长、初生长)和直径生长(次生长、侧向生长)的共同作用结果。
树木的生长包括高生长和直径生长。
树木中木质部的绝大部分是由直径生长形成,它是形成层原始细胞分生的结果。
所以木材的形成主要经过三个重要过程:形成层母细胞的分裂形成新(子)细胞;新生细胞和组织充分分化和成熟;成熟细胞的蓄积。
2、形成层原始细胞分为:1)射线原始细胞-分生出木射线和韧皮射线; 2)纺锤形原始细胞-分生出导管、管胞、木纤维等。
3心边材对材性和加工工艺的影响心边材在解剖构造上变化有限,在含水率相同时,心材由于浸渗物质较多,有时比边材材色深、重量略高(5%以上)、心材略硬、重、质脆,由于边材含有适于菌虫生长的养料故而招致腐朽、虫蛀。
心材浸渗物对菌虫有毒,故键全心材较边材耐久。
心材物质沉积在胞腔对气体和液体的渗透有不良影响,防腐改性等影响药液的渗透,心边材颜色的差异是细木工镶嵌工艺的很好材料。
但对胶合板制造因材色不一,会影响板面外观,对造纸纤维工业来说,需增加漂白工艺,否则会影响产品表观质量。
4、早晚材比较(1)构造上①早材在年轮内侧,生长初期形成,颜色浅,晚材则相反。
②早材细胞腔大壁薄,长度略短于晚材,宽度大于晚材。
如:水曲柳、柞木的早材导管的细胞腔肉眼下都能看见。
(2)材性上①早材较松软,密度小,晚材较致密,硬重,密度大。
②早材强度小耐磨性差,晚材强度大耐磨性好。
③早材横向干缩小,晚材横向干缩大。
5、阔叶材管孔的排列及分布:(1)环孔材(2)散孔材(3)半环孔材或半散孔材(4)辐射孔材(5)切线孔材(6)交叉孔材(或称花样孔材)6、阔叶材管孔的组合(1) 单管孔(2) 复管孔(3) 管孔链(4) 管孔团7、环孔材晚材管孔排列:①星散排列:管孔大多单独,分布均匀或比较均匀,呈星散排列如:水曲柳,橡树。
②径、斜列:管孔沿径向或斜向排列,可进一步区分为:a、单径列:管孔单引向排列、光叶黄、野梧桐。
第8次课授课时间:2006年3月23日(星期四)1、2节第四章木材的微观构造§1. 针叶树材的显微构造三、轴向薄壁组织轴向薄壁组织是由许多长方形或方形的具有单纹孔的轴向薄壁细胞串连起来所组成。
轴向薄壁组织在针叶树材中仅少数科、属具有,平均仅占木材总体积的1.5%左右,在罗汉松科、杉科、柏科中相对含量较多。
3.1 形态特征(看图P45 22—2 百日青P45 22—7百日青P121 59—4 木棉P120 59—1木棉,引导学生归纳特征)薄壁组织:顾名思义其组成细胞的胞壁较薄,细胞短,两端水平,壁上为单纹孔,细胞腔内常含有深色树脂,有时还含有晶体(P3 1—6银杏),在银杏的轴向薄壁细胞和射线薄壁细胞内还含有巨形的晶体——簇晶,为针叶树材中所独有的特征。
在横切面上为方形或长方形,在纵切面上为数个长方形细胞纵向相连成一串,其两端两个细胞的端部尖削。
提问:在横切面上,薄壁细胞与晚材管胞都是长方形或方形,这两者应该如何区分?前者细胞壁薄,常含有树脂,呈深色;而后者不含树脂。
3.2 分类根据轴向薄壁细胞在针叶树材横断面的分布状态,可分为三种类型:(P58图4—9木材学[尹])(1)星散型:轴向薄壁细胞呈不规则状散布在生长轮中,如杉木。
(2)切线型:轴向薄壁细胞3个至数个弦向分布,呈断续切线状,如柏木。
(3)轮界型:轴向薄壁细胞分布在生长轮末缘,如铁杉。
因为针叶树材轴向薄壁组织量少,所以切线型和轮界型都是断续状,只有在显微镜下才可见。
四、树脂道4.1 正常树脂道(1)形态特征:树脂道是由一层具有弹性且分泌树脂能力很强的泌脂细胞环绕而成的孔道。
