【最新】苏科版八年级数学上册第一次阶段调研试卷
- 格式:doc
- 大小:106.57 KB
- 文档页数:4
(苏科版)2024-2025学年八年级上学期数学第一次月考模拟测试卷01(测试范围:第1章--第2章)(考试时间120分钟满分120分)一、选择题(共10题,每小题3分,共30分)1.(2023•岳麓区校级三模)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学2.(2022秋•云龙区校级月考)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm3.(2023•凉山州)如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE4.(2023春•东港市期末)如图,DE是△ABC的边BC的垂直平分线,若AC=8,AB=6,BC=4,则△ADB 的周长为()A.14B.13C.12D.105.(2023春•金牛区期末)如图,在△ABF和△DCE中,点E、F在BC上,AF=DE,∠AFB=∠DEC,添加下列一个条件后能用“SAS”判定△ABF≌△DCE的是()A.BE=CF B.∠B=∠C C.∠A=∠D D.AB=DC6.(2023•海淀区校级开学)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=3,AB=8,则△ABD的面积是()A.36B.24C.12D.107.(2023春•三明期末)如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个8.(2022秋•新抚区期末)如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFD的度数等于()A.30°B.32°C.33°D.35°9.(2022秋•绥中县期末)如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,若AB+AC=8,则△ADE的周长为()A.6B.8C.10D.1210.(2023春•盐湖区期末)如图,在△ABC中,AD为中线,过点B作BE⊥AD于点E,过点C作CF⊥AD 于点F.在DA延长线上取一点G,连接GC,使∠G=∠BAD.下列结论中正确的个数为()①BE=CF;②AG=2DE;③S△ABD+S△CDF=S△GCF;④S△AGC=2S△BDE.A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,共24分)11.如图,△ACB≌△ADB,△ACB的周长为20,AB=8,则AD+BD=.12.(2023•横山区模拟)如图,在△ABC中,∠C=90°,点E在AC上,过点E作AC的垂线DE,连接AD.若AD⊥AB.AD=AB,BC=3,DE=7,则CE的长为.13.(2023春•榆林期末)如图,在△ABC中.∠A=40°,∠C=70°,AB的垂直平分线分别交AB,AC 于点D,E,连接BE,则∠EBC的度数为°.14.(2022秋•嘉兴期末)如图,在△ABC中,AB=AC,∠C=30°,点D在BC上,AB⊥AD,AD=2,则BC等于.15.(2022秋•安陆市期末)如图,将△ABC沿AD所在直线翻折,点B落在AC边上的点E,∠B=25°,AB+BD=AC,那么∠C等于.16.(2023春•岱岳区期末)如图,在△ABC中,AD是BC边上的中线,若AB=4,AC=6,则AD的取值范围是.17.(2023春•晋中期中)如图,在△ABC中,D为边AC上一点,且BD平分∠ABC,过A作AE⊥BD于点E.若∠ABC=64°,∠C=29°,AB=4,BC=10,则AE=.18.(2023春•佛山月考)如图,AB=7cm,AC=5cm,∠CAB=∠DBA=60°,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在射线BD上运动速度为xcm/s,它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束),当点P,Q运动到某处时,有△ACP与△BPQ全等,此时t=.三、解答题(本大题共8小题,满分共66分)19.(6分)(2023•海淀区校级开学)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.求证:BF=CE.20.(7分)(2022秋•商水县期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N.(1)若AB=12cm,求△MCN的周长;(2)若∠ACB=120°,求∠MCN的度数.21.(8分)(2023•龙湾区模拟)如图,在△ABC中,AB=AC,P为BC的中点,D,E分别为AB,AC上的点,且∠BDP=∠CEP.(1)求证:△BDP≌△CEP.(2)若PD⊥AB,∠A=110°,求∠EPC的度数.22.(8分)(2023春•东明县期中)如图,四边形ABCD中,BC=CD,AC=DE,∠B=∠DCE=90°,AC与DE相交于点F.(1)求证:△ABC≌△ECD;(2)判断线段AC与DE的位置关系,并说明理由.23.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.24.(8分)如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=4,AB=5,GC=2BG,求△ABC的周长.25.(9分)(2023•岱岳区校级一模)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.26.(12分)在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.。
