高中学习数学立体几何专题
- 格式:docx
- 大小:222.57 KB
- 文档页数:11
高中数学必修2立体几何考题13.如图所示;正方体ABCD-A1B1C1D1中;M、N分别是A1B1;B1C1的中点.问:1AM和CN是否是异面直线说明理由;2D1B和CC1是否是异面直线说明理由.解析:1由于M、N分别是A1B1和B1C1的中点;可证明MN∥AC;因此AM与CN不是异面直线.2由空间图形可感知D1B和CC1为异面直线的可能性较大;判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法即由条件入手;经过推理、演算、变形等;如第1问;还有假设法;特例法;有时证明两直线异面用直线法较难说明问题;这时可用反证法;即假设两直线共面;由这个假设出发;来推证错误;从而否定假设;则两直线是异面的.解:1不是异面直线.理由如下:∵M、N分别是A1B1、B1C1的中点;∴MN∥A1C1.又∵A1A∥D1D;而D1D綊C1C;∴A1A綊C1C;∴四边形A1ACC1为平行四边形.∴A1A∥AC;得到MN∥AC;∴A、M、N、C在同一个平面内;故AM和CN不是异面直线.2是异面直线.理由如下:假设D1B与CC1在同一个平面CC1D1内;则B∈平面CC1D1;C∈平面CC1D1.∴BC平面CC1D1;这与在正方体中BC⊥平面CC1D1相矛盾;∴假设不成立;故D1B与CC1是异面直线.14.如下图所示;在棱长为1的正方体ABCD-A1B1C1D1中;M为AB的中点;N为BB1的中点;O为面BCC1B1的中心.1过O作一直线与AN交于P;与CM交于Q只写作法;不必证明;2求PQ的长不必证明.解析:1由ON∥AD知;AD与ON确定一个平面α.又O、C、M 三点确定一个平面β如下图所示.∵三个平面α;β和ABCD两两相交;有三条交线OP、CM、DA;其中交线DA与交线CM不平行且共面.∴DA与CM必相交;记交点为Q.∴OQ是α与β的交线.连结OQ与AN交于P;与CM交于Q;故OPQ即为所作的直线.2解三角形APQ可得PQ=错误!.15.如图;在直三棱柱ABC-A1B1C1中;AB=BC=B1B=a;∠ABC=90°;D、E分别为BB1、AC1的中点.2证明:DE为异面直线BB1与AC1的公垂线;3求异面直线BB1与AC1的距离.解析:1由于直三棱柱ABC-A1B1C1中;AA1∥BB1;所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a;∠ABC=90°;所以A1C1=错误!a;tan∠A1AC1=错误!;即异面直线BB1与AC1所成的角的正切值为错误!.2证明:解法一:如图;在矩形ACC1A1中;过点E作AA1的平行线MM1分别交AC、A1C1于点M、M1;连结BM;B1M1;则BB1綊MM1.又D、E分别是BB1、MM1的中点;可得DE綊BM.在直三棱柱ABC-A1B1C1中;由条件AB=BC得BM⊥AC;所以BM⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.解法二:如图;延长C1D、CB交于点F;连结AF;由条件易证D是C1F的中点;B是CF的中点;又E是AC1的中点;所以DE∥AF.在△ACF中;由AB=BC=BF知AF⊥AC.在直三棱柱ABC-A1B1C1中;AA1⊥平面ABC;所以AF⊥AA1;故AF⊥平面ACC1A1;故DE⊥平面ACC1A1;所以DE⊥AC1;DE⊥BB1;即DE为异面直线BB1与AC1的公垂线.3由2知线段DE的长就是异面直线BB1与AC1的距离;由于AB =BC=a;∠ABC=90°;所以DE=错误!a.反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线;两条异面直线的公垂线是惟一的;两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线;可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直;而这一平面与两条异面直线的位置关系是一条直线在平面内;另一条直线与这个平面平行.16.如图所示;在正方体ABCD-A1B1C1D1中;O;M分别是BD1;AA1的中点.1求证:MO是异面直线AA1和BD1的公垂线;3若正方体的棱长为a;求异面直线AA1与BD1的距离.解析:1证明:∵O是BD1的中点;∴O是正方体的中心;∴OA=OA1;又M为AA1的中点;即OM是线段AA1的垂直平分线;故OM⊥AA1.连结MD1、BM;则可得MB=MD1.同理由点O为BD1的中点知MO⊥BD1;即MO是异面直线AA1和BD1的公垂线.2由于AA1∥BB1;所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中;设BB1=1;则BD1=错误!;所以cos∠B1BD1=错误!;故异面直线AA1与BD1所成的角的余弦值等于错误!.3由1知;所求距离即为线段MO的长;由于OA=错误!AC1=错误!a;AM=错误!;且OM⊥AM;所以OM =错误!a.13.如图所示;正方体ABCD-A1B1C1D1中;侧面对角线AB1;BC1上分别有两点E、F;且B1E=C1F;求证:EF∥ABCD.证明:解法一:分别过E、F作EM⊥AB于M;FN⊥BC于N;连结MN.∵BB1⊥平面ABCD;∴BB1⊥AB;BB1⊥BC;∴EM∥BB1;FN∥BB1;∴EM∥FN.又B1E=C1F;∴EM=FN;故四边形MNFE是平行四边形;∴EF∥MN;又MN在平面ABCD中;所以EF∥平面ABCD.解法二:过E作EG∥AB交BB1于G;连结GF;则错误!=错误!;∵B1E=C1F;B1A=C1B;∴错误!=错误!;∴FG∥B1C1∥BC.又EG∩FG=G;AB∩BC=B;∴平面EFG∥平面ABCD;而EF平面EFG;∴EF∥平面ABCD.14.如下图;在四棱锥P-ABCD中;底面ABCD是正方形;侧棱PD⊥底面ABCD;PD=DC.过BD作与P A平行的平面;交侧棱PC于点E;又作DF⊥PB;交PB于点F.1求证:点E是PC的中点;2求证:PB⊥平面EFD.证明:1连结AC;交BD于O;则O为AC的中点;连结EO.∵P A∥平面BDE;平面P AC∩平面BDE=OE;∴P A∥OE.∴点E是PC的中点;2∵PD⊥底面ABCD且DC底面ABCD;∴PD⊥DC;△PDC是等腰直角三角形;而DE是斜边PC的中线;∴DE⊥PC;①又由PD⊥平面ABCD;得PD⊥BC.∵底面ABCD是正方形;CD⊥BC;∴BC⊥平面PDC.而DE平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB平面PBC;∴DE⊥PB;又DF⊥PB且DE∩DF=D;所以PB⊥平面EFD.15.如图;l1、l2是互相垂直的异面直线;MN是它们的公垂线段.点A、B在l1上;C在l2上;AM=MB=MN.1求证AC⊥NB;2若∠ACB=60°;求NB与平面ABC所成角的余弦值.证明:1如图由已知l2⊥MN;l2⊥l1;MN∩l1=M;可得l2⊥平面ABN.由已知MN⊥l1;AM=MB=MN;可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影;∴AC⊥NB.2∵Rt△CNA≌Rt△CNB;∴AC=BC;又已知∠ACB=60°;因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB;∴NC=NA=NB;因此N在平面ABC内的射影H是正三角形ABC 的中心.连结BH;∠NBH为NB与平面ABC所成的角.在Rt△NHB中;cos∠NBH=错误!=错误!=错误!.16.如图;在四面体ABCD中;CB=CD;AD⊥BD;点E、F分别是AB、BD的中点.求证:1直线EF∥平面ACD;2平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系;考查空间想象能力、推理论证能力.证明:1在△ABD中;∵E、F分别是AB、BD的中点;所以EF∥AD.又AD平面ACD;EF平面ACD;∴直线EF∥平面ACD.2在△ABD中;∵AD⊥BD;EF∥AD;∴EF⊥BD.在△BCD中;∵CD=CB;F为BD的中点;∴CF⊥BD.∵EF平面EFC;CF平面EFC;EF与CF交于点F;∴BD⊥平面EFC.又∵BD平面BCD;∴平面EFC⊥平面BCD.13.如图;在四棱锥P-ABCD中;底面ABCD是边长为a的正方形;P A⊥平面ABCD;且P A=2AB.1求证:平面P AC⊥平面PBD;2求二面角B-PC-D的余弦值.解析:1证明:∵P A⊥平面ABCD;∴P A⊥BD.∵ABCD为正方形;∴AC⊥BD.∴BD⊥平面P AC;又BD在平面BPD内;∴平面P AC⊥平面BPD.2在平面BCP内作BN⊥PC;垂足为N;连结DN;∵Rt△PBC≌Rt△PDC;由BN⊥PC得DN⊥PC;∴∠BND为二面角B-PC-D的平面角;在△BND中;BN=DN=错误!a;BD=错误!a;∴cos∠BND=错误!=-错误!.14.如图;已知ABCD-A1B1C1D1是棱长为3的正方体;点E在AA1上;点F在CC1上;G在BB1上;且AE=FC1=B1G=1;H是B1C1的中点.1求证:E、B、F、D1四点共面;2求证:平面A1GH∥平面BED1F.证明:1连结FG.∵AE=B1G=1;∴BG=A1E=2;∴BG綊A1E;∴A1G綊BE.∵C1F綊B1G;∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1;∴四边形A1GFD1是平行四边形.∴A1G綊D1F;∴D1F綊EB;故E、B、F、D1四点共面.2∵H是B1C1的中点;∴B1H=错误!.又B1G=1;∴错误!=错误!.又错误!=错误!;且∠FCB=∠GB1H=90°;∴△B1HG∽△CBF;∴∠B1GH=∠CFB=∠FBG;∴HG∥FB.又由1知A1G∥BE;且HG∩A1G=G;FB∩BE=B;∴平面A1GH∥平面BED1F.15.在三棱锥P-ABC中;P A⊥面ABC;△ABC为正三角形;D、E分别为BC、AC的中点;设AB=P A=2.1求证:平面PBE⊥平面P AC;2如何在BC上找一点F;使AD∥平面PEF;请说明理由;3对于2中的点F;求三棱锥B-PEF的体积.解析:1证明:∵P A⊥面ABC;BE面ABC;∴P A⊥BE.∵△ABC是正三角形;E为AC的中点;∴BE⊥AC;又P A与AC相交;∴BE⊥平面P AC;∴平面PBE⊥平面P AC.2解:取DC的中点F;则点F即为所求.∵E;F分别是AC;DC的中点;∴EF∥AD;又AD平面PEF;EF平面PEF;∴AD∥平面PEF.3解:V B-PEF=V P-BEF=错误!S△BEF·P A=错误!×错误!×错误!×错误!×2=错误!.16.2009·天津;19如图所示;在五面体ABCDEF中;F A⊥平面ABCD;AD∥BC∥FE;AB⊥AD;M为CE的中点;AF=AB=BC=FE=错误!AD.1求异面直线BF与DE所成的角的大小;2求证:平面AMD⊥平面CDE;3求二面角A-CD-E的余弦值.解答:1解:由题设知;BF∥CE;所以∠CED或其补角为异面直线BF与DE所成的角.设P为AD的中点;连结EP;PC.因为FE綊AP;所以F A綊EP.同理;AB綊PC.又F A⊥平面ABCD;所以EP⊥平面ABCD.而PC;AD都在平面ABCD内;故EP⊥PC;EP⊥AD.由AB⊥AD;可得PC⊥AD.设F A=a;则EP=PC=PD=a;CD=DE=EC=错误!a.故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°.2证明:因为DC=DE且M为CE的中点;所以DM⊥CE.连结MP;则MP⊥CE.又MP∩DM=M;故CE⊥平面AMD.而CE平面CDE;所以平面AMD⊥平面CDE.3设Q为CD的中点;连结PQ;EQ.因为CE=DE;所以EQ⊥CD.因为PC=PD;所以PQ⊥CD;故∠EQP为二面角A-CD-E的平面角.由1可得;EP⊥PQ;EQ=错误!a;PQ=错误!a.于是在Rt△EPQ中;cos∠EQP=错误!=错误!.所以二面角A-CD-E的余弦值为错误!.13.2009·重庆如图所示;四棱锥P-ABCD 中;AB⊥AD;AD⊥DC;P A⊥底面ABCD;P A=AD=DC=错误!AB=1;M 为PC的中点;N点在AB上且AN=错误!NB.1求证:MN∥平面P AD;2求直线MN与平面PCB所成的角.解析:1证明:过点M作ME∥CD交PD于E点;连结AE.∵AN=错误!NB;∴AN=错误!AB=错误!DC=EM.又EM∥DC∥AB;∴EM綊AN;∴AEMN为平行四边形;∴MN∥AE;∴MN∥平面P AD.2解:过N点作NQ∥AP交BP于点Q;NF⊥CB于点F.连结QF;过N点作NH⊥QF于H;连结MH;易知QN⊥面ABCD;∴QN⊥BC;而NF⊥BC;∴BC⊥面QNF;∵BC⊥NH;而NH⊥QF;∴NH⊥平面PBC;∴∠NMH为直线MN与平面PCB所成的角.通过计算可得MN=AE=错误!;QN=错误!;NF=错误!错误!;∴NH=错误!=错误!=错误!;∴sin∠NMH=错误!=错误!;∴∠NMH=60°;∴直线MN与平面PCB所成的角为60°.14.2009·广西柳州三模如图所示;已知直平行六面体ABCD-A1B1C1D1中;AD⊥BD;AD=BD=a;E是CC1的中点;A1D⊥BE.1求证:A1D⊥平面BDE;2求二面角B-DE-C的大小.解析:1证明:在直平行六面体ABCD-A1B1C1D1中;∵AA1⊥平面ABCD;∴AA1⊥BD.又∵BD⊥AD;∴BD⊥平面ADD1A1;即BD⊥A1D.又∵A1D⊥BE且BE∩BD=B;∴A1D⊥平面BDE.2解:如图;连B1C;则B1C⊥BE;易证Rt△BCE∽Rt△B1BC;∴错误!=错误!;又∵E为CC1中点;∴BC2=错误!BB错误!.BB1=错误!BC=错误!a.取CD中点M;连结BM;则BM⊥平面CC1D1C;作MN⊥DE于N;连NB;由三垂线定理知:BN⊥DE;则∠BNM是二面角B-DE-C的平面角.在Rt△BDC中;BM=错误!=错误!a;Rt△CED中;易求得MN=错误!a;Rt△BMN中;tan∠BNM=错误!=错误!;则二面角B-DE-C的大小为arctan错误!.15.如图;已知正方体ABCD-A1B1C1D1中;E为AB的中点.1求直线B1C与DE所成的角的余弦值;2求证:平面EB1D⊥平面B1CD;3求二面角E-B1C-D的余弦值.解析:1连结A1D;则由A1D∥B1C知;B1C与DE所成的角即为A1D 与DE所成的角.连结A1E;由正方体ABCD-A1B1C1D1;可设其棱长为a;则A1D=错误!a;A1E=DE=错误!a;∴cos∠A1DE=错误!=错误!.∴直线B1C与DE所成角的余弦值是错误!.2证明取B1C的中点F;B1D的中点G;连结BF;EG;GF.∵CD⊥平面BCC1B1;且BF平面BCC1B1;∴DC⊥BF.又∵BF⊥B1C;CD∩B1C=C;∴BF⊥平面B1CD.又∵GF綊错误!CD;BE綊错误!CD;∴GF綊BE;∴四边形BFGE是平行四边形;∴BF∥GE;∴GE⊥平面B1CD.∵GE平面EB1D;∴平面EB1D⊥平面B1CD.3连结EF.∵CD⊥B1C;GF∥CD;∴GF⊥B1C.又∵GE⊥平面B1CD;∴EF⊥B1C;∴∠EFG是二面角E-B1C-D的平面角.设正方体的棱长为a;则在△EFG中;GF=错误!a;EF=错误!a;∴cos∠EFG=错误!=错误!;∴二面角E-B1C-D的余弦值为错误!.16.2009·全国Ⅱ;18如图所示;直三棱柱ABC-A1B1C1中;AB⊥AC;D、E分别为AA1、B1C的中点;DE⊥平面BCC1.1求证:AB=AC;2设二面角A-BD-C为60°;求B1C与平面BCD所成的角的大小.解析:1证明:取BC中点F;连结EF;则EF綊错误!B1B;从而EF綊DA.连结AF;则ADEF为平行四边形;从而AF∥DE.又DE⊥平面BCC1;故AF⊥平面BCC1;从而AF⊥BC;即AF为BC 的垂直平分线;所以AB=AC.2解:作AG⊥BD;垂足为G;连结CG.由三垂线定理知CG⊥BD;故∠AGC为二面角A-BD-C的平面角.由题设知;∠AGC=60°.设AC=2;则AG=错误!.又AB=2;BC=2错误!;故AF=错误!.由AB·AD =AG·BD得2AD=错误!·错误!;解得AD=错误!;故AD=AF.又AD⊥AF;所以四边形ADEF为正方形.因为BC⊥AF;BC⊥AD;AF∩AD=A;故BC⊥平面DEF;因此平面BCD⊥平面DEF.连结AE、DF;设AE∩DF=H;则EH⊥DF;EH⊥平面BCD.连结CH;则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形;AD=错误!;故EH=1;又EC=错误!B1C=2;所以∠ECH=30°;即B1C与平面BCD所成的角为30°.13.在正四棱柱ABCD-A1B1C1D1中;底面边长为2错误!;侧棱长为4;E、F分别为棱AB、BC的中点.1求证:平面B1EF⊥平面BDD1B1;2求点D1到平面B1EF的距离d.分析:1可先证EF⊥平面BDD1B1.2用几何法或等积法求距离时;可由B1D1∥BD;将点进行转移:D1点到平面B1EF的距离是B点到它的距离的4倍;先求B点到平面B1EF的距离即可.解答:1证明:错误!EF⊥平面BDD1B1平面B1EF⊥平面BDD1B1.2解:解法一:连结EF交BD于G点.∵B1D1=4BG;且B1D1∥BG;∴D1点到平面B1EF的距离是B点到它的距离的4倍.利用等积法可求.由题意可知;EF=错误!AC=2;B1G=错误!.S△B1EF=错误!EF·B1G=错误!×2×错误!=错误!;S△BEF=错误!BE·BF=错误!×错误!×错误!=1.∵VB-B1EF=VB1-BEF;设B到面B1EF的距离为h1;则错误!×错误!×h1=错误!×1×4;∴h1=错误!.∴点D1到平面B1EF的距离为h=4h1=错误!.解法二:如图;在正方形BDD1B1的边BD上取一点G;使BG=错误!BD;连结B1G;过点D1作D1H⊥B1G于H;则D1H即为所求距离.可求得D1H=错误!直接法.14.如图直三棱柱ABC-A1B1C1中;侧棱CC1=2;∠BAC=90°;AB =AC=错误!;M是棱BC的中点;N是CC1中点.求:1二面角B1-AN-M的大小;2C1到平面AMN的距离.解析:1∵∠BAC=90°;AB=AC=错误!;M是棱BC的中点;∴AM⊥BC;BC=2;AM=1.∴AM⊥平面BCC1B1.∴平面AMN⊥平面BCC1B1.作B1H⊥MN于H;HR⊥AN于R;连结B1R;∴B1H⊥平面AMN.又由三垂线定理知;B1R⊥AN.∴∠B1RH是二面角B1-AN-M的平面角.由已知得AN=错误!;MN=错误!;B1M=错误!=B1N;则B1H=错误!;又Rt△AMN∽Rt△HRN;错误!=错误!;∴RH=错误!.∴B 1R =错误!;∴cos ∠B 1RH =错误!=错误!.∴二面角B 1-AN -M 的大小为arccos 错误!.2∵N 是CC 1中点;∴C 1到平面AMN 的距离等于C 到平面AMN 的距离.设C 到平面AMN 的距离为h ;由V C -AMN =V N -AMC得错误!×错误!·MN ·h =错误!×错误!AM ·MC .∴h =错误!.15.2009·北京海淀一模如图所示;四棱锥P -ABCD 中;P A ⊥平面ABCD ;底面ABCD 为直角梯形;且AB ∥CD ;∠BAD =90°;P A =AD =DC =2;AB =4.1求证:BC ⊥PC ;2求PB 与平面P AC 所成的角的正弦值;3求点A 到平面PBC 的距离.解析:1证明:如图;在直角梯形ABCD 中;∵AB ∥CD ;∠BAD =90°;AD =DC =2;∴∠ADC =90°;且AC =2错误!.取AB 的中点E ;连结CE ;由题意可知;四边形ABCD 为正方形;∴AE =CE =2.又∵BE =错误!AB =2.∴CE =错误!AB ;∴△ABC 为等腰直角三角形;∴AC ⊥BC .又∵P A ⊥平面ABCD ;且AC 为PC 在平面ABCD 内的射影; BC 平面ABCD ;由三垂线定理得;BC ⊥PC .2由1可知;BC ⊥PC ;BC ⊥AC ;PC ∩AC =C ;∴BC ⊥平面P AC .PC 是PB 在平面P AC 内的射影;∴∠CPB 是PB 与平面P AC 所成的角.又CB =2错误!;PB 2=P A 2+AB 2=20;PB =2错误!;∴sin ∠CPB =错误!=错误!;即PB 与平面P AC 所成角的正弦值为错误!.3由2可知;BC ⊥平面P AC ;BC 平面PBC ;∴平面PBC ⊥平面P AC .过A 点在平面P AC 内作AF ⊥PC 于F ;∴AF ⊥平面PBC ;∴AF 的长即为点A 到平面PBC 的距离.在直角三角形P AC中; P A=2;AC=2错误!;PC=2错误!;∴AF=错误!.即点A到平面PBC的距离为错误!.16.2009·吉林长春一模如图所示;四棱锥P-ABCD的底面是正方形;P A⊥底面ABCD;P A=2;∠PDA=45°;点E、F分别为棱AB、PD 的中点.1求证:AF∥平面PCE;2求二面角E-PD-C的大小;3求点A到平面PCE的距离.解析:1证明:如图取PC的中点G;连结FG、EG;∴FG为△PCD的中位线;∴FG=错误!CD且FG∥CD.又∵底面四边形ABCD是正方形;E为棱AB的中点;∴AE=错误!CD且AE∥CD;∴AE=FG且AE∥FG.∴四边形AEGF是平行四边形;∴AF∥EG.又EG平面PCE;AF平面PCE;∴AF∥平面PCE.2解:∵P A⊥底面ABCD;∴P A⊥AD;P A⊥CD.又AD⊥CD;P A∩AD=A;∴CD⊥平面P AD.又∵AF平面P AD;∴CD⊥AF.又P A=2;∠PDA=45°;∴P A=AD=2.∵F是PD的中点;∴AF⊥PD.又∵CD∩PD=D;∴AF⊥平面PCD.∵AF∥EG;∴EG⊥平面PCD.又GF⊥PD;连结EF;则∠GFE是二面角E-PD-C的平面角.在Rt△EGF中;EG=AF=错误!;GF=1;∴tan∠GFE=错误!=错误!.∴二面角E-PD-C的大小为arctan错误!.3设A到平面PCE的距离为h;由V A-PCE =V P-ACE;即错误!