当树脂道充满树脂时,将泌脂细胞压成扁平状,当割脂和松脂外流时,孔道内压力下降,泌脂细胞就向树脂道内伸展,可能堵塞整个或局部树脂道。
阻碍了松脂的外流,但是也阻碍了木材防腐剂的渗透。
(2)识别上的意义:(树脂道的存在与否及其形态特征对针叶树材的识别是有一定意义的)①泌脂细胞壁的厚薄:松属的泌脂细胞为薄壁,其余5属为厚壁,其中云杉属是厚壁的泌脂细胞与少量的薄壁泌脂细胞共存。
建筑材料》课程教案第一章:建筑材料的概述一、教学目标1. 理解建筑材料的概念和分类。
2. 掌握建筑材料的基本性质和用途。
3. 了解建筑材料的发展趋势和可持续发展。
二、教学内容1. 建筑材料的定义和分类。
2. 建筑材料的基本性质:物理性质、化学性质和力学性质。
3. 建筑材料的用途和选择。
4. 建筑材料的发展趋势和可持续发展。
三、教学方法1. 讲授:讲解建筑材料的基本概念、性质和用途。
2. 案例分析:分析具体的建筑材料实例,让学生更好地理解建筑材料的实际应用。
四、教学评估1. 课堂提问:检查学生对建筑材料概念和分类的理解。
2. 课后作业:要求学生分析某个建筑材料的性质和用途,加深对建筑材料的认识。
第二章:混凝土一、教学目标1. 理解混凝土的组成和制作过程。
2. 掌握混凝土的性质和应用。
3. 了解混凝土的施工技术和质量控制。
二、教学内容1. 混凝土的组成:水泥、砂、石子、水等。
2. 混凝土的制作过程:搅拌、运输、浇筑、养护等。
3. 混凝土的性质:强度、耐久性、工作性等。
4. 混凝土的应用:楼板、柱、墙等结构。
5. 混凝土的施工技术和质量控制:模板、钢筋、混凝土浇筑等。
三、教学方法1. 讲授:讲解混凝土的组成、制作过程和性质。
2. 实验演示:观察混凝土的制作过程和性质实验。
3. 案例分析:分析具体的混凝土结构实例,了解混凝土的应用。
四、教学评估1. 课堂提问:检查学生对混凝土组成的理解。
3. 课后作业:要求学生分析某个混凝土结构的设计和施工,加深对混凝土的认识。
第三章:钢材一、教学目标1. 理解钢材的概念和分类。
2. 掌握钢材的性质和应用。
3. 了解钢材的连接和焊接技术。
二、教学内容1. 钢材的概念和分类:碳素钢、合金钢等。
2. 钢材的性质:强度、塑性、韧性、硬度等。
3. 钢材的应用:梁、柱、钢筋等结构。
4. 钢材的连接:焊接、螺栓连接等。
5. 钢材的焊接技术:焊接方法、焊接材料等。
三、教学方法1. 讲授:讲解钢材的概念、分类和性质。
第四章 木材细胞平周分裂:在弦向纵面,原细胞一分为二,所形成的两个子细胞和原细胞等长,其中的一个仍留在形成层内生长成纺锤形原始细胞,另一个向外则生成为韧皮部细胞,向内则生成为木质部细胞。
平周分裂使树干的直径增加;垂周分裂:在径向两侧产生新的形成层原始细胞,以适应树干直径加大中形成层周长增加的需要。
木材细胞的形成:显微水平上,细胞是构成木材的基本形态单位。
木材细胞的生长发育经历分生、扩大和胞壁加厚等阶段达到成熟,此过程在几周内完成。
树木中木质部大部分是由直径生长形成,是形成层原始细胞分生的结果。
木材细胞壁的超微构造:纤维素为骨架物质,半纤维素为基体物质,木素为结壳物质(硬固物质)。
基本纤丝:一些长短不等的链状纤维素分子(约40根左右)有规则地聚集在一起称为基本纤丝。
微纤丝:由基本纤丝(2-4个)组成一种丝状的微团系统,是木材细胞壁的基本构成单位。
微纤丝间存在约10nm的空隙,木素及半纤维素等物质聚集于此空隙中。
纤丝:由微纤丝集合而成。