初中数学试卷马鸣风萧萧2015-2016学年度八年级第一次学情调研数学试卷一、选择题1.下面4个汽车标志图案中,不是轴对称图形的是()A. B. C. D.2.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS3.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()A.ΔABD≌ΔACD B.ΔABE≌ΔACE C.ΔBED≌ΔCED D.以上答案都不对4.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等的三角形共有()A.2对B.3对C.4对D.5对第2题图第3题图第4题图第5题图5.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2C.△ABC≌△CED D.∠1=∠26.如右图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组二、填空题7.请写出2个是轴对称图形的汉字.8.已知△ABC≌△DEF,若AB=6cm,那么DE=cm.第9题图9.如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样EDAB C的玻璃,只需带第 块到玻璃店去,其原理是: .10.如右图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD=AE ,AB=AC 。
若∠B=200,CD=5cm ,则∠C=______,BE=_______.11.如图,AB ∥DC ,请你添加一个条件使得△ABD ≌△CDB ,可添条件是 .(添一个即可)12.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=20°,∠ACB=80°, 则∠BCE= °.第11题图 第12题图 第13题图 第14题图13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如上图所示,则该车牌照的部分号码为 ;14.如图,∠ACB =900,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于D.AD=5cm,DE=3cm ,BE 的长度是 ;三、解答题15.已知:AB=CD ,AD=BC .求证:△ABD ≌△CDB .16.已知:如图,在△ABC 中,AB=AC ,BE 和CD 是中线.求证:BE=CD .17.如图,已知AB =AD , ∠B =∠D ,∠1=∠2,说明:BC =DEE D CB A18.已知,如图,点E,F在CD上,DE=CF,请从下列三个条件中选择两个作为已知条件,另一个作为结论,使命题成立,并给出证明:①AC=BD;②∠AEC=∠BFD;③AC∥BD我选的条件是:(填序号)结论是:(填序号)证明:19.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.20.【回顾】我们学习了三角形的全等,知道了判定两个三角形全等的基本事实有“SAS”、“ASA”、“SSS”,以及由事实得到的推论“AAS,我们还得到一个定理“HL”,下面对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【思考】我们将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【探究】(1)第一种情况:当∠B是直角时,△ABC与DEF.是否全等,如图①,在△ABC和△DEF 中,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道.(2)第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠ABC=∠DEF,且∠ABC,∠DEF都是钝角,求证:△ABC≌△DEF(请你继续完成证明过程).证明:如图,过C作CG⊥AB交AB的延长线于点G,过F作FH⊥DE交DE的延长线于点H.(3)第三种情况:当∠B是锐角时,即在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E 都是锐角.△ABC和△DEF是否全等,请你用尺规在图③中作出△DEF,验证你的结论.(不写作法,保留作图痕迹)。
第2题第4题 第5题新苏科版数学八年级上册第一学期第一次月考检测试题 一、选择题;本大题共有8小题,每小题3分,共24分1.下面有4个汽车标志图案,其中是轴对称图形的是( )A 、②③④B 、①③④C 、①②④D 、①②③2.如图,工人师傅砌门常用木条EF 固定长方形门框ABCD ,使其不变形,他做法的 根据是( )A 、两点之间线段最短B 、长方形的对称性C 、长方形的四个角都是直角D 、三角形的稳定性3.下列结论正确的是 ( ) (A )有两个锐角相等的两个直角三角形全等; (B )顶角和底边对应相等的两个等腰三角形全等; (C )一条斜边对应相等的两个直角三角形全等; (D )两个等边三角形全等4.如图,已知AD 平分∠BAC ,AB =AC ,则此图中全等三角形有( ) A. 2对 B.3 对 C.4对 D.5对5.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,. 其中,不能使 的条件共有( ) A .1组B .2组C .3组D .4组6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是( ) A .SSS B .ASA C .AAS D .SAS 7.如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交于A DEABC DEF △≌△C '点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( )A .20B .17C .14D .78如图,已知△ACE ≌△DBF ,下列结论中正确的个数是( )第9题二、填空题:本大题共有10小题,每小题3分,共30分9.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为 . 10.如图,已知AB ∥CF ,E 为DF 的中点,若AB =9㎝,CF =5㎝,则BD = ㎝. 11如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水 平方向的长度DF 相等,则∠ABC +∠DFE = 度..12.如图,正方形ABCD 中,把△ADE 绕顶点A 顺时针旋转90°后到△ABF 的位置, 则△ADE ≌ ,AF 与AE 的关系是 .第10题 第11题第12题13.在英文大写字母A 、E 、M 、S 、U 、P中是轴对称图形的是 .14.