×错误!PC·EG·h=错误!P A·错误!AE·CB;得h=错误!;∴点A到平面PCE的距离为错误!.13.2009·陕西;18如图所示;在直三棱柱ABC-A1B1C1中;AB=1;AC=AA1=错误!;∠ABC=60°.1求证:AB⊥A1C;2求二面角A-A1C-B的大小.解析:1证明:∵三棱柱ABC-A1B1C1为直三棱柱;∴AB⊥AA1;在△ABC中;AB=1;AC=错误!;∠ABC=60°;由正弦定理得∠ACB=30°;∴∠BAC=90°;即AB⊥AC.∴AB⊥平面ACC1A1;又A1C平面ACC1A1;∴AB⊥A1C.2解:如图;作AD⊥A1C交A1C于D点;连结BD;由三垂线定理知BD⊥A1C;∴∠ADB为二面角A-A1C-B的平面角.在Rt△AA1C中;AD=错误!=错误!=错误!;在Rt△BAD中;tan∠ADB=错误!=错误!;∴∠ADB=arctan错误!;即二面角A-A1C-B的大小为arctan 错误!.14.如图;三棱柱ABC-A1B1C1的底面是边长为a的正三角形;侧面ABB1A1是菱形且垂直于底面;∠A1AB=60°;M是A1B1的中点.1求证:BM⊥AC;2求二面角B-B1C1-A1的正切值;3求三棱锥M-A1CB的体积.解析:1证明:∵ABB1A1是菱形;∠A1AB=60°△A1B1B是正三角形;BM⊥平面A1B1C1.错误!BM⊥AC.错误!BE⊥B1C1;∴∠BEM为所求二面角的平面角;△A1B1C1中;ME=MB1·sin60°=错误!a;Rt△BMB1中;MB=MB1·tan60°=错误!a;∴tan∠BEM=错误!=2;∴所求二面角的正切值是2.3VM-A1CB=错误!VB1-A1CB=错误!VA-A1CB=错误!VA1-ABC=错误!×错误!×错误!a2·错误!a=错误!a3.15.2009·广东汕头一模如图所示;已知△BCD中;∠BCD=90°;BC =CD=1;AB⊥平面BCD;∠ADB=60°;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1.1求证:不论λ为何值;总有EF⊥平面ABC;2若λ=错误!;求三棱锥A-BEF的体积.解析:1证明:∵AB⊥平面BCD;∴AB⊥CD.又∵在△BCD中;∠BCD=90°;∴BC⊥CD.∵又AB∩BC=B;∴CD⊥平面ABC.又∵在△ACD中;E、F分别是AC、AD上的动点;且错误!=错误!=λ0<λ<1;∴不论λ为何值;都有EF∥CD;∴EF⊥平面ABC.2在△BCD中;∠BCD=90°;BC=CD=1;∴BD=错误!.又∵AB⊥平面BCD;∴AB⊥BC;AB⊥BD.又∵在Rt△ABD中;∠ADB=60°;∴AB=BD·tan60°=错误!;由1知EF⊥平面ABC;∴V A-BEF =V F-ABE=错误!S△ABE·EF=错误!×错误!S△ABC·EF=错误!×错误!×1×错误!×错误!=错误!.故三棱锥A-BEF的体积是错误!.16.在四棱锥P-ABCD中;侧面PDC是边长为2的正三角形;且与底面垂直;底面ABCD是面积为2错误!的菱形;∠ADC为菱形的锐角.1求证:P A⊥CD;2求二面角P-AB-D的大小;3求棱锥P-ABCD的侧面积;解析:1证明:如图所示;取CD的中点E;由PE⊥CD;得PE⊥平面ABCD;连结AC、AE.∵AD·CD·sin∠ADC=2错误!;AD=CD=2;∴sin∠ADC=错误!;即∠ADC=60°;∴△ADC为正三角形;∴CD⊥AE.∴CD⊥P A三垂线定理.2解:∵AB∥CD;∴AB⊥P A;AB⊥AE;∴∠P AE为二面角P-AB-D的平面角.在Rt△PEA中;PE=AE;∴∠P AE=45°.即二面角P-AB-D的大小为45°.3分别计算各侧面的面积:∵PD=DA=2;P A=错误!;∴cos∠PDA=错误!;sin∠PDA=错误!.S△PCD=错误!;S△P AB=错误!AB·P A=错误!·2·错误!·错误!=错误!;S△P AD=S△PBC=错误!PD·DA·sin∠PDA=错误!.∴S P=错误!+错误!+错误!.-ABCD侧13.把地球当作半径为R的球;地球上A、B两地都在北纬45°;A、B两点的球面距离是错误!R;A点在东经20°;求B点的位置.解析:如图;求B点的位置即求B点的经度;设B点在东经α;∵A、B两点的球面距离是错误!R.∴∠AOB=错误!;因此三角形AOB是等边三角形;∴AB=R;又∵∠AO1B=α-20°经度差问题转化为在△AO1B中借助AO1=BO1=AO cos45°=错误!R;求出∠AO1B=90°;则α=110°;同理:B点也可在西经70°;即B点在北纬45°东经110°或西经70°.14.在球心同侧有相距9cm的两个平行截面;它们的面积分别为49πcm2和400πcm2;求球的表面积和体积.解析:如图;两平行截面被球大圆所在平面截得的交线分别为AO1、BO2;则AO1∥BO2.若O1、O2分别为两截面圆的圆心;则由等腰三角形性质易知OO1⊥AO1;OO2⊥BO2;设球半径为R;∵πO2B2=49π;∴O2B=7cm;同理O1A=20cm.设OO1=x cm;则OO2=x+9cm.在Rt△OO1A中;R2=x2+202;在Rt△OO2B中;R2=x+92+72;∴x2+202=72+x+92;解得x=15cm.∴R=25cm;∴S球=2500πcm2;V球=错误!πR3=错误!πcm3.15.设A、B、C是半径为1的球面上的三点;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;O为球心;求:1∠AOB、∠BOC的大小;2球心O到截面ABC的距离.解析:1如图;因为球O的半径为1;B、C两点间的球面距离为错误!;点A与B、C两点间的球面距离均为错误!;所以∠BOC=错误!;∠AOB=∠AOC=错误!;2因为BC=1;AC=AB=错误!;所以由余弦定理得cos∠BAC=错误!;sin∠BAC=错误!;设截面圆的圆心为O1;连结AO1;则截面圆的半径r=AO1;由正弦定理得r=错误!=错误!;所以OO1=错误!=错误!.16.如图四棱锥A-BCDE中;AD⊥底面BCDE;AC⊥BC;AE⊥BE.1求证:A、B、C、D、E五点共球;2若∠CBE=90°;CE=错误!;AD=1;求B、D两点的球面距离.解析:1证明:取AB的中点P;连结PE;PC;PD;由题设条件知△AEB、△ADB、△ABC都是直角三角形.故PE=PD=PC=错误!AB=P A=PB.所以A、B、C、D、E五点在同一球面上.2解:由题意知四边形BCDE为矩形;所以BD=CE=错误!;在Rt△ADB中;AB=2;AD=1;∴∠DPB=120°;D、B的球面距离为错误!π.17.本小题满分10分如图;四棱锥S—ABCD的底面是正方形;SA⊥底面ABCD;E是SC上一点.1求证:平面EBD⊥平面SAC;2假设SA=4;AB=2;求点A到平面SBD的距离;解析:1∵正方形ABCD;∴BD⊥AC;又∵SA⊥平面ABCD;∴SA⊥BD;则BD⊥平面SAC;又BD平面BED;∴平面BED⊥平面SAC.2设AC∩BD=O;由三垂线定理得BD⊥SO.AO=错误!AC=错误!错误!AB=错误!·错误!·2=错误!;SA=4;则SO=错误!=错误!=3错误!;S△BSD=错误!BD·SO=错误!·2错误!·3错误!=6.设A到面BSD的距离为h;则V S-ABD=V A-BSD;即错误!S△ABD·SA=错误!S△BSD·h;解得h=错误!;即点A到平面SBD的距离为错误!.18.本小题满分12分如图;正四棱柱ABCD-A1B1C1D1中;AA1=2AB=4;点E在C1C上且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的大小.解析:依题设知AB=2;CE=1;1证明:连结AC交BD于点F;则BD⊥AC.由三垂线定理知;BD⊥A1C.在平面A1CA内;连结EF交A1C于点G;由于错误!=错误!=2错误!;故Rt△A1AC∽Rt△FCE;∠AA1C=∠CFE;∠CFE与∠FCA1互余.于是A1C⊥EF.A1C与平面BED内两条相交直线BD、EF都垂直.所以A1C⊥平面BED.2作GH⊥DE;垂足为H;连结A1H.由三垂线定理知A1H⊥DE;故∠A1HG是二面角A1-DE-B的平面角.EF=错误!=错误!;CG=错误!=错误!.EG=错误!=错误!.错误!=错误!;GH=错误!×错误!=错误!.又A1C=错误!=2错误!;A1G=A1C-CG=错误!;tan∠A1HG=错误!=5错误!.所以二面角A1-DE-B的大小为arctan5错误!.19.本小题满分12分如图;四棱锥S-ABCD的底面是直角梯形;∠ABC=∠BCD=90°;AB=BC=SB=SC=2CD=2;侧面SBC⊥底面ABCD.1由SA的中点E作底面的垂线EH;试确定垂足H的位置;2求二面角E-BC-A的大小.解析:1作SO⊥BC于O;则SO平面SBC;又面SBC⊥底面ABCD;面SBC∩面ABCD=BC;∴SO⊥底面ABCD①又SO平面SAO;∴面SAO⊥底面ABCD;作EH⊥AO;∴EH⊥底面ABCD②即H为垂足;由①②知;EH∥SO;又E为SA的中点;∴H是AO的中点.2过H作HF⊥BC于F;连结EF;由1知EH⊥平面ABCD;∴EH⊥BC;又EH∩HF=H;∴BC⊥平面EFH;∴BC⊥EF;∴∠HFE为面EBC和底面ABCD所成二面角的平面角.在等边三角形SBC中;∵SO⊥BC;∴O为BC中点;又BC=2.∴SO=错误!=错误!;EH=错误!SO=错误!;又HF=错误!AB=1;∴在Rt△EHF中;tan∠HFE=错误!=错误!=错误!;∴∠HFE=arctan错误!.即二面角E-BC-A的大小为arctan错误!.20.本小题满分12分2010·唐山市高三摸底考试如图;在正四棱柱ABCD-A1B1C1D1中;AB=1;AA1=2;N是A1D的中点;M∈BB1;异面直线MN与A1A所成的角为90°.1求证:点M是BB1的中点;2求直线MN与平面ADD1A1所成角的大小;3求二面角A-MN-A1的大小.解析:1取AA1的中点P;连结PM;PN.∵N是A1D的中点;∴AA1⊥PN;又∵AA1⊥MN;MN∩PN=N;∴AA1⊥面PMN.∵PM面PMN;∴AA1⊥PM;∴PM∥AB;∴点M是BB1的中点.2由1知∠PNM即为MN与平面ADD1A1所成的角.在Rt△PMN中;易知PM=1;PN=错误!;∴tan∠PNM=错误!=2;∠PNM=arctan2.故MN与平面ADD1A1所成的角为arctan2.3∵N是A1D的中点;M是BB1的中点;∴A1N=AN;A1M=AM;又MN为公共边;∴△A1MN≌△AMN.在△AMN中;作AG⊥MN交MN于G;连结A1G;则∠A1GA即为二面角A-MN-A1的平面角.在△A1GA中;AA1=2;A1G=GA=错误!;∴cos∠A1GA=错误!=-错误!;∴∠A1GA=arccos-错误!;故二面角A-MN-A1的大小为arccos-错误!.21.2009·安徽;18本小题满分12分如图所示;四棱锥F-ABCD 的底面ABCD是菱形;其对角线AC=2;BD=错误!.AE、CF都与平面ABCD垂直;AE=1;CF=2.1求二面角B-AF-D的大小;2求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.命题意图:本题考查空间位置关系;二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:1解:连接AC、BD交于菱形的中心O;过O作OG⊥AF;G为垂足;连接BG、DG.由BD⊥AC;BD⊥CF得BD⊥平面ACF;故BD⊥AF.于是AF⊥平面BGD;所以BG⊥AF;DG⊥AF;∠BGD为二面角B -AF-D的平面角.由FC⊥AC;FC=AC=2;得∠F AC=错误!;OG=错误!.由OB⊥OG;OB=OD=错误!;得∠BGD=2∠BGO=错误!.2解:连接EB、EC、ED;设直线AF与直线CE相交于点H;则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD.过H作HP⊥平面ABCD;P为垂足.因为EA⊥平面ABCD;FC⊥平面ABCD;所以平面ACEF⊥平面ABCD;从而P∈AC;HP⊥AC.由错误!+错误!=错误!+错误!=1;得HP=错误!.又因为S菱形ABCD=错误!AC·BD=错误!;故四棱锥H-ABCD的体积V=错误!S菱形ABCD·HP=错误!.22.2009·深圳调考一本小题满分12分如图所示;AB为圆O的直径;点E、F在圆O上;AB∥EF;矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2;EF=1.1求证:平面DAF⊥平面CBF;2求直线AB与平面CBF所成角的大小;3当AD的长为何值时;二面角D-FE-B的大小为60°解析:1证明:∵平面ABCD⊥平面ABEF;CB⊥AB;平面ABCD∩平面ABEF=AB;∴CB⊥平面ABEF.∵AF平面ABEF;∴AF⊥CB;又∵AB为圆O的直径;∴AF⊥BF;∴AF⊥平面CBF.∵AF平面DAF;∴平面DAF⊥平面CBF.2解:根据1的证明;有AF⊥平面CBF;∴FB为AB在平面CBF上的射影;因此;∠ABF为直线AB与平面CBF所成的角.∵AB∥EF;∴四边形ABEF为等腰梯形;过点F作FH⊥AB;交AB于H.AB=2;EF=1;则AH=错误!=错误!.在Rt△AFB中;根据射影定理AF2=AH·AB;得AF=1;sin∠ABF=错误!=错误!;∴∠ABF=30°;∴直线AB与平面CBF所成角的大小为30°.3解:过点A作AM⊥EF;交EF的延长线于点M;连结DM.根据1的证明;DA⊥平面ABEF;则DM⊥EF;∴∠DMA为二面角D-FE-B的平面角;∠DMA=60°.在Rt△AFH中;∵AH=错误!;AF=1;∴FH=错误!.又∵四边形AMFH为矩形;∴MA=FH=错误!.∵AD=MA·tan∠DMA=错误!·错误!=错误!.因此;当AD的长为错误!时;二面角D-FE-B的大小为60°.。
高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。
【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。
高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。
专题三立体几何专题【命题趋向】高考对空间想象能力的察看集中表现在立体几何试题上,重视察看空间点、线、面的地址关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多察看看法辨析、地址关系研究、空间几何量的简单计算求解,察看画图、识图、用图的能力;解答题一般以简单几何体为载体,察看直线与直线、直线与平面、平面与平面的地址关系,以及空间几何量的求解问题,综合察看空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力察看的同时,关注对平行、垂直关系的研究,关注对条件或结论不齐全状况下的开放性问题的研究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特色、三视图、直观图,表面积体积的计算,空间点、直线、平面的地址关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题剖析】题型 1 空间几何体的三视图以及面积和体积计算例 1( 2008 高考海南宁夏卷)某几何体的一条棱长为7 ,在该几何体的正视图中,这条棱的投影是长为 6 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为 a 和b的线段,则a b 的最大值为A.22B.23C. 4D.25剖析:想像投影方式,将问题概括到一个详尽的空间几何体中解决.剖析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为m, n, k ,由题意得m2n2k27 ,m2k26n 1 ,1 k2 a , 1m2 b ,因此( a21)(b21)6a2b28,∴ (a b)2a22ab b282ab8 a2b216 a b 4当且仅当 a b 2时取等号.讨论 :本题是课标高考中察看三视图的试题中难度最大的一个,我们经过搬动三个试图把问题概括为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决.例 2 ( 2008 高考山东卷、 2009 年福建省理科数学高考样卷第 3 题)以以下列图是一个几何体的三视图,依照图中数据,可得该几何体的表面积是 A . 9πB . 10πC . 11πD . 12π剖析:想像、还原这个空间几何体的组成,利用相关的计算公式解答. 剖析: 这个空间几何体是由球和圆柱组成的,圆柱的底面半径是 1 3,球的,母线长是 半径是 1,故其表面积是 213212 4 1212,答案 D .讨论:由三视图还原空间几何体的真实形状时要注意 “高平齐、 宽相等、 长对正 ”的规则.例 3(江苏省苏州市 2009 届高三授课调研测试第12 题)已知一个正三棱锥 PABC 的主视图以以下列图,若ACBC3,2PC 6 ,则此正三棱锥的全面积为 _________ .剖析 :正三棱锥是极点在底面上的射影是底面正三角形的中心的三棱锥,依照这个主试图知道,主试图的投影方向是面对着这个正三棱锥的一条侧棱,并且和底面三角形的一条边垂直,这样就知道了这个三棱锥的各个棱长.剖析:这个正三棱锥的底面边长是3、高是 6 ,故底面正三角形的中心到一个极点的距离是233 3 ,故这个正三棱锥的侧棱长是22 3 ,由此知道这个3632正三棱锥的侧面也是边长为 3 的正三角形,故其全面积是43329 3,答案9 3 .4讨论:由空间几何体的一个视图再加上其他条件下给出的问题,对给出的这“一个视图”要仔细鉴识投影方向,这是三视图问题的核心.题型 2 空间点、线、面地址关系的判断42009届高三授课调研测试7m,n是两条不同样样的直线,,为例(江苏苏州市)已知两个不同样样的平面,有以下四个命题:①若 m, n, m n ,则;②若 m //, n //, m n ,则//;③若 m,n //, m n ,则//;④若 m,n //, //,则m n .其中正确的命题是(填上所有正确命题的序号)_______________ .剖析:依照空间线面地址关系的判判断理和性质定理逐个作出判断.剖析:我们借助于长方体模型解决.①中过直线m,n 作平面,能够获得平面,所成的二面角为直二面角,如图(1),故①正确;②的反比方图(2);③的反比方图( 3);④中由m,P可得m,过n 作平面可得n 与交线g 平行,由于m g ,故m n.答案①④.讨论:新课标的教材对峙体几何办理的基本出发点之一就是使用长方体模型,本题就是经过这个模型中供应的空间线面地址关系解决的,在解答立体几何的选择题、填空题时合理地使用这个模型是很有帮助的.例 5(浙江省2009 年高考省教研室第一次抽样测试理科第 5 题)设m, n是两条不同样样的直线,,是两个不同样样的平面,以下命题正确的选项是A .若m n, m, n //,则C.若m, n // , //,则//B.若m n D.若m // , n // , // , 则m // n m //n,m // , n // , 则 //剖析:借助模型、依照线面地址关系的相关定理逐个进行剖析判断.剖析:对于//,结合 m, n // , 则可推得m n.答案C.讨论:从上面几个例子能够看出,这类空间线面地址关系的判断类试题诚然形式上各异,但本质上都是以空间想象、空间线面地址关系的判断和性质定理为目标设计的,主若是察看考生的空间想象能力和对线面地址关系的判断和性质定理掌握的程度.题型 3 空间平行与垂直关系的证明、空间几何体的相关计算(文科解答题的主要题型)例 6.(2009江苏泰州期末 16)以以下列图,在棱长为2的正方体ABCD A1B1C1D1中,E、F 分别为DD1、 DB 的中点.( 1)求证:EF //平面ABC1D1;( 2)求证:EF B1C ;( 3)求三棱锥V B1EFC 的体积.剖析:第一问就是找平行线,最显然的就是EF PBD1;第二问转变成线面垂直进行证明;第三问采用三棱锥的等积变换解决.剖析:( 1)连接BD1,如图,在DD1B 中,E 、F 分别为 D1D , DB 的中点,则EF / /D1BD1 B平面ABC1D1EF / / 平面ABC1D1.EF 平面 ABC1D1(2)B 1C ABB 1C BC 1B 1C 平面 ABC 1D 1 B 1C BD 1EFB 1CAB,B 1C平面 ABC 1D 1BD 1平面 ABC 1D 1EF / /BD 1AB I BC 1B( 3)Q CF平面BDD 1B 1 ,CF 平面 EFB 1 且 CF BF2 ,Q EF1BD 13,B 1FBF 2BB 12( 2)2 226 ,2B 1EB 1 D 12 D 1E 2 12 (2 2)23 ∴ EF 2B 1F 2 B 1E 2即 EFB 190o ,V BEFCV C B EF1 S B EF CF = 11EF B 1F CF = 1 1362 1113 13 23 2.讨论 :这个题目也属于文科解答题的传统题型.空间线面地址关系证明的基本思想是转变,依照线面平行、垂直关系的判断和性质,进行相互之间的转变,如本题第二问是证明线线垂直,但问题不能够只限制在线上,要把相关的线概括到某个平面上(或是把与这些线平行的直线概括到某个平面上,经过证明线面的垂直达到证明线线垂直的目的,但证明线面垂直又得借助于线线垂直,在不断的相互转变中达到最后目的.立体几何中的三棱柱近似于平面几何中的三角形,能够经过 “换极点 ”实行等体积变换,这也是求点面距离的基本方法之一.例 7.(江苏省苏州市 2009 届高三授课调研测试第 17 题) 在四棱锥 P ABCD 中,ABCACD90o , BACCAD60o , PA 平面 ABCD , E 为 PD 的中点, PA2AB 2.( 1)求四棱锥 P ABCD 的体积 V ;( 2)若 F 为 PC 的中点,求证 PC 平面 AEF ; ( 3)求证 CE ∥平面 PAB .