微纤丝角:细胞壁中微纤丝排列方向与细胞轴所成的角度。
结晶区:在微纤丝内,纤维素分子链基本平行排列的部分,称为结晶区。
无定形区(非结晶区):微纤丝内结晶区以外的部分。
结晶度: 结晶区的比例(百分数)。
非叠生形成层:多数树种的形成层原始细胞排列不整齐,上下相互交错,不在同一水平面上。
叠生形成层:有些阔叶树种形成层原始细胞排列整齐,从垂直于形成层的方向观察,呈明显的层次。
木材细胞壁的壁层结构:由于化学组成和微纤丝排列方向不同,木材细胞壁在结构上分出层次,在光学显微镜下,通常可将细胞壁分为初生壁(P)、次生壁(S)、以及两细胞间存在的胞间层(ML)。
胞间层:是细胞分裂以后,最早形成的分隔部分,后来就在此层的两侧沉积形成初生壁。
主要由一种无定形、胶体状的果胶物质所组成,在偏光显微镜下呈各向同性。
复合胞间层:通常将相邻细胞间的胞间层和其两侧的初生壁合在一起。
初生壁:是细胞分裂后,在胞间层两侧最早沉积、并随细胞继续增大时所形成的壁层。
一、名称8种黑酸枝中,非洲产两种的市场俗称均往紫檀木靠,美洲产三种因进口到中国时间较迟,而且数量不多,没有特别误导的俗称,东南亚产的三种也没有特别误导的俗称。
卢氏黑黄檀,市场俗称:大叶(紫)檀、马达加斯加黑酸枝。
东非黑黄檀,市场俗称:紫光檀、非洲黑檀。
黑黄檀,市场俗称:黑檀、牛角木。
刀状黑黄檀,市场俗称:缅甸黑酸枝、老挝黑酸枝。
阔叶黄檀,市场俗称:印尼黑酸枝、油酸枝、印度紫花梨。
二、产地(1)刀状黑黄檀。
产自缅甸、印度(2)黑黄檀。
产自云南、缅甸、印度、越南(3)阔叶黄檀。
产自印度、印尼三、识别1.专业识别根据GB/T18107-2000《红木》标;隹识别。
(1)刀状黑黄檀。
散孔材。
生长轮不明显或略明显。
心材新切面紫黑或紫红褐,常带深褐或栗褐色条纹。
管孔在肉眼下略见,弦向直径最大182um,平均118um,数甚少至略少,0~12个/mm²。
轴向薄壁组织较多,在肉眼下明显,主为同心层式波浪形,傍管带状及细线状。
木纤维壁厚。
木射线在肉眼下不见:波痕在放大镜下可见;射线组织同形单列及多列(多数2~3列)。
新切面有酸香气:结构细;纹理颇直;气干密度0.89~1.14g/cm³。
(2)黑黄檀。
散孔材。
生长轮不明显或略明显。
心材新切面紫褐、黑褐或栗褐,常带明显的紫或黑褐色窄条纹。
管孔在肉眼下略见,弦向直径最大275um,平均143um;含黑色树胶:数甚少至略少,1~6个/mm²。
轴向薄壁组织颇明显,主为同心层式窄带状(宽两个至数个细胞)。
木纤维壁甚厚。
木射线在放大镜下明显;波痕亦然;射线组织同形单列及多列(多数2~4列)。
无酸香气或很微弱;结构细,纹理斜或交错;气干密度1.04~1.20g/cm³。
(3)阔叶黄檀。
散孔材。
生长轮不明显或略明显。
心材浅金褐、黑褐、紫褐或深紫红,常有较宽但相距较远的紫黑色条纹,木屑酒精浸出液有明显紫色调。
管孔在肉眼下明显,含树胶;弦向直径最大267um,平均144um;数少至略少,3~17个/mm²。
教学大纲授课专业:木材科学与工程学时数:45学分: 2.5一、课程性质与目的“木材学”是木材科学与工程专业的一门核心课程,属于专业基础课。
通过本课程的学习,让学生认识木材对人们生活和国民经济建设的重要性,了解木材的构造、性质和加工利用三者之间的相互关系和内在联系,熟悉木材宏观构造与微观构造的基本特征,掌握常用木材的识别方法,掌握木材解剖构造分析技术、木材物理力学性能测试技术和木材保护与材性改良处理技术,为后续专业课程学习打下基础,同时培养学生的专业兴趣,使他们树立热爱木材和崇尚自然的科学精神。