剖析 :第一问只要求出底面积和高即可;第二问的线面垂直经过线线垂直进行证明;第三问的线面平行即能够经过证明线线平行、利用线面平行的判判断理解决,也能够经过证明面面平行解决,即经过证明直线CE 所在的一个平面和平面PAB 的平行解决.剖析:( 1)在Rt ABC中, AB1, BAC60o,∴BC3,AC 2.在 Rt ACD 中,AC2, ACD60o,∴ CD 2 3,AD4.∴ S11AC CD1153 .AB BC 1 3 2 2 3ABCD22222则 V15 3 253 .323( 2)∵PA CA , F 为 PC 的中点,∴ AF PC .∵ PA平面 ABCD ,∴ PA CD ,∵ AC CD , PAI AC A,∴ CD平面PAC ,∴ CD PC .∵ E为PD中点, F 为PC中点,∴ EF ∥CD ,则 EF CD,∵ AFI EF F ,∴PC 平面 AEF .( 3)证法一:取 AD中点 M ,连EM,CM.则 EM ∥ PA,∵ EM平面PAB,PA平面PAB ,∴EM ∥平面 PAB .在 Rt ACD 中,CAD 60o,AC AM 2 ,∴ACM 60o.而BAC60o,∴MC ∥ AB.∵ MC平面PAB,AB平面PAB,∴MC ∥平面 PAB .∵EMI MC M ,∴平面 EMC ∥平面 PAB .∵ EC平面 EMC ,∴ EC ∥平面 PAB .证法二:延长DC , AB ,设它们交于点N,连PN.∵NAC DAC60o,AC CD ,∴ C为 ND的中点.∵E为PD中点,∴ EC∥PN.∵ EC平面 PAB , PN平面 PAB ,∴EC ∥平面 PAB .讨论:新课标高考对文科的立体几何与大纲的高考有了诸多的变化.一个方面增加了空间几何体的三视图、表面积和体积计算,拓展了命题空间;另一方面删除了三垂线定理、删除了凸多面体的看法、正多面体的看法与性质、球的性质与球面距离,删除了空间向量,这就给立体几何的试题加了诸多的枷锁,由于这个原因课标高考文科的立体几何解答题一般就是空间几何体的体积和表面积的计算、空间线面地址关系的证明(主若是平行与垂直).题型 4 空间向量在立体几何中的应用(理科立体几何解答题的主要题型)例8 .( 2009 年福建省理科数学高考样卷第18 题)如图,在棱长为 2 的正方体ABCD A1B1C1D1中,E、F分别为 A1D1和 CC1的中点.(1)求证:EF∥平面ACD1;(2)求异面直线EF与AB所成的角的余弦值;(3)在棱BB1上可否存在一点P,使得二面角P AC P的大小为30o ?若存在,求出BP 的长;若不存在,请说明原因.【剖析】解法一:如图分别以DA, DC , DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系D xyz ,由已知得D 0,0,0、A 2,0,0 、 B 2,2,0、 C 0,2,0、 B1 2,2,2、D10,0,2E 1,0,2、、 F0,2,1.( 1)取AD1中点G,则G 1,0,1,uuur uuur1,2, 1 ,CG1, 2,1 ,又 EFuuur uuur由 EF CG ,uuur uuur∴ EF 与CG共线.从而EF∥CG,∵ CG平面 ACD1,EF平面 ACD1,∴EF∥平面 ACD1.uuur0,2,0 ( 2)∵ AB,uuur uuuruuur uuur 4 6cosEF AB,EF, ABuuuruuur2 63|EF | |AB|∴异面直线 EF 与 AB 所成角的余弦值为6 .3( 3)假设满足条件的点P 存在,可设点 P 2,2, t ( 0 t2 ),平面 ACP 的一个法向rx, y, z 量为 n,r uuur uuuruuur2x 2y 0, nAC 0, 0,2, t2,2,0 则 ruuur0. ∵ AP AC ,∴ 2 y tz0,n APr(1,1, 2取 n) .tuuur易知平面 ABC 的一个法向量BB 1 (0,0,2) ,uuur r 30o 或 150o , 依题意知,BB 1, nuuur uur| 4 |34 3 46∴ cos BB 1 , Nt42,即t 2 (22 ) ,解得 t.24t32t 2∵6 (0, 2] ,∴在棱 BB 1 上存在一点 P ,当 BP 的长为 6 时,二面角 P AC B 的3 3大小为 30o .解法二:uuuruuuur uuur(1)同解法一知 EF1,2, 1 , AD 1 2,0,2 ,AC2,2,0 ,uuur uuur 1 uuuur uuur uuur uuuur 共面.又∵ EF平面 ACD 1 ,∴ EF ∥∴ EF AC AD 1 ,∴ EF 、 AC 、 AD 1 2平面 ACD 1 .( 2)、( 3)同解法一.uuuur uuur解法三:易知平面 ACD1的一个法向量是 DB12,2,2 .又∵ EF1,2, 1 ,由uuur uuuurEF DB10 ·,uuur uuuur平面 ACD 1,∴EF∥平面 ACD1.∴ EF DB ,而 EF1( 2)、( 3)同解法一.讨论:本题主要察看直线与直线、直线与平面的地址关系、二面角的看法等基础知识;察看空间想像能力、推理论证能力和研究问题、解决问题的能力.利用空间向量证明线面平行的方法基本上就是本题给出的三种,一是证明直线的方向向量和平面内的一条直线的方向向量共线,二是证明直线的方向向量和平面内的两个不共线的向量共面、依照共面向量定理作出结论;三是证明直线的方向向量与平面的一个法向量垂直.例 9(浙江宁波市2008 学年度第一学期期末理科第20 题)已知几何体A BCED 的三视图以以下列图,其中俯视图和侧视图都是腰长为 4 的等腰直角三角形,正视图为直角梯形.(1)求异面直线DE与AB所成角的余弦值;(2)求二面角A ED B的正弦值;(3)求此几何体的体积V的大小.【剖析】( 1)取EC的中点是 F ,连接 BF ,则BF PDE,∴FBA 或其补角即为异面直线DE与AB所成的角.在BAF中,AB 4 2,BF AF2 5 .∴ cos ABF10 .5∴异面直线 DE 与 AB 所成的角的余弦值为10 .5(2) AC 平面 BCE ,过C 作CG DE 交 DE 于G ,连接 AG .可得 DE 平面 ACG ,从而 AG DE ,∴ AGC 为二面角 A ED B 的平面角.在 RtACG 中, ACG 90o , AC4 ,CG8 5AGC5,∴ tan.52∴ sin 5 .AGC3∴二面角 A EDB 的的正弦值为5 .3(3)V1S BCED AC 16 ,∴几何体的体积 V 为16.3方法二:(坐标法)(1)以 C 为原点,以 CA,CB, CE 所在直线为 x, y, z 轴建立空间直角坐标系.则 A 4,0,0 , B(0,4,0) , D (0,4,2) , E 0,0,4,uuur(0, uuur4, 4,0) , DE4,2), AB (∴ cosuuur uuur 10 DE,AB5∴异面直线 DE 与 AB 所成的角的余弦值为10 .5uuur (4,0,0)( 2)平面 BDE 的一个法向量为 CA ,r设平面 ADE 的一个法向量为 n (x, y, z) ,r uuur r uuur uuur uuur4,2) n AD , n DE , AD( 4,4, 2), DE (0,r uuur r uuur∴ ngAD0, ngDE从而 4 x 4 y 2z 0, 4 y 2z 0 ,r uuur r2令 y 1 ,则 n (2,1,2), cos CA, n3∴二面角 A ED B 的的正弦值为 5 .3(3)V 1S BCED AC16 ,∴几何体的体积V 为16.3讨论:本题察看异面直线所成角的求法、察看二面角的求法和多面体体积的求法.空间向量对解决三类角(异面直线角、线面角、面面角)的计算有必然的优势.对理科考生来说除了要在空间向量解决立体几何问题上达到特别熟练的程度外,不要忽视了传统的方法,有些试题开始部分的证明就没有方法使用空间向量.【专题训练与高考展望】说明:文科以选择题、填空题和解答题前三题为主.理科以选择题、填空题和解答题后三题为主.一、选择题1.如图为一个几何体的三视图,尺寸以以下列图,则该几何体的表面积为(不考虑接触点)()A.63B.18 3 4C.1823D.322.某几何体的三视图以以下列图,依照图中数据,可得该几何体的体积是()A .323B .23 3C .2 23 3D . 3 22 33.已知一个几何体的主视图及左视图均是边长为2 的正三角形, 俯视图是直径为 2的圆,则此几何体的外接球的表面积为( )4B .8A .33C .16D . 32334.一个水平放置的平面图形的斜二测直观图是一个底角为45o ,腰和上底长均为 1的等腰梯形,则这个平面图形的面积是()A .12 B . 12 C . 12D . 222225. 一个盛满水的三棱锥容器 SABC ,不久发现三条侧棱上各有一个小洞D, E,F ,且知SD: DA SE: EBCF :FS2:1 ,若仍用这个容器盛水,则最多可盛原来水的()23193023A .B .C .D .292731276. 点 P 在直径为 2 的球面上,过 P 作两两垂直的三条弦,若其中一条弦长是另一条弦长的2 倍,则这三条弦长之和为最大值是()2703 704156 15A .B .C .D .55557.正方体 ABCD A' B 'C 'D ' 中, AB 的中点为 M ,DD ' 的中点为 N ,异面直线 B 'M 与 CN所成的角是( ) A . 30oB . 90oC . 45oD . 60o.已知异面直线 a 和b 所成的角为o ,P 为空间必然点, 则过点 P 且与 a,b 所成角都是 30o850的直线有且仅有()A . 1条B . 2条C . 3条D . 4条9.以以下列图,四边形ABCD 中, AD / / BC, ADAB, BCD45o , BAD 90 o ,将△ ABD 沿 BD 折起,使平面 ABD 平面 BCD ,组成三棱锥A BCD ,则在三棱锥A BCD 中,以下命题正确的选项是()A .平面 ABD平面 ABC B .平面 ADC 平面 BDC C .平面 ABC平面 BDCD .平面 ADC平面 ABC10.设 x 、 y 、 z 是空间不同样样的直线或平面,对以下四种状况:①x 、 y 、 z 均为直线;② x 、 y 是直线, z 是平面;③ z 是直线, x 、 y 是平面;④ x 、 y 、 z 均为平面.其中使 “x ⊥ z 且 y ⊥ z x ∥ y ”为真命题的是()A . ③④B . ①③C . ②③D . ①②11m 、 n 、 l 两个不重合的平面、 ,有以下命题.已知三条不重合的直线①若 m / / n, n,则 m / / ;②若③若l, m且l Pm,则P;m, m,m P, n P,则P;④若,I m , n, n m ,则 n.中正确的命题个数是()A .1B .2C.3D.412.直线AB与直二面角l的两个面分别交于A, B 两点,且 A, B 都不在棱上,设直线 AB 与平面,所成的角分别为 ,,则的取值范围是()A.(0,)B. 0,C.(, )D.{}2222二、填空题13.在三棱锥P ABC 中, PA PB PC 2,APB BPC CPA30o,一只蚂蚁从 A 点出发沿三棱锥的侧面绕一周,再回到 A 点,则蚂蚁经过的最短行程是.14.周围体的一条棱长为x ,其他各棱长为1V表示成 x 的函数 f x ,,若把周围体的体积则 f x 的增区间为,减区间为.15.如图,是正方体平面张开图,在这个正方体中:①BM 与 ED 平行;②CN 与BE 是异面直线;③ CN与 BM 成60o角;④ DM与 BN 垂直.以上四个说法中,正确说法的序号依次是.16.已知棱长为1的正方体ABCD A1B1C1D1中,E是 A1B1的中点,则直线AE 与平面ABC1D1所成的角的正弦值是.三、解答题17.已知,如图是一个空间几何体的三视图.(1)该空间几何体是如何组成的;(2)画出该几何体的直观图;(3)求该几何体的表面积和体积.18.如图,已知等腰直角三角形RBC ,其中RBC90o,RB BC2.点A, D分别是RB ,RC的中点,现将RAD 沿着边 AD 折起到PAD 地址,使 PA AB ,连接 PB 、PC .( 1)求证:BC PB ;( 2)求二面角A CD P 的平面角的余弦值.19.以以以下列图,在正四棱柱ABCD A1B1C1 D1中,AA11 AB,点E,M分别为2A1B,CC1的中点,过点A1, B, M 三点的平面A1 BMN交 C1D1于点N.( 1)求证:EM P平面A1B1C1D1;( 2)求二面角B A1N B1的正切值;( 3)设截面A1BMN把该正四棱柱截成的两个几何体的体积分别为V1,V2( V1V2),求V1 : V2的值.20.如图,在四棱锥P 直于底面 ABCD ,ABCD 中,底面为直角梯形,AD // BC , BAD 90 ,PA AD AB 2BC 2,M ,N 分别为 PC , PB的中点.PA 垂( 1)求证:PB DM;( 2)求BD 与平面ADMN所成的角;( 3)求截面ADMN的面积.21.如图,正方形ACDE所在的平面与平面ABC 垂直,M 是 CE 和 AD 的交点, AC BC ,且 AC BC.( 1)求证:AM平面EBC;(2)求直线AB与平面EBC所成的角的大小;(3)求二面角A EB C的大小.22.已知斜三棱柱ABC A1B1C1,BCA 90o,AC BC 2 ,A1在底面 ABC 上的射影恰为 AC 的中点 D ,又知BA1AC1.( 1)求证:AC1平面A1BC;(2)求CC1到平面A1AB的距离;( 3)求二面角 A A1B C 的一个三角函数值.【参照答案】1.剖析: C 该几何体是正三棱柱上叠放一个球.故其表面积为31232322241823.422.剖析: B这个空间几何体的是一个底面边长为 3 的正方形、高为 3 的四棱柱,上半部分是一个底面边长为3的正方形、高为 2的四棱锥,故其体积为333 1 3323 32 .33.剖析:C由三视图知该几何体是底面半径为1,高为3 的圆锥,其外接球的直径为4 3 .3 4.剖析: D 如图设直观图为O ' A ' B ' C ',建立以以下列图的坐标系,依照斜二测画法的规则,在原来的平面图形中OCOA ,且 OC 2, BC1,OA 1 22 2 ,故12其面积为11 2 22 2225.剖析: D当平面 EFD 处于水平川址时,容器盛水最多1VF SDES 3 VC SAB1S3SDEh 11SD SE sin DSE h 13 SD SE h 1 2 2 14SABh 21SA SB sin ASB h 2SA SB h 23 3 3 273最多可盛原来水得 14 23 .27 276.剖析: A 设三边长为x,2 x, y ,则 5x 2 y 24 ,4 4 2 70 .令 x cos , y 2sin , 3x y 3 cos 2sin5557.剖析: B 如图,取 AA '的中点 P ,连接 BP ,在正方形 ABB' A'中易证 BP B'M .8B 过点 P 作 a Pa , b Pb ,若 P a ,则取 a 为 a ,若 P b ,则取 b 为 b .这时.剖析: a, 订交于P 点,它们的两组对顶角分别为50o 和 130o. 记 a ,b 所确定的平面为 ,b那么在平面 内,不存在与 a , b 都成 30o 的直线. 过点 P 与 a , b 都成 30o角的直线必在平面外,这直线在平面的射影是 a ,b 所成对顶角的均分线. 其中射影是 50o对顶角均分线的直线有两条l 和 l ,射影是 130o 对顶角均分线的直线不存在.故答案选B .9.剖析:D 如图,在平面图形中 CDBD ,折起后依旧这样, 由于平面 ABD 平面 BCD ,故 CD平面 ABDCD AB,又 AB AD,故 AB平面 ADC,因此平面 ADC,平面 ABC .10.剖析: C x 、 y 、 z 均为直线,显然不能够;由于垂直于同一个平面的两条直线平行,故②, 能够使 “x ⊥ z 且 y ⊥ z x ∥ y ”为真命题; 又由于垂直于同一条直线的两个平面 平行,故③能够使 “ ⊥ z 且 y⊥ z x ∥ y”为真命题;当 x 、 y、 z 均为平面时,也x不能够使 “x ⊥ z 且 y ⊥zx ∥ y ”为真命题.11.剖析: B ①中有 m的可能; l Pm 且 l,可得 m,又 m ,故 P,②正确;③中当m Pn 时,结论不能够立;④就是面面垂直的性质定理,④正确.故两个正确的.12.剖析: B如图,在Rt ADC 中,AD AB cos , AC AB sin,而AD AC ,即cos sin cos,故,即,而当AB l时,.222213.剖析:22将如图⑴三棱锥P ABC ,沿棱PA 张开得图⑵,蚂蚁经过的最短行程应是AA ,又∵APB BPC CPA30o,APA '90o,∴AA=2 2.66, f ( x)x 3 x2,利用不等式或导数即可判断.14.剖析: 0,,342215.剖析:③④如图,逐个判断即可.16.剖析:10取 CD 的中点 F ,连接 EF 交平面ABC1D1于 O ,连 AO .由已知正方体,5易知 EO平面 ABC1 D1,因此EAO为所求.在 Rt EOA 中,EO1EF1A1 D 2 ,222AE(1)2125, sin EAOEO 10.因此直线 AE 与平面 ABC 1 D 1 所成的角22AE5的正弦值为10 .517.剖析:(1)这个空间几何体的下半部分是一个底面边长为上半部分是一个底面边长为2 的正方形高为 1的四棱锥.( 2)依照斜二测的规则获得其直观图,如图.2 的正方形高为1的长方体,( 3)由题意可知, 该几何体是由长方体 ABCD A'B 'C 'D ' 与正四棱锥 PA'B'C'D '组成的简单几何体.由图易得: ABAD2, AA'1, PO'1,取 A'B'中点Q ,连接PQ ,从而PQ PO '2 O 'Q 2 12122 ,因此该几何体表面积S1 B'C' C'D' D'A' PQA'B'B'C'C'D' D'A' AA' AB AD4212.A'B'2体积V 221122116 .3318.剖析:( 1)∵点A、D分别是RB、RC的中点,∴AD // BC , AD 1 BC.2∴ PAD RAD RBC90o,∴PA AD.∴ PA BC ,∵ BC AB, PA AB A,∴BC平面 PAB .∵ PB平面 PAB ,∴BC PB.( 2)取RD的中点F,连接 AF、PF.∵RA AD 1,∴AF RC .∵ AP AR, AP AD ,∴ AP 平面RBC.∵ RC平面 RBC ,∴ RC AP .∵ AF AP A,∴RC平面 PAF .∵ PF平面 PAF ,∴ RC PF .∴AFP 是二面角 A CD P 的平面角.在 Rt RAD 中,AF 1RD1RA2AD22,222在 Rt PAF 中,PF PA2AF2 6 ,2AF 23cos AFP2PF6.32∴二面角A CD P 的平面角的余弦值是 3 .3 19.剖析:( 1)设A1B1的中点为F,连接EF , FC1.∵ E 为A1B的中点,∴ EF 1BB1.2又 C1M 1BB1,∴ EF MC1.∴四边形 EMC 1F 为平行四边形.2∴EM PFC1.∵EM平面 A1B1C1D1, FC1平面 A1B1C1D1,∴EM P平面 A1B1C1D1.( 2)作B1H A1N 于H,连接BH ,∵BB1⊥平面 A1 B1C1 D1,∴ BH A1N .∴BHB1为二面角 B A1N B1的平面角.∵EM ∥平面A1B1C1D1,EM平面A1BMN,平面 A1BMNI平面A1B1C1D1A1N,∴EM PA1N .又∵ EM PFC1,∴ A1N PFC1.又∵ A1F PNC1,∴四边形 A1FC1N 是平行四边形.∴NC1A1F .设 AA1 a ,则 A1B12a , D N a .1在Rt A1D1N中,A1 N A1D12D1N 25a,∴ sin ∠A1ND1= sinA1D12.A1ND15A1 N在 Rt A1B1H 中, B1H A1B1 sin HA1B124a 2a.55在Rt BB1H 中,tan BHB1BB1a5.B1H4a45( 3)延长A1N与B1C1交于P,则P平面A1BMN,且P平面 BB1C1C .又∵平面 A1BMN I平面 BB1C1C BM,∴ P BM ,即直线A1N , B1C1, BM交于一点 P .又∵平面 MNC 1 P∥平面 BA1B1,∴几何体M NC1BA1B1为棱台.∵S ABB12a a a2, S MNC11a1a 1 a2,112224棱台 MNC 1 BA 1 B 1 的高为 B 1C 1 2a ,故V 1 1 a 2a 2 1 a 21 a2 2a 7 a3 ,34 46V 2 2a 2a7 a 3 17 a 3,.∴V 1 7a6 V 2 .61720.剖析:( 1)由于 N 是 PB 的中点, PAAB ,因此 AN PB . 由 PA 底面 ABCD ,得PA AD ,又BAD 90 ,即 BAAD ,AD 平面 PAB ,因此 ADPB ,PB 平面 ADMN ,PB DM .( 2)连接 DN , 由于 BP 平面 ADMN ,即 BN平面 ADMN ,因此 BDN 是 BD与平面 ADMN 所成的角. 在 RtABD 中, BDBA 2 AD 22 2 ,在 Rt PAB中 ,PB PA2AB 22 2 , 故 BN1PB2 , 在 Rt BDN中 ,BN 12sinBDNBDN,故 BD 与平面 ADMN 所成的角是.BD ,又 0226(3)由 M ,N 分别为 PC,PB 的中点,得MN//BC ,且MN1BC1, 又22AD // BC ,故 MN // AD ,由( 1)得 AD 平面 PAB ,又 AN 平面 PAB ,故 ADAN , 四边形 ADMN 是直角梯形,在 RtPAB 中, PBPA 2AB 22 2 , AN1PB2 ,截面 ADMN 的2面积 S1(MN AD) AN1 ( 1 2)25 2 .22 24法二: (1)以 A 点为坐标原点建立空间直角坐标系Axyz ,以以下列图(图略)由PA AD AB 2BC 2,得A(0,0,0),P(0,0,2), B(2,0,0), M (1,1,1), D(0,2,0) uuur uuuur23,1)(2,0, 2)(1, 0,因此 PB DM .由于 PB DMuuur uuur2(2,0,2) (0, 2,0)0 ,因此 PB AD ,又 PB DM( 2)由于 PB AD ,故 PBuuur(2, 0, 2) 是平面 ADMN 的法向量.平面 ADMN ,即 PB 设 BD 与平面 ADMN 所成的角为uuur2,2,0).,又BD (uuur uuur uuuur uuuur| 4 | 1 则 sin| cos| BD PB |BD,PB |uuuruuuur4 444 ,|BD||PB| 2又[0 , ],故 ,即 BD 与平面 ADMN 所成的角是 .2 66 因此 BD 与平面 ADMN 所成的角为 .6( 3)同法一.21.剖析:法一: ( 1)∵四边形 ACDE 是正方形,EA AC, AM EC .∵平面 ACDE平面 ABC ,又∵ BCAC , BC 平面 EAC . AM平面 EAC , BCAM .AM 平面 EBC . ( 2)连接 BM , AM平面 EBC ,ABM 是直线 AB 与平面 EBC 所成的角.设 EAAC BC 2a ,则 AM2a , AB2 2a ,sinAM 1ABM,AB2ABM 30 . 即直线 AB 与平面 EBC 所成的角为 30(3)过A作AH EB于 H ,连接 HM .AM平面 EBC , AM EB. EB 平面 AHM .AHM 是二面角 A EB C 的平面角.∵平面 ACDE平面 ABC ,EA平面A BC .EA AB .在 Rt EAB 中,AH EB ,有 AE AB EB AH.由 (2)所设EA AC BC2a可得AB22a,EB 23a ,AHAEAB 22aEB .3sin AHM AM3AHM60 .∴二面角 A EB C等于 60.AH.2法二 : ∵四边形ACDE 是正方形,EA AC, AM EC ,∵平面ACDE平面ABC , EA平面 ABC ,∴能够以点 A 为原点,以过 A 点平行于BC 的直线为x轴,分别以直线AC和 AE为y 轴和z轴,建立以以下列图的空间直角坐标系A xyz .设 EA AC BC 2,则A(0,0,0), B(2,2,0), C(0,2,0), E(0,0,2),M是正方形 ACDE 的对角线的交点,M (0,1,1) .(1)AM(0,1,1),EC(0,2,0) (0,0,2) (0,2, 2),CB(2,2,0)(0,2,0)(2,0,0) ,AM EC0, AM CB0 ,AM EC, AM CB AM平面 EBC .( 2)AM平面 EBC ,AM 为平面EBC的一个法向量,AM(0,1,1), AB ( 2,2,0) , cos AB, AM AB AM1AB AM.2AB, AM60 .∴直线 AB 与平面 EBC 所成的角为 30 .( 3)设平面 EAB 的法向量为 n( x, y, z) ,则 nAE 且 nAB ,n AE 0 且 n AB 0 .(0,0,2) ( x, y, z) 0,z 0,,取 y1 ,则 x 1 , 则 n (1, 1,0) .(2,2,0) ( x, y, z) 0.即xy 0.又∵ AM 为平面 EBC 的一个法向量,且AM (0,1,1),cos n, AMn AM1 ,设二面角 A EB C 的平面角为, 则n AM2cos cos n, AM160 .∴二面角 AEB C 等于 60 .,222.剖析:法一:( 1)由于 A 1D平面 ABC ,因此平面 AA 1C 1C 平面 ABC ,又 BC AC ,因此 BC平面1 1,得1 ,又11 ,因此1平面1;AAC CBC ACBAACACA BC( 2)由于 AC 1 A 1C ,因此四边形 AAC 1 1C 为 菱形,故 AA 1 AC2,又D 为 AC中点,知A 1 AC 60o .取 AA 1 中点 F ,则 AA 1 平面 BCF ,从而面 A 1 AB 面BCF ,过C 作CH BF 于H ,则CH面 A 1AB .在 RtBCF 中, BC 2, CF 3,故CH2 21,7即 CC 1 到平面 A 1 AB 的距离为 CH2 21 .7(3)过H作HG A1B于G,连CG,则 CG A1B ,从而CGH 为二面角A A1B C 的平面角,在Rt A1BC 中,A1C BC2,因此CG 2 ,在Rt CGH中,sinCH42 CGH,CG7故二面角 A A1B C 的正弦值为42 .7法二:( 1)如图,取AB的中点E,则 DE // BC ,由于 BC AC ,因此 DE AC ,又A1D平面 ABC ,以DE , DC , DA1为 x, y, z 轴建立空间坐标系,则 A 0, 1,0 , C 0,1,0 , B 2,1,0 , A1 0,0, t , C1 0,2, t ,uuuur uuur uuurAC10,3,t, BA12,1,t, CB2,0,0 ,uuur uuur由 AC CB0 ,知A1C CB ,1又 BA1AC1,从而 AC1平面 A1BC ;uuuur uuur3 t20 ,得t 3 .( 2)由AC1BA1r uuur uuur设平面 A1 AB 的法向量为n x, y, z, AA10,1, 3, AB2,2,0 ,r uuury3z0 n AA因此r uuur12x 2 y ,n AB0设 zr3, 3,11,则nuuuur r因此点 C1到平面 A1 AB 的距离dAC1n221 .rn7ur uuur uuur( 3)再设平面A1BC的法向量为m x, y, z, CA10,1,3, CB2,0,0 ,因此uuururm CA1y3z0,设 z1,ur uuur2x 0m CBur0,3,1 ,则 mur r ur r7故 cosm nA A1BC 的余弦m, n ur r,依照法向量的方向,可知二面角m n7值为7 .7。
立几大题训练题一、解答题(共50题;共505分)1. ( 10分) 已知四棱锥S−ABCD中,四边形ABCD为梯形,∠BCD=∠ADC=∠SAD=90°,平面SAD⊥平面ABCD,E为线段AD的中点,AD=2BC=2CD.(1)证明:BD⊥平面SAB;(2)若SA=AD=2,求点E到平面SBD的距离.2. ( 10分) 如图,平面ABCD∩平面ABEF=AB,四边形ABCD和ABEF都是边长为2的正方形,点M,N分别是AF,AB的中点,二面角D−AB−F的大小为60°.(1)求证:MN//平面BCF;(2)求直线DE与平面BCF所成角的正弦值.3. ( 10分) 如图,四棱锥P-ABCD的底面是正方形,E为AB的中点,PD⊥CE,AE=1,PD=3,PC=√13(1)证明:AD⊥平面PCD.(2)求DA与平面PCE所成角的正弦值.4. ( 10分) 如图所示,直三棱柱ABC−A1B1C1的各棱长均相等,点E为AA1的中点.(1)证明:EB1⊥BC1;(2)求二面角C1−EB1−C的余弦值.AD,G是PB的中点,5. ( 10分) 已知在四棱锥P−ABCD中,AD//BC,AB=BC=CD=12ΔPAD是等边三角形,平面PAD⊥平面ABCD.(1)求证:CD⊥平面GAC;(2)求二面角P−AG−C的余弦值.6. ( 10分) 如图,多面体ABCE中,平面AEC⊥平面ABC,AC⊥BC,AE⊥CD四边形BCDE 为平行四边形.(1)证明:AE⊥EC;(2)若AE=EC=CB=√2,求二面角D−AC−E的余弦值.7. ( 10分) 如图,在三棱锥A−BCD中, △ABC是等边三角形, ∠BAD=∠BCD=90°,点P是AC 的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=√6,且二面角A−BD−C为120°,求直线AD与平面BCD所成角的正弦值.8. ( 10分) 如图,在四棱锥P−ABCD中,AP⊥平面PCD,AD//BC,AB⊥BC,AP=AB=AD,E为AD的中点,AC与BE相交于点O.BC=12(1)证明:PO⊥平面ABCD.(2)若OB=1,求点C到平面PAB的距离.9. ( 10分) 如图,在斜三棱柱ABC−A1B1C1中,平面ABC⊥平面A1ACC1,CC1=2,△ABC,△ACC1,均为正三角形,E为AB的中点.(1)证明: AC1//平面B1CE,(2)求直线AC1与平面B1BAA1所成角的正弦值.10. ( 10分) 如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,AP=PB,AP⊥PB,E为CP的中点.(1)求证:AP//平面BDE;(2)求点D到平面ACP的距离.11. ( 10分) 在三棱柱ABC−A1B1C1中,已知AB=AC=AA1=√5,BC=4,O为BC的中点,A1O⊥平面ABC(1)证明四边形BB1C1C为矩形;(2)求直线AA1与平面A1B1C所成角的余弦值.12. ( 10分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥平面ABCD,AE⊥PD.(1)证明:AE⊥平面PCD;(2)若AP=AB,求二面角B−PC−D的余弦值.13. ( 10分) 在直角梯形ABCD(如图1),∠ABC=90°,BC//AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B−ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.14. ( 15分) 如图,四棱锥S−ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.15. ( 10分) 已知菱形ABCD的边长为4, AC∩BD=O, ∠ABC=60°,将菱形ABCD沿对角线BD折起,使AC=a,得到三棱锥A−BCD,如图所示.⇒(1)当a=2√2时,求证: AO⊥平面BCD;(2)当二面角A−BD−C的大小为120°时,求直线AD与平面ABC所成的正切值.16. ( 10分) 在四棱锥P–ABCD中,AB//CD,CD=2AB.⇀=mAP⇀(m>0),且MN//平面PCD,求实数m的值;(1)设AC与BD相交于点M,AN(2)若AB=AD=DP,∠BAD=60°,PB=√2AD,且PD⊥AD,求二面角A−PC−B的余弦值.17. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明:EF⊥平面PAE;(2)若PA=AB=4,求点C到平面PEF的距离.18. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明EF⊥平面PAE;AB,求平面PAB与平面PEF所成二面角的正弦值.(2)若PA=5419. ( 10分) 如图(1),在平面五边形EADCB中,已知四边形ABCD为正方形,ΔEAB为正三角形.沿着AB将四边形ABCD折起得到四棱锥E−ABCD,使得平面ABCD⊥平面EAB,设F在线段AD上且满足DF=2AF,G在线段CF上且满足FG=CG,O为ΔECD的重心,如图(2).(1)求证:GO//平面ABE;(2)求直线CF与平面BCE所成角的正弦值.20. ( 10分) 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将ΔADE向上折起,使D点折到P点,且PC=PB.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.21. ( 10分) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=600,AB//DE,BC//EF,AB=BC=3,AF=2√3,BF=√15(1)求证:平面ABC⊥平面ACDF(2)求平面AEF与平面ACE所成的锐二面角的余弦值22. ( 10分) 已知四棱锥E−ABCD,AB=3,BC=4,CD=12,AD=13,cos∠ADC= 12,EC⊥平面ABCD.13(1)求证:平面ABE⊥平面EBC;(2)当CE=60时,求直线AC和平面ADE所成角的正弦值.23. ( 10分) 如图,在四棱锥P−ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:AC⊥平面PBC;,求直线PA与平面EAC所成角的正弦值.(2)若二面角P−AC−E的余弦值为√6324. ( 10分) 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D,C是AB的三等分点,E是F1F2的中点.分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1,F2重合于点F,得到如图2所示的几何体.在图2中,M,N分别为CD,EF的中点.(1)证明:MN⊥平面ABCD.(2)求直线CN与平面ABF所成角的正弦值.25. ( 15分) 如图,在四棱锥P一ABCD中,已知AB=BC=√5,AC=4,AD=DC=2√2,点Q为AC中点,PO⊥底面ABCD, PO=2,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且NQ//平面ADM,求线段OQ的长.26. ( 10分) 如图,已知ΔABC为等边三角形,ΔABD为等腰直角三角形,AB⊥BD,平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE//BD,BD=2CE.点F为AD中点,连接EF.(1)求证:EF//平面ABC;(2)求二面角C−AE−D的余弦值.27. ( 10分) 如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,AD//BC,AB⊥BC,ΔSAB 是等边三角形,侧面SAB⊥底面ABCD,AB=2√3,BC=3,AD=1,点M、点N分别在棱SB、棱CB上,BM=2MS,BN=2NC,点P是线段MN上的任意一点.(1)求证:AP//平面SCD;(2)求二面角S−CD−B的大小.28. ( 15分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别在棱PD,PC上,且PC⊥平面AMN.(1)求证:AM⊥PD;(2)求直线CD与平面AMN所成角的正弦值.(3)求二面角C−AM−N的余弦值29. ( 10分) 如图,四棱锥P−ABCD中, PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB= 60°, AB=2, AD=1.(1)求证: PA⊥BD;(2)若∠PCD=45°,求点D到平面PBC的距离ℎ.30. ( 10分) 在长方体ABCD−A1B1C1D1中,底面ABCD是边长为2的正方形,E是AB的中点,F是BC的中点.(1)求证:EF//平面A1DC1;(2)若AA1=2√3,求平面A1DC1与平面B1EF所成二面角的正弦值.31. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,且PD= CD=1,过棱PC的中点E,作EF⊥PB交PB于点F.(1)证明:PA//平面EDB;,求PA与面ABCD所成角的正弦值.(2)若面DEF与面ABCD所成二面角的大小为π332. ( 5分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D是AB的中点,BC=AC,AB=2DC=2√2,AA1=4.(Ⅰ)求证:BC1//平面A1CD;(Ⅱ)求平面BCC1B1与平面A1CD所成锐二面角的平面角的余弦值.33. ( 10分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,点D是AB的中点,BC= AC,AB=2DC=2,AA1=√3.(1)求证:平面A1DC⊥平面ABB1A1;(2)求点A到平面A1DC的距离.34. ( 10分) 如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.35. ( 10分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP= 4,AB=BC=2, M,N为线段PC,AD上一点不在端点.AD,求证:MN∥面PBA(1)当M为中点时,AN=14,若存在(2)当N为AD中点时,是否存在M,使得直线MN与平面PBC所成角的正弦值为2√55求出M的坐标,若不存在,说明理由.36. ( 10分) 如图,正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1的中点.(1)求 AD 1 与 DB 所成角的大小;(2)求 AE 与平面 ABCD 所成角的正弦值.37. ( 20分 ) 如图, E 是以 AB 为直径的半圆 O 上异于 A,B 的点,矩形 ABCD 所在的平面垂直于半圆 O 所在的平面,且 AB =2 , AD =3(1)求证:平面 EAD ⊥ 平面 EBC ;(2)若 EB ⌢ 的长度为 π3,求二面角 A −DE −C 的正弦值. 38. ( 5分 ) 如图1,在直角梯形 ABCD 中,AB ∥CD , AB ⊥AD ,且 AB =AD =12CD =1 .现以 为一边向梯形外作正方形 ADEF ,然后沿边 AD 将正方形 ADEF 翻折,使平面 ADEF 与平面 ABCD 垂直,如图2.(Ⅰ)求证:BC ⊥平面DBE ;(Ⅱ)求点D 到平面BEC 的距离.39. ( 10分 ) 如图,扇形 AOB 的半径为 2 ,圆心角 ∠AOB =120∘ ,点 C 为弧 AB 上一点, PO ⊥ 平面 AOB 且 PO =√5 ,点 M ∈PB 且 BM =2MP , PA ∥平面 MOC .(1)求证:平面MOC⊥平面POB;(2)求平面POA和平面MOC所成二面角的正弦值的大小.40. ( 10分) 如图,已知四边形ABCD为等腰梯形,BDEF为正方形,平面BDEF⊥平面ABCD,AD//BC,AD=AB=1,∠ABC=60°.(1)求证:平面CDE⊥平面BDEF;(2)点M为线段EF上一动点,求BD与平面BCM所成角正弦值的取值范围.41. ( 10分) 如图,在四棱锥P-ABCD中,AD=2√3,AB=3,AP=√3,AD//BC,AD⊥平面PAB,∠APB=90°,点E满足PE⇀=23PA⇀+13PB⇀.(1)证明:PE⊥DC;(2)求二面角A-PD-E的余弦值.42. ( 10分) 在斜三棱柱ABC−A1B1C1中,侧面AC1⊥平面ABC,AA1=√2a,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E−A1C1−A的大小为π.343. ( 10分) 如图,在四棱锥P−ABCD中,侧面PAD⊥底面ABCD,底面ABCD为梯形,AB//CD,=2.∠ABC=∠BCD=90°,BC=CD=AB2(1)证明: BD⊥PD;(2)若△PAD为正三角形,求二面角A−PB−C的余弦值.44. ( 10分) 如图,已知四棱锥P−ABCD的底面为直角梯形,∠ADC为直角,AP⊥平面ABCD,BC:AD:CD=5:4:2,且CD=1.(1)求证:BP⊥AC;(2)若AP=CD,求二面角D−PC−B的余弦值.45. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1, AM⊥PD于点M,连接BM.(1)求证:PD⊥BM;(2)求直线CD与平面ACM所成角的正弦值.BC=1,E是BC的中46. ( 10分) 如图所示1,已知四边形ABCD满足AD//BC,BA=AD=DC=12点.将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为CD的中点,如图所示2.(1)求证:EF⊥平面AB1E;(2)求AE到平面CB1D的距离.47. ( 10分) 如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.(1)求证:直线EF⊥平面PAC;(2)求平面MEF与平面PBC所成二面角的正弦值.48. ( 5分) 如图,三棱柱A1B1C1−ABC中,BB1⊥平面ABC,AB⊥BC,AB=2,BC= 1,BB1=3,D是CC1的中点,E是AB的中点.(Ⅰ)证明:DE//平面C1BA1;(Ⅱ)F是线段CC1上一点,且直线AF与平面ABB1A1所成角的正弦值为1,求二面角F−3BA1−A的余弦值.49. ( 5分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD, AD⊥CD,AD//BC,BC=4,PA= AD=CD=2,点E为PC的中点.(I) 证明:DE//平面PAB;(II)求直线PB与平面PCD所成角的正弦值.50. ( 10分) 如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2 , AC=PA=1,求直线PA与平面PBC所成角的正弦值.答案解析部分一、解答题1.【答案】(1)解:由题意知∠BCD=∠ADC=90°,BC//ED,且BC=CD=12AD=DE,所以四边形BCDE是正方形,连接CE,所以BD⊥CE,又因为BC//AE,BC=AE,所以四边形ABCE是平行四边形,所以CE//AB,则BD⊥AB.因为平面SAD⊥平面ABCD,∠SAD=90°,平面SAD∩平面ABCD=AD,故SA⊥平面ABCD.所以SA∩AB=A,所以SA⊥BD,又因为SA∩AB=A,则BD⊥平面SAB.(2)解:∵SA=AD=2,BE=DE=1,∴△BDE的面积为12,又由(1)知SA⊥平面ABCD,∴V S−BDE=13×12×2=13,又在RtΔSAB中,SA=2,AB=DB=√2,∴SB=√6,由(1)知BD⊥SB,∴ΔSBD的面积为12×√2×√6=√3,设点E到平面SBD的距离为ℎ,则13S△BDS⋅ℎ=13,即ℎ=√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)利用线面垂直的判定定理,即可证得BD⊥平面SAB.(2)由(1)知SA⊥平面ABCD,求得V S−BDE=13,再根据等体积法,即可求解点点E到平面SBD的距离.2.【答案】(1)证明:∵M,N分别是AF,AB的中点,∴MN∥BF.∵MN⊄平面BCF,BF⊂平面BCF,∴MN//平面BCF.