二、课程教学内容第一章绪论(课内1学时)知识要点:人类对木材的倚重;木材生态之美;木材主要工业用途;木材的特性。
素质培养:认识木材对人们生活和国民经济发展的重要性,了解木材的主要用途,初步掌握木材的主要特性(优点和缺点),初步培养学生对木材科学知识兴趣。
教学方法:通过实例广泛介绍木材对人类文明发展的作用与贡献,全面分析木材的生态美学特性,让学生自发地感受和认识到木材对人们生活与国民经济发展的重要性,从而激发学生对木材的兴趣、渴求学习和钻研木材科学知识的愿望。
第二章树木生长与木材形成(课内2学时,课外2学时)知识要点:树木三大部位及其作用;树木分生组织;树木高生长与径生长;木材形成层。
素质培养:了解树冠、树干和树根对树木生长的作用;认识树木的各种分生组织及树木生长的机制;认知木材和树皮的形成过程。
教学方法:课内采用照片、图示和动画等方式讲授树木的分生组织以及木材形成的过程;课外观察树木抽芽和树皮(柠檬桉)脱落,增强感性认识。
第三章木材宏观构造(课内6学时,课外8学时)知识要点:木材三切面的概念;木材的心材与边材;树木年轮与生长轮;早材与晚材;管孔;胞间道;木射线;轴向薄壁组织;木材的颜色、气味和纹理;树皮的作用与形貌特征。
素质培养:认识木材的主要宏观特征在三个切面上表现;熟悉木材的各种组织在木材横切面上的基本分布情况,掌握木材纹理和木材结构等概念,为木材宏观识别打下基础。
第四章树的逸事只要你平常对周围的树木稍加注意,就会发现一些司空见惯而从未去深思的现象:比如为什么所有树的树干都是圆形而不是方形的?为什么有些树又高又直,没有什么枝枝蔓蔓呢?为什么有些树心都空了,却还茂密繁盛活得很好?关于这些问题,植物学家都给我们作出了解答。
1.圆形树干的奥秘树干为什么大多是圆柱形的,而不是别的形状呢?让我们来看看圆柱形树干的好处吧!几何学告诉我们,圆的面积比其他任何形状的面积都要大。
因此,如果有同样数量的材料,希望做成容积最大的东西,显然,圆形是最合适的形状了。
其次,圆柱形有最大的支持力。
强有力的主干必须支持住高大的树冠和丰产的果实。
再说,圆柱形结构的树干对防止外来伤害也有许多好处。
树干如果是正方形或是长方形或是圆以外的其他形状,那么,它们必定存在着棱角和平面。
棱角最容易被动物除掉,也极容易被磨擦碰伤。
树木的皮层是输送营养物质的通道,皮层一旦中断,树木就要死亡。
另外,树木是多年生植物,在它的一生中难免要遭到风暴的袭击,由于树干是圆柱形的,所以不管任何方向吹来的大风,很容易沿着圆面的切线方向掠过,受影响的就仅有一小部分了。
一切生物都在进化的道路上前进着,它们躯体的特点总是朝着对环境最有适应性的方向发展。
圆柱形树干也是对环境适应的结果。
2.树木高直无枝的奥秘有些树又高又直,没有纵横的枝条,只在顶上有那么一小段长着树枝和树叶,看上去仿佛在一根电线杆顶上扎了一把伞。
这是怎么一回事呢?原来,树木的生长,首先必须依靠阳光。
然而在一定面积上,阳光能给予的能量是有限制的,就使树木不得不改变它的生长状况,以适应自然环境。
在众树密布的森林里,大量的枝叶既影响通风,又得不到充足的阳光,因而不能给树身制造养料,在消耗了枝叶本身的养料以后,就自然而然地枯死了,掉落了。
这种现象叫作森林的自然整枝。
3.空心老树不死的奥秘常可以看到有些年久的老树,树干是空心的,可枝叶仍旧茂盛。
这种树木为什么还会活呢?这是因为树干空心对树木并不是一种致命伤。