(2)解:∵四边形ABCD和ABEF都是边长为2的正方形,∴DA⊥AB,FA⊥AB,∴∠DAF就是二面角D−AB−F的平面角,∴∠DAF=60°.连接DM,在△DAM中,DA=2,AM=1,∠DAM=60°,∴DM2=AM2+AD2−2AM⋅AD⋅cos60°=3,∴DM=√3.∴DM2+AM2=AD2,∴DM⊥AM.∵DA⊥AB,FA⊥AB,FA∩DA=A,∴AB ⊥ 平面 ADM , ∴AB ⊥DM .∴DM ⊥ 平面 ABEF .以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,如图所示:则 D(0,0,√3) , E(1,2,0) , B(−1,2,0) , F(1,0,0) , A(−1,0,0) ,DE ⃗⃗⃗⃗⃗ =(1,2,−√3) , BF ⃗⃗⃗⃗⃗ =(2,−2,0) , BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =(1,0,√3) .设平面 BCF 的法向量为 m⃗⃗ =(x,y,z) , 则 {m ⇀⋅BF ⇀=2x −2y =0m ⇀⋅BC⇀=x +√3z =0 ,取 m ⃗⃗ =(√3,√3,−1) . 设直线 DE 与平面 BCF 所成角为 θ ,则 sinθ=|m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||DE ⃗⃗⃗⃗⃗⃗ |=√427 ,∴ 直线 DE 与平面 BCF 所成角的正弦值为 √427. 【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)根据三角形的中位线,有 MN ∥BF ,再利用线面平行的判定定理证明.(2)根据点 M , N 分别是 AF , AB 的中点,二面角 D −AB −F 的大小为60°,证明 DM ⊥ 平面 ABEF ,然后以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,再求得平面 BCF 的一个法向量,利用线面角的向量求法求解.3.【答案】 (1)证明:因为E 为AB 的中点, AE =1 ,所以 CD =AB =2 ,所以 CD 2+PD 2=PC 2 ,从而 PD ⊥CD .又 PD ⊥CE , CD ∩CE =C ,所以 PD ⊥ 底面ABCD , 所以 PD ⊥AD .因为四边形ABCD 是正方形,所以 AD ⊥CD .又 CD ∩PD =D ,所以 AD ⊥ 平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系 D −xyz ,如图所示,则 A(2,0,0) , P(0,0,3) , E(2,1,0) , C(0,2,0) ,所以 PE ⃗⃗⃗⃗⃗ =(2,1,−3) , EC ⃗⃗⃗⃗⃗ =(−2,1,0) , DA ⃗⃗⃗⃗⃗ =(2,0,0) .设平面PCE 的法向量为 n⃗ =(x,y,z) , 则 PE ⃗⃗⃗⃗⃗ ⋅n ⃗ =EC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0 ,即 {2x +y −3z =0−2x +y =0 ,令 x =3 ,得 n ⃗ =(3,6,4) . cos〈n ⃗ ,DA ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DA ⃗⃗⃗⃗⃗⃗ |=3√6161 , 故DA 与平面PCE 所成角的正弦值为 3√6161 .【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)通过证明 PD ⊥AD , AD ⊥CD 即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.4.【答案】 (1)证明:设 BC 1 与 CB 1 交点为 O ,连接 OE , BE .由题可知四边形 BCC 1B 1 为正方形,所以 BC 1⊥CB 1 ,且 O 为 BC 1 中点.又因 BE 2=AB 2+AE 2 , C 1E 2=A 1E 2+A 1C 12 ,所以 BE =C 1E ,所以 BC 1⊥OE .又因为 OE ∩CB 1=O ,所以 BC 1⊥ 平面 EB 1C .因为 EB 1⊂ 平面 EB 1C ,所以 BC 1⊥EB 1 .(2)解:取 AB 的中点 O ′ ,连接 O ′C , O ′C ⊥AB ,在平面 ABB 1A 1 过点 O ′ 内作 AB 的垂线,如图所示,建立空间直角坐标系 O ′−xyz .设 AB =2 ,则 E(0,−1,1) , B 1(0,1,2) , B(0,1,0) , C 1(−√3,0,2) .所以 EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1) , EC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,1,1) .设平面 C 1EB 1 的一个法向量为 n ⃗ =(x,y,z) ,则 {n ⇀⋅EB1⇀=2y +z =0n ⇀⋅EC 1⇀=−√3x +y +z =0 ,令 y =√3 ,则 n ⃗ =(−1,√3,−2√3) . 由(1)可知平面 CEB 1 的一个法向量为 BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,−1,2) , 则 |cos〈BC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ 〉|=|n ⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗ |⋅|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√3√3+1+4⋅√1+3+12=√64.由图可知二面角 C 1−EB 1−C 为锐角,所以其余弦值为 √64.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)通过证明 BC 1⊥ 平面 EB 1C 即可证得;(2)建立空间直角坐标系,利用向量求解.5.【答案】 (1)证明:取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH . 因为 AD//BC , AB =BC =CD =12AD , 四边形 ABCO 与四边形 OBCD 均为菱形, ∴OB ⊥AC , OB//CD , CD ⊥AC , 因为 △PAD 为等边三角形, O 为 AD 中点, ∴PO ⊥AD ,因为平面 PAD ⊥ 平面 ABCD ,且平面 PAD ∩ 平面 ABCD =AD .PO ⊂ 平面 PAD 且 PO ⊥AD , ∴PO ⊥ 平面 ABCD 因为 CD ⊂ 平面 ABCD , ∴PO ⊥CD ,因为H , G 分别为 OB , PB 的中点, ∴GH//PO , ∴GH ⊥CD .又因为 GH ∩AC =H , AC,GH ⊂ 平面 GAC , ∴CD ⊥ 平面 GAC .(2)解:取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE ⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,则 P(0,0,2√3) , A(0,−2,0) , C(√3,1,0) , D(0,2,0) , G(√32,−12,√3)AP ⃗⃗⃗⃗⃗ =(0,2,2√3) , AG ⇀=(√32,32,√3) , 设平面 PAG 的一法向量 n →=(x,y,z) .由 {n ⇀⋅AP⇀=0n ⇀⋅AG ⇀=0 ⇒{2y +2√3z =0√32x +32y +√3z =0⇒{y =−√3z x =z .令 z =1 ,则 n ⃗ =(1,−√3,1) . 由(1)可知,平面 AGC 的一个法向量 CD ⃗⃗⃗⃗⃗ =(−√3,1,0) , cos〈n ⇀,CD⇀〉=n ⇀⋅CD ⇀|n⇀||CD ⇀|=−√155∴ 二面角 P −AG −C 的平面角的余弦值为 −√155.【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH .证明 AC ⊥CD , GH ⊥CD ,即可证 CD ⊥ 平面 GAC ;(2)取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,利用向量法求二面角 P −AG −C 的余弦值.6.【答案】 (1)解:因为平面 AEC ⊥ 平面 ABC ,交线为 AC ,又 AC ⊥BC , 所以 BC ⊥ 平面 AEC , ∴BC ⊥AE ,又 AE ⊥CD , CD ∩BC =C , 则 AE ⊥ 平面 BCDE , EC ⊂ 平面 BCDE , 所以, AE ⊥EC ;(2)解:取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,则 OE ⊥ 平面 ABC , OF ⊥ 平面 AEC ;以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系如图所示,已知 AE =EC =CB =√2 ,则 AC =2 , OE =1 , O(0,0,0) , A(1,0,0) , C(−1,0,0) , D(0,−√2,1) , 则 AC⃗⃗⃗⃗⃗ =(−2,0,0) , AD ⃗⃗⃗⃗⃗ =(−1,−√2,1) , 设平面 DAC 的一个法向量 m⃗⃗ =(x,y,z) , 由 {m ⇀⋅AC⇀=0,m ⇀⋅AD ⇀=0 得 {−2x =0,−x −√2y +z =0令 y =√2 ,则 x =0 , z =2 ,即 m ⃗⃗ =(0,√2,2) ;平面 ECA 的一个法向量为 n ⃗ =(0,1,0) ; cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=√2√2+4=√33.所以二面角 D −AC −E 的余弦值为 √33.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)先通过平面 AEC ⊥ 平面 ABC 得到 BC ⊥AE ,再结合 AE ⊥CD ,可得 AE ⊥ 平面 BCDE ,进而可得结论;(2)取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系,求出平面 DAC 的一个法向量以及平面 ECA 的一个法向量,求这两个法向量的夹角即可得结果. 7.【答案】 (1)证明:因为 △ABC 是等边三角形, ∠BAD =∠BCD =90° , 所以 Rt △ABD ≅Rt △CBD ,可得 AD =CD . 因为点 P 是 AC 的中点,则 PD ⊥AC , PB ⊥AC , 因为 PD ∩PB =P , PD ⊂ 平面PBD, PB ⊂ 平面 PBD , 所以 AC ⊥ 平面 PBD ,因为 AC ⊂ 平面 ACD , 所以平面 ACD ⊥ 平面 BDP .(2)解:如图,作 CE ⊥BD ,垂足为 E 连接 AE .因为 Rt △ABD ⊆Rt △CBD ,所以 AE ⊥BD, AE =CE, ∠AEC 为二面角A-BD-C 的平面角. 由已知二面角 A −BD −C 为 120° ,知 ∠AEC =120° . 在等腰三角形 AEC 中,由余弦定理可得 AC =√3AE . 因为 △ABC 是等边三角形,则 AC =AB ,所以 AB =√3AE . 在 Rt △ABD 中,有 12AE ⋅BD =12AB ⋅AD ,得 BD =√3AD , 因为 BD =√6 ,所以 AD =√2 . 又 BD 2=AB 2+AD 2 ,所以 AB =2 . 则 AE =2√33, ED =√63.以 E 为坐标原点,以向量 EC ⃗⃗⃗⃗⃗ , ED ⃗⃗⃗⃗⃗ 的方向分别为 x 轴, y 轴的正方向, 以过点 E 垂直于平面 BCD 的直线为 z 轴,建立空间直角坐标系 E −xyz ,则 D(0,√63,0) , A(−√33,0,1) ,向量 AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,平面 BCD 的一个法向量为 m⃗⃗ =(0,0,1) , 设直线 AD 与平面 BCD 所成的角为 θ , 则 cos〈m ⃗⃗ ,AD ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |m⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=√2×1=−√22, sinθ=|cos〈m ⃗⃗ ,AD⃗⃗⃗⃗⃗ 〉|=√22所以直线 AD 与平面 BCD 所成角的正弦值为 √22.【考点】平面与平面垂直的判定,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1)由 △ABC 是等边三角形, ∠BAD =∠BCD =90° ,得 AD =CD .再证明 PD ⊥AC , PB ⊥AC ,从而和证明 AC ⊥ 平面 PBD ,故平面 ACD ⊥ 平面 BDP 得证.(2)作 CE ⊥BD ,垂足为 E 连接 AE .由 Rt △ABD ⊆Rt △CBD ,证得 AE ⊥BD, AE =CE, 结合二面角 A −BD −C 为 120° ,可得 AB =2 , AE =2√33, ED =√63 .建立空间直角坐标系,求出点的坐标则 D(0,√63,0) , A(−√33,0,1) ,向量AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,即平面 BCD 的一个法向量 m ⃗⃗ =(0,0,1) ,运用公式 cos〈m ⃗⃗ ,AD ⇀〉=m ⃗⃗⃗ ⋅AD ⇀|m⃗⃗⃗ ||AD ⇀| 和 sinθ=|cos〈m ⃗⃗ ,AD ⇀〉| ,即可得出直线 AD 与平面 BCD 所成角的正弦值. 8.【答案】 (1)证明:∵ AP ⊥ 平面 PCD ,∴ AP ⊥CD . ∵ AD//BC , BC =12AD ,∴四边形 BCDE 为平行四边形, ∴ BE//CD , ∴ AP ⊥BE .又∵ AB ⊥BC , AB =BC =12AD ,且 E 为 AD 的中点, ∴四边形 ABCE 为正方形,∴ BE ⊥AC .又 AP ∩AC =A ,∴ BE ⊥ 平面 APC ,则 BE ⊥PO . ∵ AP ⊥ 平面 PCD ,∴ AP ⊥PC ,又 AC =√2AB =√2AP , ∴ ΔPAC 为等腰直角三角形, O 为斜边 AC 上的中点, ∴ PO ⊥AC 且 AC ∩BE =O ,∴ PO ⊥ 平面 ABCD .(2)解:∵ OB =1 ,∴ PA =PB =AB =√2 . 设 C 到平面 PAB 的距离为 d , 由 V C−PAB =V P−ABC ,得 13×√34×(√2)2×d =13×12×(√2)2×1 ,解得 d =2√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)首项通过证明 AP ⊥CD,CD//BE ,证得 AP ⊥BE ,然后通过证明四边形 ABCE 是正方形证得 BE ⊥AC ,由此证得 BE ⊥ 平面 APC ,所以 BE ⊥PO .通过证明 ΔPAC 为等腰直角三角形证得 PO ⊥AC ,由此证得 PO ⊥ 平面 ABCD .(2)利用等体积法,由 V C−PAB =V P−ABC 列方程,解方程求得点 C 到平面 PAB 的距离.9.【答案】 (1)解:如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 . 因为 AC 1⊄ 平面 B 1CE , ME ⊂ 平面 B 1CE ,所以 AC 1// 平面 B 1CE .(2)解:设O 是AC 的中点,连接 OC 1 ,OB.因为 △ACC 1 为正三角形, 所以 OC 1⊥AC ,又平面 ABC ⊥ 平面 A 1ACC 1 ,平面 ABC ∩ 平面 A 1ACC 1=AC , 所以 OC 1⊥ 平面ABC.由已知得 AC =2 .如图,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则有 A(0,1,0) , B(√3,0,0) , C 1(0,0,√3) , A 1(0,2,√3) , 故 AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,−1,√3) , AB ⃗⃗⃗⃗⃗ =(√3,−1,0) , AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3) , 设平面 B 1BAA 1 的一个法向量为 m⃗⃗ =(x,y,z) ,则 {AB ⇀⋅m ⇀=0AA 1⇀⋅m ⇀=0 , 所以 {√3x −y =0y +√3z =0 令 x =1 ,则 m ⃗⃗ =(1,√3,−1) .设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ , 则 sinθ=|AC⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC⃗⃗⃗⃗⃗1|⋅|m⃗⃗⃗ |=√32×5=√155,故直线 AC 1 与平面 B 1BAA 1 所成角的正弦值为 √155.【考点】直线与平面平行的判定,直线与平面所成的角【解析】【分析】(1)如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 ,再利用线面平行的判定定理,即可证明线面平行;(2)设O 是AC 的中点,连接 OC 1 ,OB ,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,求出平面 B 1BAA 1 的一个法向量为 m ⃗⃗ =(1,√3,−1) ,设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ ,代入公式 sinθ=|AC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ 1|⋅|m⃗⃗⃗ | 运算,即可得答案.10.【答案】 (1)解:如图,连接 AC 交 BD 于 O ,连接 OE ,则 O 为 AC 的中点.又E为CP上的中点,所以OE//PA.又AP⊄平面BDE,OE⊂平面BDE,所以AP//平面BDE(2)解:如图,取AB的中点M,连接PM,因为AP⊥PB,AP=PB,所以PM⊥AB,PM=12AB=1,AP=PB=√2,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊂平面PAB,所以PM⊥平面ABCD.同理可得BC⊥平面PAB,∵AP、BP⊂平面PAB,∴BC⊥AP,BC⊥BP. 又因为AP⊥BP,BC∩BP=B,所以AP⊥平面BCP,∵PC⊂平面BCP,则AP⊥PC,所以PC=√PB2+BC2=√6,所以SΔAPC=12AP⋅PC=12×√2×√6=√3,又SΔACD=12×2×2=2,设点D到平面ACP的距离为ℎ,由V D−APC=V P−ACD,得13⋅SΔAPC⋅ℎ=13⋅PM⋅SΔACD,所以ℎ=3=2√33,即点D到平面ACP的距离为2√33.【考点】直线与平面平行的判定,点、线、面间的距离计算【解析】【分析】(1)连接AC交BD于O,则O为AC的中点,利用中位线的性质可得出OE//PA,然后利用直线与平面平行的判定定理可证明出AP//平面BDE;(2)取AB的中点M,连接PM,利用面面垂直的性质定理可得出PM⊥平面ABCD,由此可计算出三棱锥P−ACD的体积,并计算出ΔAPC的面积,并设点D到平面ACP的距离为ℎ,由V P−ACD=13SΔACP⋅ℎ可计算出点D到平面ACP的距离的值.11.【答案】(1)解:连接AO,因为O为BC的中点,可得BC⊥AO,∵ A 1O ⊥ 平面 ABC , BC ⊂ 平面 ABC ,∴ A 1O ⊥BC , 又∵ AO ∩A 1O =O ,∴ BC ⊥ 平面 AA 1O ,∴ BC ⊥AA 1 , ∵ BB 1//AA 1 , ∴ BC ⊥BB 1 , 又∵四边形 BB 1C 1C 为平行四边形, ∴四边形 BB 1C 1C 为矩形;(2)解:如图,分别以 OA,OB,OA 1 所在直线为 x,y,z 轴,建立空间直角坐标系,则 A(1,0,0),B(0,2,0),C(0,−2,0),Rt △AOB 中, AO =√AB 2−BO 2=1 , Rt △AA 1O 中, A 1O =√AA 12−AO 2=2 ,A 1(0,0,2) ,∴ AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2) , A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,−2,−2) , A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =(−1,2,0) ,设平面 A 1B 1C 的法向量是 n⃗ =(x,y,z) , 由 {n ⇀⋅AB⇀=0,n ⇀⋅A 1C ⇀=0, 得 {−x +2y =0,−2y −2z =0, 即 {x =2y,z =−y, ,可取 n ⃗ =(2,1,−1) , 设直线 AA 1 与平面 A 1B 1C 所成角为 θ ,则 θ∈[0,π2] ,sinθ=|cos <AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⃗ >| =|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗ |=√5⋅√6=215√30 , ∵ θ∈[0,π2] ,∴ cosθ=√1−sin 2θ=√10515,即直线 AA 1 与平面 A 1B 1C 所成角的余弦值为 √10515.【考点】直线与平面所成的角【解析】【分析】(1)连接 AO ,可得 BC ⊥AO ,易证 A 1O ⊥BC ,则 BC ⊥ 平面 AA 1O ,从而可证 BC ⊥BB 1 ,由此即可得出结论;(2)以 OA,OB,OA 1 所在直线分别为 x,y,z 轴建立空间直角坐标系,利用法向量解决问题.12.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , CD ⊂ 平面 ABCD , 所以 PA ⊥CD ,因为底面 ABCD 是正方形,所以 AD ⊥CD , 又 PA ∩AD =A ,所以 CD ⊥ 平面 PAD , 因为 AE ⊂ 平面 PAD ,所以 CD ⊥AE ,又因为 AE ⊥PD,CD ∩PD =D , CD,PD ⊂ 平面 PCD , 所以 AE ⊥ 平面 PCD(2)解:因为 PA ⊥ 平面 ABCD ,底面 ABCD 为正方形,所以 PA ⊥AB,PA ⊥AD,AB ⊥AD ,以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz (如图所示),设 PA =AB =1 ,则 A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1) , 因为 AE ⊥PD ,所以 E 为 PD 中点,所以 E(0,12,12) , 所以 PB ⃗⃗⃗⃗⃗ =(1,0,−1),PC ⃗⃗⃗⃗⃗ =(1,1,−1),AE ⃗⃗⃗⃗⃗ =(0,12,12) , 由(1)得 AE ⃗⃗⃗⃗⃗ =(0,12,12) 为平面 PCD 的一个法向量, 设平面 PBC 的一个法向量为 m⃗⃗ =(x,y,z) , 由 {PB ⇀⋅m ⃗⃗ =0PC ⇀⋅m ⃗⃗ =0 ,即 {x −z =0x +y −z =0 ,令 x =1 ,则 z =1,y =0 ,所以 m ⃗⃗ =(1,0,1) , 因此 cos〈m⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ |m⃗⃗⃗ |⋅|AE ⃗⃗⃗⃗⃗ |=12√2×√12=12, 由图可知二面角 B −PC −D 的大小为钝角, 故二面角 B −PC −D 的余弦值为 −12【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)由 PA ⊥ 平面 ABCD 及底面 ABCD 是正方形可证得 CD ⊥ 平面 PAD ,则 CD ⊥AE ,又由 AE ⊥PD ,即可求证;(2)以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz ,由(1)可知 AE ⃗⃗⃗⃗⃗ 为平面 PCD 的一个法向量,求得平面 PBC 的一个法向量 m ⃗⃗ ,进而利用数量积求解即可13.【答案】 (1)解:由题设可知 AC =4√2 , CD =4√2 , AD =8 ∴ AD 2=CD 2+AC 2 ∴ CD ⊥AC又∵平面 ABC ⊥ 平面 ACD ,平面 ABC ∩ 平面 ACD =AC ∴ CD ⊥ 面 ABC .(2)解:法一、等体积法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ∵ V B−ACM =V A−BCM 且 V B−ACM =13S ACM ⋅BO =16√23而 S ΔBCM =4√3∴ A 到面 BCM 的距离 ℎ=4√63,所以 sinθ=ℎAB =√63.法二、向量法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示. 则 A(0,−2√2,0) , B(0,0,2√2) , C(0,2√2,0) , M(2√2,0,0) ∴ CB⃗⃗⃗⃗⃗ =(0,−2√2,2√2) CM ⃗⃗⃗⃗⃗⃗ =(2√2,−2√2,0) BA ⃗⃗⃗⃗⃗ =(0,−2√2,−2√2) ∴面 BCM 的一个法向量 n ⃗ =(1,1,1) ∴ sinθ=|BA⃗⃗⃗⃗⃗ ⋅n ⃗ ||BA ⃗⃗⃗⃗⃗ ||n⃗ |=√63【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)通过计算结合勾股定理的逆定理可以证明 CD ⊥AC ,再根据面面垂直的性质定理进行证明即可;(2)法一、取 AC 的中点 O 连接 OB ,根据 V B−ACM =V A−BCM ,结合三棱锥的体积公式进行求解即可;法二、取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.14.【答案】 (1)证明:∵底面 ABCD 是正方形, ∴ BC ⊥CD ,∵ SD ⊥ 底面 ABCD , BC ⊂ 底面 ABCD ,∴ SD ⊥BC ,又 DC ∩SD =D , ∴ BC ⊥ 平面 SDC ,∵ SC ⊂ 平面 SDC ,∴ BC ⊥SC .(2)解:由(1)知 BC ⊥SC ,又 CD ⊥BC ,∴ ∠SCD 为所求二面角的平面角, 在 RtΔDSC 中,∵ SD =DC =1 ,∴ ∠SCD =45° .(3)解:取AB中点P,连结MP,DP,在ΔABS,由中位线定理得MP//SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵MP=12SB=√32,DM=√22,DP=√1+14=√52,所以ΔDMP中,有DP2=MP2+DM2,∴∠DMP=90°.【考点】直线与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1)根据题意,由线面垂直证线线垂直,再根据线面垂直的判定定理,证明线面垂直,再证线线垂直.(2)由(1)中线面垂直,可知所求二面角的平面角为∠SCD,根据题意可求角度.(3)利用中位线将异面直线平移,则∠DMP或其补角是异面直线DM与SB所成角,根据勾股定理,即可求解.15.【答案】(1)解:在△AOC中, OA=OC=2,AC=a=2√2,∴OA2+OC2=AC2∴∠AOC=90°,即AO⊥OC,∵AO⊥BD,且AO∩BD=O,∴AO⊥平面BCD(2)解:由(1)知, OC⊥OD,以O为原点, OC,OD所在的直线分别为x轴, y轴建立如图的空间直角坐标系O−xyz:则 Q(0,0,0), B(0,−2√3,0), C(2,0,0), D(0,2√3,0) . ∵AO ⊥BD,CO ⊥BD∴∠AOC 为二面角 A −BD −C 的平面角, ∴∠AOC =120° ∴ 点 A(−1,0,√3)AD⃗⃗⃗⃗⃗ =(1,2√3,−√3) , BA ⃗⃗⃗⃗⃗ =(−1,2√3,√3) , BC ⃗⃗⃗⃗⃗ =(2,2√3,0) 设平面 ABC 的法向量为 n⃗ =(x,y,z) ,则 ∴ {n ⃗ ⋅BC ⇀=0n ⃗ ⋅BA ⇀=0 故 {2x +2√3y =0x +2√3y +√3z =0 取 x =1 ,则 y =−√33,z =√3∴ n ⃗ =(1,−√33,√3)设直线 AD 与平面 ABC 所成的角为 θ , sinθ=|AD⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AD ⃗⃗⃗⃗⃗⃗ ||n ⃗ |=4√133=√313 ∴cosθ=√1−sin 2θ=√1013 ∴tanθ=sinθcosθ=√310=√3010∴ 直线 AD 与平面 ABC 所成的正切值: √3010【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角 【解析】【分析】(1)根据线面垂直定义,即可求得答案.(2)由于平面 ABC 不是特殊的平面,故建系用法向量求解,以 O 为原点建系, OC,OD 所在的直线分别为 x 轴, y 轴,求出平面 ABC 的法向量 n ⃗ ,求解 AD ⃗⃗⃗⃗⃗ 和 n⃗ 的夹角,即可求得答案. 16.【答案】 (1)解:因为 AB//CD ,所以 AMMC =ABCD =12 ,即AM AC=13.因为 MN// 平面PCD , MN ⊂ 平面PAC ,平面 PAC ∩ 平面 PCD =PC , 所以 MN//PC . 所以 ANAP =AM AC=13 ,即 m =13(2)解:因为 AB =AD , ∠BAD =60° ,可知 △ABD 为等边三角形, 所以 BD =AD =PD ,又 BP =√2AD , 故 BP 2=PD 2+DB 2 ,所以 PD ⊥DB .由已知 PD ⊥AD , AD ∩BD =D ,所以 PD ⊥ 平面ABCD ,如图,以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,设 AB =1 ,则 AB =AD =DP =1 , CD =2 , 所以 A(1,0,0) , B(12,0,√32) , P(0,1,0) , C(−1,0,√3) ,则 PB ⃗⃗⃗⃗⃗ =(12,−1,√32) , PC ⃗⃗⃗⃗⃗ =(−1,−1,√3) , PA ⃗⃗⃗⃗⃗ =(1,−1,0) 设平面PBC 的一个法向量为 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) ,则有 {n 1⇀⋅PB⇀=0n 1⇀⋅PC ⇀=0 即 {x 1−2y 1+√3z 1=0x 1+y 1−√3z 1=0. 令 x 1=1 ,则 y 1=2,z 1=√3 ,即 n 1⃗⃗⃗⃗ =(1,2,√3) , 设平面APC 的一个法向量为 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) ,则有{n 2⇀⋅PA ⇀=0n 2⇀⋅PC ⇀=0,即 {x 2−y 2=0−x 2−y 2+√3z 2=0 令 x 2=y 2=√3 ,则 z 2=2 ,即 n 2⃗⃗⃗⃗ =(√3,√3,2) . 所以 cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√32√2×√10=√154设二面角 A −PC −B 的平面角为 θ ,则 cosθ=√154【考点】向量的共线定理,直线与平面平行的性质,用空间向量求平面间的夹角 【解析】【分析】(1)由AB ∥CD , 得到AM AC=13 ,由MN ∥平面PCD , 得MN ∥PC , 从而 ANAP =AM AC=13,由此能实数m 的值;(2)由AB =AD , ∠BAD =60°,知△ABD 为等边三角形,推导出PD ⊥DB , PD ⊥AD , 从而PD ⊥平面ABCD , 以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,由此能求出二面角B ﹣PC ﹣B 的余弦值.17.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , EF ⊂ 平面 ABCD ,故可得 EF ⊥PA ; 设底面正方形的边长为4,故可得 AE =√AD 2+DE 2=√16+4=2√5 , EF =√FC 2+CE 2=√1+4=√5 , AF =√AB 2+BF 2=√16+9=5 , 故在 △AFE 中,满足 AE 2+EF 2=AF 2 ,故可得 AE ⊥EF ; 又 PA,AE ⊂ 平面 PAE ,且 PA ∩AE =A , 则 EF ⊥ 平面 PAE ,即证.(2)解:因为 PA ⊥ 平面 ABCD ,故 PA 为三棱锥 P −EFC 底面上的高线.故可得V P−EFC=13S∆EFC×PA=13×12×1×2×4=43.在△PEF中,因为PE=√PA2+AE2=6,EF=√5,由(1)可知EF⊥平面PAE,又PE⊂平面PAE,故可得EF⊥PE,则S△PEF=12×EF×PE=3√5,设点C到平面PEF的距离为ℎ,故可得V P−EFC=V C−PEF=13×S∆PEF×ℎ=43,解得ℎ=4√515.即点C到平面PEF的距离为:4√515.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)根据PA⊥平面ABCD,可得EF⊥PN,再证EF⊥AE,即可由线线垂直推证线面垂直;(2)转换三棱锥顶点,用等体积法求点面距离即可.18.【答案】(1)证明:因为PA⊥平面ABCD,EF⊂平面ABCD,故可得EF⊥PA;设底面正方形的边长为4,故可得AE=√AD2+DE2=√16+4=2√5,EF=√FC2+CE2=√1+4=√5,AF=√AB2+BF2=√16+9=5,故在△AFE中,满足AE2+EF2=AF2,故可得AE⊥EF;又PA,AE⊂平面PAE,且PA∩AE=A,则EF⊥平面PAE,即证.(2)解:因为PA⊥平面ABCD, AB,AD⊂平面ABCD,故可得PA⊥AB,PA⊥AD,又底面ABCD为正方形,故可得AB⊥AD,故以A为坐标原点,以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系如下图所示:设AB=4,故可得A(0,0,0),P(0,0,5),B(4,0,0),E(2,4,0),F(4,3,0)设平面PEF的法向量为m⃗⃗ =(x,y,z),则{m⃗⃗ ⋅EF⇀=0m⃗⃗ ⋅PE⇀=0,则{2x−y=02x+4y−5z=0取y=2,则m⃗⃗ =(1,2,2).不妨取平面PAB的法向量n⃗=(0,1,0).则cos〈m⃗⃗ ,n⃗ 〉=m⃗⃗⃗ ⋅n⃗|m⃗⃗⃗ ||n⃗ |=√9×1=23.。
高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.已知侧面PAD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.例2、如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F 分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.例3、如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.例4、如图,三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.例5、如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C 与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.例6、如图,在正三棱柱ABCA1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:(1) 直线A1E∥平面ADC1;(2) 直线EF⊥平面ADC1.题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
平面与平面的平行关键是在一个平面内找两条相交直线;平面与平面垂直可以从二面角入手页可以从线面垂直进行转化。
第 1 页 共 2 页 高中数学立体几何典型例题 高中数学里的立体几何啊,就像是一座神秘的城堡,里面充满了各种奇妙的形状和空间关系。咱先来说说棱柱。棱柱这玩意儿,就像是一摞整齐的盒子堆起来一样。比如说三棱柱,它有三个侧面,底面是三角形。这时候就会出一些有趣的题目啦。
像有一道题是这样的:已知一个三棱柱的底面边长都是3厘米,高是5厘米,求它的侧面积。那这就简单啦,三棱柱的侧面积就是底面三角形的周长乘以高嘛。底面三角形周长是3×3 = 9厘米,再乘以高5厘米,侧面积就是45平方厘米啦。
再来说说棱锥。棱锥就像是金字塔一样,尖尖的顶。要是正棱锥的话,它的底面是正多边形,顶点在底面的投影是底面的中心。有个例子是这样的,一个正四棱锥,底面边长是4厘米,高是6厘米,求它的体积。棱锥的体积公式是三分之一乘以底面积乘以高。底面是正方形,面积就是4×4 = 16平方厘米,再乘以高6厘米,然后除以3,体积就是32立方厘米。
还有球体呢。球体就像是一个完美的圆滚滚的家伙。比如说有个球体,半径是2厘米,求它的表面积。球体表面积公式是4πr²,把半径2厘米带进去,那就是4×π×2² = 16π平方厘米。
圆柱也很常见。圆柱就像是一个直直的圆桶。要是已知圆柱底面半径是3厘米,高是8厘米,求它的侧面积,那就是底面圆的周长乘以高,底面圆周长是2πr = 2×π×3 = 6π厘米,再乘以高8厘米,侧面积就是48π平方厘米。
圆锥也不能落下。圆锥像个甜筒的形状。有个圆锥底面半径是5厘米,母线长是13厘米,求它的侧面积。圆锥侧面积公式是πrl,这里r是底面半径,l是母线长,带进去就是π×5×13 = 65π平方厘米。 第 2 页 共 2 页
立体几何里还有很多空间关系的题目。比如说异面直线的夹角。有两条异面直线a和b,给了一些点的坐标,让求它们的夹角。这时候就得用到向量的方法啦。先把直线的方向向量求出来,然后根据向量的夹角公式来计算。
高中数学立体几何多选题100含解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2|||sin|cos,|||||n AEn AEn AEπθα⎛⎫++⎪====⨯当且仅当4πθ=时,sinα15=,故D正确故选:CD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在正三棱柱111ABC A B C-中,AC=11CC=,点D为BC中点,则以下结论正确的是()A .111122A D AB AC AA=+-B.三棱锥11D AB C-的体积为6C.1AB BC⊥且1//AB平面11AC DD.ABC内到直线AC、1BB的距离相等的点的轨迹为抛物线的一部分【答案】ABD【分析】A .根据空间向量的加减运算进行计算并判断;B.根据1111D AB C A DB CV V--=,然后计算出对应三棱锥的高AD和底面积11DB CS,由此求解出三棱锥的体积;C.先假设1AB BC⊥,然后推出矛盾;取AB中点E,根据四点共面判断1AB//平面11AC D是否成立;D.将问题转化为“ABC内到直线AC和点B的距离相等的点”的轨迹,然后利用抛物线的定义进行判断.【详解】A.()11111111222A D A A AD AD AA AB AC AA AB AC AA=+=-=+-=+-,故正确;B.1111D AB C ADB CV V--=,因为D为BC中点且AB AC=,所以AD BC⊥,又因为1BB⊥平面ABC,所以1BBAD⊥且1BB BC B=,所以AD⊥平面11DB C,又因为AD===11111122DB CS BB B C=⨯⨯=,所以1111111133226D AB C A DB C DB CV V AD S--==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.8.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
高中数学立体几何经典题型专题训练试题姓名 班级 学号 得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得 分一.单选题(共10小题,每题3分,共30分)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为4503、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.28.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.29、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4第Ⅱ卷(非选择题)评卷人得 分二.填空题(共14小题,每题3分,共42分)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.⊥,∠BAC=θ(0<θ≤),且13、如图,三棱锥A-BCD中,AB AD⊥,AC ADAB=AC=AD=2,E、F分别为AC、BD的中点,则EF的最大值为______.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.⊥1D则EF和BD1的关系是______.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).19、如图,正方体ABCD-A1B1C1D1的棱长为4,E,F分别是棱CD、C1D1的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A1B1C1D1上运动,则线段MN 的中点P的轨迹(曲面)与二面角D-C1D1-B1所围成的几何体的体积为______.∈1,且AM=BN,有以下四个结论:20、如图,正方体ABCD-A1B1C1D1中,点M AB∈1,N BC⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.21、在正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于点E,交CC1于F,①四边形BFD1E一定是平行四边形②四边形BFD1E有可能是正方形③四边形BFD1E在底面ABCD内的投影一定是正方形④四边形BFD1E点有可能垂直于平面BB1D以上结论正确的为______(写出所有正确结论的编号)22、如图,正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D、C1的平面交于点M,则=______.23.设A是自然数集的一个非空子集,如果k2A∉,且A,那么k是A的一个“酷元”,⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.24、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.评卷人得 分三.简答题(共28分)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD26、如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且⊥.SA BC(1)求证:S-ABC为正三棱锥;(2)已知SA=a,求S-ABC的全面积.27、如图,E、F、G、H分别是空间四边形ABCD四边上的中点.(1)若BD=2,AC=6,则EG2+HF2等于多少?(2)若AC与BD成30°的角,且AC=6,BD=4,则四边形EFGH的面积等于多少?28、已知三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直且长度分别为a、b、c,设O 为S在底面ABC上的射影.求证:(1)O为△ABC的垂心;(2)O在△ABC内;(3)设SO=h,则++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案评卷人得 分一.单选题(共__小题)1、如图,在正方体中ABCD-A1B1C1D1,M为BC的中点,点N在四边形CDD1C1及其内部运动.⊥1C1,则N点的轨迹为( )若MN AA.线段B.圆的一部分C.椭圆的一部分D.双曲线的一部分答案:A解析:解:正方体中ABCD-A1B1C1D1中,M为BC的中点,点N在四边形CDD1C1及其内部运动;如图所示,取CD、C1D1的中点Q、P,连接PQ,⊥1C1;当点N在线段PQ上时,MN A因为正方体ABCD-A1B1C1D1中,⊥1D1,连接B1D1,交A1C1于点O,∴B1D1A取B1C1的中点E,连接PE,则PE B∥1D1,⊥1C1;∴PE A∥1,又CC1⊥平面A1B1C1D1,PQ CC∴PQ⊥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,⊥1C1;∴PQ A且PQ∩PE=P,∴A1C1⊥平面PQME,PQ⊂平面PQME,⊥;∴A1C1PQ∴N点的轨迹为线段PQ.故选:A.2、如图,正方体ABCD-A1B1C1D1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是( )A.点H是△A1BD的垂心B.直线AH与CD1的成角为900C.AH的延长线经过点C1D.直线AH与BB1的成角为450答案:D解析:解:由ABCD-A1B1C1D1是正方体,得A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故A正确;⊥1B,又CD1A∥1B,可得直线AH与CD1的成角为90°,故B正确;∵AH⊥面A1BD,∴AH A连接AC1,由三垂线定理及线面垂直的判定可得AC1⊥面A1DB,再由过一点与已知平面垂直的直线有且只有一条可得AH与AC1重合,可得C正确;直线AH与BB1所成的角,即为AH与AA1所成的角,设为θ,由正方体棱长为1,可得正三棱锥的底面边长为,从而求得AH=,则cos,∴D错误.故选:D.3、如图,正方体ABCD-A1B1C1D1中,点P为线段AD1上一动点,点Q为底面ABCD内(含边界)一动点,M为PQ的中点,点M构成的点集是一个空间几何体,则该几何体为( )A.棱柱B.棱锥C.棱台D.球答案:A解析:解:∵Q点不能超过边界,若P点与A点重合,设AB中点E、AD中点F,移动Q点,则此时M点的轨迹为:以AE、AF为邻边的正方形;下面把P点从A点向上沿线段AD1移动,在移动过程中可得M点轨迹为正方形,…,最后当P点与D1点重合时,得到最后一个正方形,故所得几何体为棱柱,故选:A4.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案:A解析:解:棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱;可以判断A正确;B不正确,例如正六棱柱的相对侧面;C 不正确,只有直棱柱满足C的条件;D不正确,例如长方体.故选A5.用一个平面去截一个正方体,所得截面不可能是(1)钝角三角形;(2)直角三角形;(3)菱形;(4)正五边形;(5)正六边形.下述选项正确的是( )A.(1)(2)(5)B.(1)(2)(4)C.(2)(3)(4)D.(3)(4)(5)答案:B解析:解:如图所示截面为三角形ABC,OA=a,OB=b,OC=c,AC2=a2+c2,AB2=a2+b2,BC2=b2+c2∠=>0,∴cos CAB=∴∠CAB为锐角,同理∠ACB与∠ABC也为锐角,即△ABC为锐角三角形;如右图,取相对棱的中点,得到的四边形是菱形;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形;经过正方体的一个顶点去切就可得到5边形.但此时不可能是正五边形.故不可能是(1)(2)(4).故选:B.6、如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是( )⊥A.AC BEB.A1C⊥平面AEFC.三棱锥A-BEF的体积为定值D.异面直线AE、BF所成的角为定值答案:D解析:解:∵AC⊥平面BB1D1D,又BE⊂平面BB1D1D,⊥.故A正确.∴AC BE∵EF垂直于直线AB1,AD1,∴A1C⊥平面AEF.故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A-BEF为定值.C正确当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠FBC1,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠EAA1显然两个角不相等,D不正确.故选D.7.已知一个正六棱锥的体积为12,底面边长为2,则它的侧棱长为( )A.4B.C.D.2答案:A解析:解:由于正六棱锥可知底面是六个正三角形组成,∴底面积S=6×=6,∴体积V==12,∴h=,夺直角三角形SOB中,侧棱长为SB=.故选A.8.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.9、如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.D1O⊥平面AMCC.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为答案:D解析:解:如图,∥,连接B1D1,交A1C1于N,则可证明OD1BN由OD1⊄面A1BC1,BN⊂面A1BC1,可得D1O∥面A1BC1,A正确;⊥,由三垂线定理的逆定理可得OD1AC设正方体棱长为2,可求得OM2=3,,,⊥,由线面垂直的判定可得D1O⊥平面AMC,B正确;则,有OD1OM由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,∴异面直线BC1与AC所成的角等于60°,C正确;设点B到平面AMC的距离为d,正方体的棱长为2a,则,,由V B-AMC=V A-BCM,得,即,解得:d=,D错误.故选:D.10.如图,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则AF:FB=()A.1:1B.1:2C.1:3D.1:4答案:C解析:解:解:设正方体的棱长为:2,由题意可知C1E==3,∠C1EF=90°,所以设AF=x,12+x2+C1E2=22+22+(2-x)2,解得:x=,所以AF:FB=:=1:3;故选:C.评卷人得 分二.填空题(共__小题)11、正方体ABCD-A1B1C1D1中,M,N分别是AA1和BB1的中点,G是BC上一点,使⊥,则∠D1NG=______.C1N MG答案:90°解析:解:连接MN,∵M,N分别是AA1和BB1的中点,∥1D1,由正方体的几何特征可得MN C在正方体ABCD-A1B1C1D1中,D1C1⊥平面B1C1CB∵C1N⊂平面B1C1CB⊥1N∴D1C1C⊥1N∴MN C⊥,MN∩MG=M,MD1,MG⊂平面MNG又∵C1N MG∴C1N⊥平面MNG又∵NG⊂平面MNG⊥∴C1N NG故∠D1NG=90°故答案为:90°12、已知如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点(不含顶点).则下列说法正确的是______.①A1C⊥平面B1EF;②△B1EF在侧面上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E位置有关,与点F位置无关;⑤当E,F分别为中点时,平面B1EF与棱AD交于点P,则三棱锥P-DEF的体积为.答案:②③⑤解析:解:对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.对于②△B 1EF 在侧面BCC 1B 1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB 1,而E 点在面上的投影到此棱BB 1的距离是定值,故正确;对于③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;对于④平面B 1EF 在平面ABCD 中的射影为△DFB ,面积为定值,但△B 1EF 的面积不定,故不正确;对于⑤由面面平行的性质定理可得EQ B ∥1F ,故D 1Q=,B 1Q PF ∥,故AP=,所以三棱锥P-DEF 的体积为,故正确故答案为:②③⑤.13、如图,三棱锥A-BCD 中,AB AD ⊥,AC AD ⊥,∠BAC=θ(0<θ≤),且AB=AC=AD=2,E 、F 分别为AC 、BD 的中点,则EF 的最大值为______.答案:解析:⊥,垂足为G,连接GE,解:过F作FG AB⊥,∵AD AB∥,∴G为AB的中点,∴AD FG∴FG=1,AG=1,∵E为AC的中点,∴AE=1,∠BAC=θ,∴EG=∵AD⊥平面ABC,∴FG⊥平面ABC,△中,EF===,在Rt FGE∵0,∴EF≤.故答案是.14、如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记,,那么M,N的大小关系是______.答案:M=N解析:解:根据平面中直角三角形的勾股定理类比得,S ABC△2=S PAB△2+S PBC△2+S PAC△2①,由等体积法得,∴②,①÷②整理得M=N.故答案为:M=N.15.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.答案:10解析:解:设截面四边形为EFGH,F、G、H分别是BC、CD、DA的中点,∴EF=GH=2,FG=HE=3,∴周长为2×(2+3)=10.故答案为:10.16、正方体ABCD-A1B1C1D1中,EF AC⊥,EF A⊥1D则EF和BD1的关系是______.答案:平行解析:解:法一:根据图象可知:⊥,AC∩B1C=C,⊥1D,A1D B∥1C,B1C EFEF AC⊥,EF A∥.∴EF⊥面AB1C,而BD1⊥面AB1C,即BD1EF法二:建立以D1为原点的空间直角坐标系D1-xyz,且设正方形的边长为1所以就有D1(0,0,0),B(1,1,0),A1(1,0,0),D(0,0,1),A(1,0,1),C(0,1,1)所以=(-1,0,1),=(-1,1,0),=(-1,-1,1)⊥1,所以•=-1+1=0 所以A1D BD⊥1,•=1-1=0 所以AC BD所以BD1与A1D和AC都垂直又∵EF是AC、A1D的公共垂线,∥.∴BD1EF故答案为:平行.17、已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为______.答案:解析:解:∵正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,连结AD1,AB1,∴由正方体的性质,得:AD1∩A1D=P,P是AD1的中点,∥1,PQ AB∴PQ=AB1==.故答案为:.18、如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A 1C ⊥平面B 1EF ;②△B 1EF 在侧面BCC 1B 1上的正投影是面积为定值的三角形;③在平面A 1B 1C 1D 1内总存在与平面B 1EF 平行的直线;④平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A 1C ⊥平面B 1EF ,则A 1C B ⊥1F ,由三垂线逆定理知:B 1F A ⊥1B ,又当F 与A 不重合时,B 1F 与A 1B 不垂直,∴①错误;∵E 在侧面BCC 1B 1上的投影在CC 1上,F 在侧面BCC 1B 1上的投影是B ,∴△B 1EF 在侧面BCC 1B 1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A 1B 1C 1D 1∩平面B 1EF=l ,∵平面A 1B 1C 1D 1内总存在与l 平行的直线,由线面平行的判定定理得与l 平行的直线,与平面B 1EF 平行,∴③正确;设E 与D 重合,F 位置变化,平面B 1EF 与平面ABCD 所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.19、如图,正方体ABCD-A 1B 1C 1D 1的棱长为4,E ,F 分别是棱CD 、C 1D 1的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A 1B 1C 1D 1上运动,则线段MN 的中点P 的轨迹(曲面)与二面角D-C 1D 1-B 1所围成的几何体的体积为______.答案:解析:解:依题意知|FP|=|MN|=1,因此点P的轨迹是以点F为球心、1为半径的球的.∴所求几何体的体积是×π×13=.故答案为:.∈1,且AM=BN,有以下四个结论:∈1,N BC20、如图,正方体ABCD-A1B1C1D1中,点M AB⊥;①AA1MN∥;②A1C1MN③MN与面A1B1C1D1成0°角;④MN与A1C1是异面直线.其中正确结论的序号是______.答案:①③解析:解:当M 为A ,N 为B ,排除②;当M 为B 1,N 为C 1,排除④.作MM′A ⊥1B 1于M′,作NN′B ⊥1C 1于N′,易证|MM′|=|NN′|,MM′NN′∥∴MN M′N′∥,由此知①③正确.故答案为:①③21、在正方体ABCD-A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于点E ,交CC 1于F ,①四边形BFD 1E 一定是平行四边形②四边形BFD 1E 有可能是正方形③四边形BFD 1E 在底面ABCD 内的投影一定是正方形④四边形BFD 1E 点有可能垂直于平面BB 1D以上结论正确的为______(写出所有正确结论的编号)答案:①③④解析:解:如图:①由平面BCB 1C 1∥平面ADA 1D 1,并且B 、E 、F 、D 1四点共面,∴ED 1BF ∥,同理可证,FD 1EB ∥,故四边形BFD 1E 一定是平行四边形,故①正确;②若BFD 1E 是正方形,有ED 1BE ⊥,这个与A 1D 1BE ⊥矛盾,故②错误;③由图得,BFD 1E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确;④当点E 和F 分别是对应边的中点时,平面BFD 1E ⊥平面BB 1D 1,故④正确.故答案为:①③④.22、如图,正方体ABCD-A 1B 1C 1D 1中,对角线BD 1与过A 1、D 、C 1的平面交于点M ,则=______.答案:2解析:解:由正方体的性质可得:D 1B ⊥平面DA 1C 1,∴D 1M 是三棱锥D 1-A 1DC 1的高.不妨设正方体的棱长为1.∵=,∴=,解得D 1M==.∴=2.故答案为:2.∉,且A,那么k是A的一个“酷元”,23.设A是自然数集的一个非空子集,如果k2A⊆,且集合M中的两个元素都是“酷元”那么这样的结给定S={0,1,2,3,4,5},设M S合M有______个.答案:5解析:解:∵S={0,1,2,3,4,5},由题意可知:集合M不能含有0,1,也不能同时含有2,4故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5},共5个故答案为:524、如图,AC为圆O的直径,B为圆周上不与A、C重合的点,SA⊥圆O所在的平面,连接SB、SC、AB、BC,则图中直角三角形的个数是______.答案:4解析:解:题题意SA⊥圆O所在的平面,AC为圆O的直径,B为圆周上不与A、C重合的点,可得出AB,BC垂直由此两个关系可以证明出CB垂直于面SAB,由此可得△ADB,△SAC,△ABC,△SBC都是直角三角形故图中直角三角形的个数是4个故答案为:4.评卷人得 分三.简答题(共__小题)25、四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的⊥.一点,若△PAD为等边三角形,求证:PB AD答案:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.解析:证明:如图,连结BD ,取AD 的中点E ,连结PE ,BE ;从而易知△ABD 也是等边三角形,又∵△PAD 为等边三角形,∴AD PE ⊥,AD BE ⊥,又∵PE∩BE=E ;故AD ⊥平面PBE ;故AD PB ⊥.26、如图,设三棱锥S-ABC 的三个侧棱与底面ABC 所成的角都是60°,又∠BAC=60°,且SA BC ⊥.(1)求证:S-ABC 为正三棱锥;(2)已知SA=a ,求S-ABC 的全面积.答案:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.解析:(1)证明:正棱锥的定义中,底面是正多边形;顶点在底面上的射影是底面的中心,两个条件缺一不可.作三棱锥S-ABC 的高SO ,O 为垂足,连接AO 并延长交BC 于D .因为SA BC ⊥,所以AD BC ⊥.又侧棱与底面所成的角都相等,从而O 为△ABC 的外心,OD 为BC 的垂直平分线,所以AB=AC .又∠BAC=60°,故△ABC 为正三角形,且O 为其中心.所以S-ABC 为正三棱锥.(2)解:在Rt SAO △中,由于SA=a ,∠SAO=60°,所以SO=a ,AO=a .因O 为重心,所以AD=AO=a ,BC=2BD=2ADcot60°=a ,OD=AD=a .在Rt SOD △中,SD 2=SO 2+OD 2=(a )2+(a )2=,则SD=a .于是,(S S-ABC )全=•(a )2sin60°+3••a•a=a 2.27、如图,E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点.(1)若BD=2,AC=6,则EG 2+HF 2等于多少?(2)若AC 与BD 成30°的角,且AC=6,BD=4,则四边形EFGH 的面积等于多少?答案:解:(1)∵E 、F 、G 、H 分别是空间四边形ABCD 四边上的中点,∴EH BD ∥,且EH=BD ;FG BD ∥,且FG=BD ;∴EH FG ∥,且EH=FG ,∴四边形EFGH 是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG 和△HFG 中,由余弦定理得,EG 2=EF 2+FG 2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠=10-6cos EFG ∠,HF 2=HG 2+FG 2-2HG•FG•cos FGH∠=32+12-2×3×1×cos (π-EFG ∠)=10+6cos EFG ∠,∴EG 2+HF 2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∠.∴四边形EFGH的面积为S=EF•FG•sin EFG=3×2×sin30°=3解析:解:(1)∵E、F、G、H分别是空间四边形ABCD四边上的中点,∥,且EH=BD;∴EH BDFG BD∥,且FG=BD;∥,且EH=FG,∴EH FG∴四边形EFGH是平行四边形;又BD=2,AC=6,∴EH=BD=1,EF=AC=3,在△EFG和△HFG中,由余弦定理得,∠EG2=EF2+FG2-2EF•FG•cos EFG∠=32+12-2×3×1×cos EFG∠,=10-6cos EFG∠HF2=HG2+FG2-2HG•FG•cos FGH∠)=32+12-2×3×1×cos(π-EFG=10+6cos EFG∠,∴EG2+HF2=20;(2)∵AC 与BD 成30°的角,且EF AC ∥,FG BD ∥,∴∠EFG=30°,又AC=6,BD=4,∴EF=AC=3,FG=BD=2;∴四边形EFGH 的面积为S=EF•FG•sin EFG=3×2×sin30°=3∠.28、已知三棱锥S-ABC 的三条侧棱SA 、SB 、SC 两两互相垂直且长度分别为a 、b 、c ,设O 为S 在底面ABC 上的射影.求证:(1)O 为△ABC 的垂心;(2)O 在△ABC 内;(3)设SO=h ,则++=.答案:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.解析:证明:(1)∵SA SB ⊥,SA SC ⊥,∴SA ⊥平面SBC ,BC ⊂平面SBC .∴SA BC ⊥.而AD 是SA 在平面ABC 上的射影,∴AD BC ⊥.同理可证AB CF ⊥,AC BE ⊥,故O 为△ABC 的垂心.(2)证明△ABC 为锐角三角形即可.不妨设a≥b≥c ,则底面三角形ABC 中,AB=为最大,从而∠ACB 为最大角.用余弦定理求得cos ACB=∠>0,∴∠ACB 为锐角,△ABC 为锐角三角形.故O 在△ABC 内.(3)SB•SC=BC•SD ,故SD=,=+,又SA•SD=AD•SO ,∴===+=++=.29.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9⊥于点G,(2)过O作OG PE∽△,且OG=OH=R,则△POG PEH∴,∴R=30、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ;(3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.解析:解:(1)∵AB ⊥平面BCD ,∴AB BC ⊥,AB BD ⊥.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=.设G 为CD 的中点,则CG=,AG=.∴,,.三棱锥D-ABC 的表面积为.(2)取AC 的中点H ,∵AB=BC ,∴BH AC ⊥.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF BH ∥.则EF AC ⊥.∵△BCD 是正三角形,∴DE BC ⊥.∵AB ⊥平面BCD ,∴AB DE ⊥.∵AB∩BC=B ,∴DE ⊥平面ABC .∴DE AC ⊥.∵DE∩EF=E ,∴AC ⊥平面DEF .(3)存在这样的点N ,当CN=时,MN ∥平面DEF .连CM ,设CM∩DE=O ,连OF .由条件知,O 为△BCD 的重心,CO=CM .∴当CF=CN 时,MN OF ∥.∴CN=.。
高中数学立体几何题型详解立体几何是高中数学中的一个重要部分,涉及到空间中的各种几何体及其性质。
在考试中,常常会出现与立体几何相关的题目,考察学生对几何体的认识和应用能力。
本文将针对高中数学中常见的立体几何题型进行详细解析,帮助学生和家长更好地理解和应对这类题目。
一、平行四边形的体积计算平行四边形是一个常见的几何体,其体积的计算是高中数学中的基础知识。
考虑一个平行四边形的底面积为S,高为h的立体,其体积V可以通过公式V=S*h来计算。
例如,给定一个底边长为a,高为h的平行四边形,求其体积。
根据公式V=S*h,我们可以得到V=a*h,其中a为底边长,h为高。
这个公式的应用非常广泛,可以解决各种与平行四边形体积相关的问题。
二、正方体的表面积计算正方体是另一个常见的几何体,其表面积的计算也是高中数学中的基础知识。
一个边长为a的正方体,其表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的正方体,求其表面积。
根据公式S=6*a^2,我们可以得到S=6*a*a=6*a^2,其中a为边长。
这个公式的应用非常广泛,可以解决各种与正方体表面积相关的问题。
三、立方体的体积和表面积计算立方体是一种特殊的正方体,其体积和表面积的计算也是高中数学中的基础知识。
一个边长为a的立方体,其体积V可以通过公式V=a^3来计算,表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的立方体,求其体积和表面积。
根据公式V=a^3和S=6*a^2,我们可以得到V=a*a*a=a^3,S=6*a*a=6*a^2,其中a为边长。
这两个公式的应用非常广泛,可以解决各种与立方体体积和表面积相关的问题。
四、棱柱的体积和表面积计算棱柱是另一个常见的几何体,其体积和表面积的计算也是高中数学中的基础知识。
一个底面积为S,高为h的棱柱,其体积V可以通过公式V=S*h来计算,表面积S可以通过公式S=S底+S侧来计算,其中S底为底面积,S侧为侧面积。
空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2πD.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r =2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V=13×1×1×22=26.11.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR2____.解析由球的半径为R,可知球的表面积为4πR2.设内接圆柱底面半径为r,高为2h,则h2+r2=R2.而圆柱的侧面积为2πr·2h=4πrh≤4πr2+h22=2πR2(当且仅当r=h时等号成立),即内接圆柱的侧面积最大值为2πR2,此时球的表面积与内接圆柱的侧面积之差为2πR2.12.如图,已知正三棱柱ABCA1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为___13_____cm. 解析根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.解析(1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH +V ABCDEFGH=13×402×60+402×20=64 000(cm3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。
立体几何试卷五一、选择题1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 5、若直线l 平面α,直线a α⊂,则l 与a 的位置关系是A 、l aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 二、填空题1、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).2、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为3、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .4、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1. 5.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是6.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。
(理科)已长方体的全面积是8,则其对角线长的最小值是 认为正确的一种条件即可,不必考虑所有可能的情形.) 三、解答题1、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分) 2、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD . (12分)3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)4、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,H G FE DB A CSD CB A四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (14分)6、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)7、如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融化了,会溢出杯子吗?8、矩形ABCD 中,1,(0)AB BC a a ==>,PA ⊥平面AC ,BC 边上存在点Q ,使得PQ QD ⊥,求a 的取值范围.参考答案选择ACDDDB填空1、小于2、平行3、菱形4、1111AC B D 对角线与互相垂直5、设P 点到面ABC 的距离为h ,由体积公式可得:()3261231a h a =⋅,故a h 332=。
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
⾼中数学⽴体⼏何专题练习题1(含答案)⾼中数学⽴体⼏何专题练习题姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。
满分100分。
考试时间90分钟。
2、考⽣请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)⼀、选择题(每题2分,共40分)1、⼀个正⽅体的展开图如图所⽰,A、B、C、D为原正⽅体的顶点,则在原来的正⽅体中A.AB∥ CDB. AB与 CD相交C. AB⊥CDD. AB与CD所成的⾓为60°2、(多选)如果⼀个棱锥的底⾯是正⽅形,且顶点在底⾯内的射影是底⾯的中⼼,那么这样的棱锥叫正四棱锥.若⼀正四棱锥的体积为18,则该正四棱锥的侧⾯积最⼩时,以下结论正确的是().A.棱的⾼与底边长的⽐为 22B.侧棱与底⾯所成的⾓为π4C.棱锥的⾼与底⾯边长的⽐为 2 D.侧棱与底⾯所成的⾓为π33、某⼏何体的三视图如图所⽰,则该⼏何体的体积为()A .43B .4C .2D .234、某⼏何体的三视图如图所⽰,则此⼏何体的体积为()A.23 B. 1C.43D.135、已知圆锥的轴截⾯为正三⾓形,且边长为2,则圆锥的表⾯积为() A .3π3B .πC .2πD .3π6、如图,在正⽅体中, E 为线段A 1C 1的中点,则异⾯直线与所成⾓的⼤⼩为()度.A. 60B. 45C. 30D. 157、已知⼀个⽔平放置的平⾯四边形ABCD 的直观图是⾯积为2的正⽅形,则原四边形ABCD 的⾯积为()A .2B .22C .2 2D .4 28、下列说法正确的是()A .通过圆台侧⾯上⼀点可以做出⽆数条母线B .直⾓三⾓形绕其⼀边所在直线旋转⼀周得到的⼏何体是圆锥C .圆柱的上底⾯下底⾯互相平⾏D .五棱锥只有五条棱9、如图,是⼀个⼏何体的三视图,主视图和侧视图是全等的半圆,俯视图是⼀个圆,则该⼏何体的体积是()A 、32π3.B .26π3C .16π3D .64π310、某⼏何体的三视图如图所⽰,则该⼏何体的体积为()A. 56B. 23C. 43D. 4511、⼀个⼏何体的三视图如图,则该⼏何体的体积为()A.263 B .283C. 10D.32312、某⼏何体的三视图如图所⽰,则该⼏何体中的最长棱长为()A .3 2B .2 5C .2 6D .2 713、(多选题)如图,在棱长为1的正⽅体中,下列结论正确的是A .异⾯直线AC 与BC1所成的⾓为60°B .直线AB 1与平⾯ABC 1D 1所成⾓为45° C .⼆⾯⾓A-B 1C-B 的正切值为 2D .四⾯体D 1-AB 1C 的的体积为1214、下列命题错误的是A .不在同⼀直线上的三点确定⼀个平⾯B .两两相交且不共点的三条直线确定⼀个平⾯C .如果两个平⾯垂直,那么其中⼀个平⾯内的直线⼀定垂直于另⼀个平⾯D .如果两个平⾯平⾏,那么其中⼀个平⾯内的直线⼀定平⾏于另⼀个平⾯15、某四棱锥的三视图如图所⽰,俯视图是⼀个等腰直⾓三⾓形,则该四棱锥的体积为()A .2B .C. D .16、如图所⽰,O 是正⽅体ABCD-A 1B 1C 1D 1对⾓线A 1C 与AC 1的交点,E 为棱BB 1的中点,则⼏何体OEC 1D 1 在正⽅体各⾯上的正投影不可能是()A. B. C. D.17、如图,在正⽅体ABCD -A1B l C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG =GC1.则下列直线与平⾯A1BD平⾏的是(A) CE (B) CF (C) CG (D) CC118、⼏何体的三视图如图所⽰,则它的体积是A. B.C. D.19、如图,三棱P-ABC中,PC⊥平⾯ABC,PC=3,∠ACB=90°D、E.分别为线段AB、BC上的点,且CD=DE= 2,CE=2EB=2,则⼆⾯⾓A-PD-C的余弦值是().A、 24B、62C、33D、3620、下图为某⼏何体的三视图,则该⼏何体的表⾯积是()A. 6+4B. 4+4C. 6+2D. 4+2⼆、填空题(15分)21、如图,点P在长⽅体ABCD-A1B1C1D1的⾯对⾓线BC1(线段BC1)上运动,给出下列四个说法:①直线AD与直线B1P为异⾯直线;②恒有A1P∥⾯ACD1;③三棱锥A-D1PC的体积为定值;④当长⽅体各棱长都相等时,⾯PDB1⊥⾯ACD1.其中所有正确说法的序号是.22、已知⼀个⼏何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为,等腰三⾓形的腰长为,则该⼏何体的体积是。
A1B1C1高中数学专题训练——立体几何中求角与距离1. 四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD. (1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°2 如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,∠ACB=900,AC=1,C 点到AB 1的距离为CE=23,D 为AB 的中点. (1)求证:AB 1⊥平面CED ;(2)求异面直线AB 1与CD 之间的距离; (3)求二面角B 1—AC —B 的平面角.3.已知a—l—β是120°的二面角,A,B两点在棱上,AB=2,D在α内,三角形ABD是等腰直角三角形,∠DAB=90°,C在β内,∆ABC是等腰直角三角形∠ACB=.900(I)求三棱锥D—ABC的体积;(2)求二面角D—AC—B的大小;(3)求异面直线AB、CD所成的角.4.已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.(1)求证:AP⊥平面BDE;(2)求证:平面BDE⊥平面BDF;(3)若AE∶EP=1∶2,求截面BEF分三棱锥P—ABC所成两部分的体积比.5.如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.(1)求证:FD∥平面ABC;(2)求证:AF⊥BD;(3) 求二面角B—FC—G的正切值.7.如图,正方体ABCD—A1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且D1P∶PA=DQ∶QB=5∶12.(1) 求证PQ∥平面CDD1C1;(2) 求证PQ⊥AD; (3) 求线段PQ的长.A B C D E A 1 B 1C 1D 1 xyz 图48. 如图4,在长方体ABCD -1111A B C D 中,AD=1AA =1,AB=2,点E 在棱AB 上移动。
高中学习数学立体几何专题 1 / 111 高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1多面体:由假设干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 其中, 这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 棱柱的结构特征 棱柱的定义:有两个面互相平行, 其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 棱柱的分类 图1图-11棱柱-1棱柱
棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。
长方体的性质
⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12=AB2+AC2+AA12
⑵ 长方体的一条对角线AC1与过定点A的三条棱所成 图1-2 长方体
的角分别是α、β、γ,那
么:
2 2 2 2 2 2 cos α+cosβ+cosγ=1 sinα+sinβ +sinγ=2
⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为 α、β、γ,那么: 2 2 2 2 2 2 cos α+cosβ+cosγ=2 sinα+sinβ +sinγ=1
棱柱的侧面展开图:正 n棱柱的侧面展开图是由 n个全等矩形组成的以底面周长
和侧
棱为邻边的矩形。 第1 页共11页 高中学习数学立体几何专题 2 / 112 棱柱的面积和体积公式 S直棱柱侧面 =c·h (c为底面周长, h为棱柱的高) S直棱柱全 =c·h+2S底
V棱柱=S底·h
圆柱的结构特征 2-1圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 2-2圆柱的性质 图1-3圆柱 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4圆柱的面积和体积公式
S圆柱侧面 =2π·r·h (r为底面半径,h为圆柱的高)
S圆柱全 =2πrh+2
2 πr 2 V圆柱=S底h= πrh
棱锥的结构特征 3-1棱锥的定义
⑴棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ⑵正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 3-2正棱锥的结构特征 图1-4棱锥
⑴平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ⑵正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ⑶正棱锥中的六个元素,即侧棱(SB)、高(SO)、斜高(SH)、侧棱在底面上的射影(OB)、斜高在底面上的射影(OH)、底面边长的一半(BH),构成四个直角三角形(三角形SOB、SOH、SBH、OBH均为直角三角形)。
3-3 正棱锥的侧面展开图:正 n棱锥的侧面展开图是由 n个全等的等腰三角形组成。 3-4 正棱锥的面积和体积公式 S正棱锥侧 =ch’(c为底面周长,h’为侧面斜高)
S正棱锥全 =ch’+S
底面
V棱锥=1/3S底面·h (h为棱锥的高)
第2 页共11页 高中学习数学立体几何专题
3 / 113 圆锥的结构特征 4-1圆锥的定义:以直角三角形的一直角边所在的直线为旋 转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆
锥。 4-2 圆锥的结构特征 ⑴ 平行于底面的截面都是圆,截面直径与底面直径之比等 于顶点到截面的距离与顶点到底面的距离之比; ⑵ 轴截面是等腰三角形; ⑶ 母线的平方等于底面半径与高的平方和: 图1-5圆锥
l2=r2+h2
4-3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。 4-4 圆锥的面积和体积的公式 S圆锥侧=πr·l(r 为底面半径,l为母线长) S圆锥全=πr·(r+l)
V 圆锥 2·h (h为圆锥高)
=1/3πr 棱台的结构特征 棱台的定义:用一个平行于底面的平面去截棱锥, 我们把截面和底面之间的局部称为棱台。 正棱台的结构特征 ⑴各侧棱相等,各侧面都是全等的等腰梯形; ⑵正棱台的两个底面和平行于底面的截面都是正多边形; ⑶正棱台的对角面也是等腰梯形; ⑷棱台经常被补成棱锥,然后利用形似三角形进行研究。 图1-6棱台
5-3正棱台的面积和体积公式 S棱台侧=n/2(a+b)·h’(a为上底边长, b为下底边长,h’为棱台的斜高, n为边数) S棱台全=S上底+S下底+S侧
V棱台=
圆台的结构特征 6-1圆台的定义:用一个平行于底面的平面去截圆锥,我 们把截面和底面之间的局部称为圆台。 6-2圆台的结构特征 ⑴圆台的上下底面和平行于底面的截面都是圆; ⑵圆台的截面是等腰梯形; ⑶圆台经常补成圆锥,然后利用相似三角形进行研究。 图1-7圆台 第3 页共11页 高中学习数学立体几何专题
4 / 114 6-3圆台的面积和体积公式 S圆台侧=π·(R+r)·l (r、R为上下底面半径) S圆台全=π·r2+π·R2+π·(R+r)·l 2 2 +πrR)h(h为圆台的高) V圆台=1/3(rπ+πR
7球的结构特征
7-1球的定义:以半圆的直径所在的直线为旋转轴, 半圆旋转一周形成的旋转体叫做球体。空间中,与定 点距离等于定长的点的集合叫做球面,球面所围成的 几何体称为球体。 7-2球的结构特征 ⑴球心与截面圆心的连线垂直于截面; ⑵截面半径等于球半径与截面和球心的距离的平方 差:r2=R2–d2 图1-8球
7-3球与其他多面体的组合体的问题 球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的根本思路是: ⑴根据题意,确定是内接还是外切,画出立体图形; ⑵找出多面体与球体连接的地方,找出对球的适宜的切割面,然后做出剖面图; ⑶将立体问题转化为平面几何中圆与多边形的问题; ⑷注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。 7-4球的面积和体积公式
S球面=4 π2R(R为球半径)
V球=4/3 3 πR
㈢空间几何体的视图 三视图:观察者从三个不同的位置观察同一个空间几何体而画出的图形。正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。俯视图:光线从几何体的上面向右边正投影,得到的投影图。 注意:⑴ 俯视图画在正视图的下方, “长度〞与正视图相等;侧视图画在正视图的右方,
“高度〞与正视图相等, “宽度〞与俯视图相等。 (正侧一样高,正俯一样长,俯侧一样
宽) ⑵正视图、侧视图、俯视图都是平面图形,而不是直观图。 直观图 2-1直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常 是在平行投影下画出的空间图形。
第4 页共11页 高中学习数学立体几何专题
5 / 115 2-2斜二测法做空间几何体的直观图 ⑴在图形中取互相垂直的轴 Ox、Oy,即取∠xOy=90°;
⑵画直观图时,把它画成对应的轴 O’x’、O’y,取∠x’O’y’=45°或135°,它们确定的
平面表示水平平面; ⑶在坐标系x’o’中y画’直观图时,图形中平行于数轴的线段保持平行性不变;平行于 x轴的线段保持长度不变; 平行于y轴的线段长度减半。
结论:采用斜二测法作出的直观图的面积是原平面图形的 2-3解决关于直观图问题的本卷须知 ⑴由几何体的三视图画直观图时,一般先考虑“俯视图〞 ; ⑵由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
二点、直线、平面之间的关系 ㈠平面的根本性质 立体几何中图形语言、文字语言和符号语言的转化 图形语言 文字语言 点A在直线a上 点B在直线a外
点A在平面α内 点B在平面α外
直线a在平面α内 直线b在平面α外
符号语言 ∈a a
A∈α α
α α
直线a与平面α相交于点A a∩α=A
直线a与直线b相交于点A a∩b=A
第5 页共11页