如图,已知∠O =35°,CD 为OA 的垂直平分线,则∠ACB 的度数为___ ___.第8题图B ′C ′D ′O ′A ′ODC BA第6题第7题15.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为___________.16.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).17.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= .第16题 第17题 第18题18.如图,有一个直角三角形ABC ,∠C =90°,AC =10,BC =5, 一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于 AC 的射线AX 上运动,问P 点运动到 位置 时,才能使ΔABC ≌ΔPQA .三、解答题(本大题共有7小题,共66分)19(本题满分8分).用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹) (1)作∠ABC 的角平分线 (2)过点P 作L 的垂线20 (本题满分8分)已知:AB =AD ,BC =DE ,AC =AE ,试说明:∠1=∠2.21(本题满分8分)已知:如图,AB=CD,DE ⊥AC,BF ⊥AC,垂足分别为E 、F,AE=CF.AC D12EBA B CP . L求证:DE=BF22(本题满分8分).如图,AD 平分∠BAC ,∠BAC +∠ACD =180°,E 在AD 上,BE 的延长线交CD 于F ,连CE ,且∠1=∠2,试说明AB =AC .23. (本题满分10分)文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下: 文文:“过点A 作BC 的中垂线AD ,垂足为D ”; 彬彬:“作△ABC 的角平分线AD ”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里; (2)根据彬彬的辅助线作法,完成证明过程.24.(本题满分12分)如图,已知△A BC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:△ABE ≌△CAD ;(2)求∠AFE 的度数.ACDBE F12DCFAEB答题纸真情提示:亲爱的同学,细心、耐心、信心是答题成功必备的心理素质!一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,直接填写在相应横线上)9. 10. 11. 12 13. 14. 15. 16. 17. 18.三、解答题(本大题共有7题,共66分.请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹)(1)作∠ABC 的角平分线 (2)过点P 作L 的垂线20 (本题满8分)已知:AB =AD ,BC =DE ,AC =AE ,试说明:∠1=∠2.21(本题满分8分)22(本题满分8分)A B CP . L ACD12EBD CFAE B23. (本题满分10分)(1)(2).24.(本题满分12分) 25.(12分)两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)指出线段DC 和线段BE 的关系,并说明理由.ACDBE F12参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,接填写在相应横线上)9. 100° 10. 4cm 11. 90° 12.△ABF, 垂直且相等13. A、E、M、U 14. 70° 15. 5cm 16. 略17. 55° 18. 点C三、解答题19 20 21 22 略23(1)解:作辅助线不能同时满足两个条件;(2)证明:作△ABC的角平分线AD.∴∠BAD=∠CAD,在△ABD与△ACD中,∵∠B=∠C∠BAD=∠CADAD=AD∴△ABD≌△ACD(AAS).∴AB=AC.25:(1)⊿ABE≌⊿ACD(2)垂直且相等,证明略。
2024-2025学年八年级数学上学期第一次月考卷(南京专用)(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版八年级上册第1章-第2章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A.B.C.D.【答案】D【详解】解:A,B,C选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D.2.如图,A ABC B C ¢¢¢≌△△,其中36A Ð=°,24а=C ,则B ¢Ð=( )A .60°B .100°C .120°D .135°【答案】C 【详解】解:∵36A Ð=°,24а=C ,∴180120B A C Ð=°-Ð-Ð=°,∵A ABC B C ¢¢¢≌△△,∴120B B ¢Ð=Ð=°;故选C .3.如图所示,为了测量出河两岸A 、B 两点之间的距离,在地面上找到一点C ,连接BC ,AC ,使90ACB Ð=°,然后在BC 的延长线上确定点D ,使CD BC =,连接,此时可以证明ABC ADC △≌△,所以只要测量出的长度也就得到了A 、B 两点之间的距离,这里判定ABC ADC △≌△的理由是( )A .AASB .SASC .ASAD .SSS【答案】B 【详解】解:∵AC BD ^,∴90ACB ACD Ð=Ð=°,在ACB V 和ACD V 中,AC AC ACB ACDBC CD =ìïÐ=Ðíï=î∴()SAS ABC ADC V V ≌,故选:B .4.等腰三角形的一个角是40°,则它的顶角是( )A .40°B .70°C .100°D .40°或100°【答案】D【详解】解:当40°角为顶角时,则顶角为40°,当40°角为底角时,则两个底角和为80°,求得顶角为18080100°-°=°,故选:D .5.如图,在ABC V 中,AB 的垂直平分线DM 交BC 于点D ,边AC 的垂直平分线EN 交BC 于点E .已知ADE V 的周长为8cm ,则BC 的长为( )A .4cmB .5cmC .6cmD .8cm6.如图, ,AD BE 是 ABC V 的高线,AD 与BE 相交于点F .若6AD BD == ,且 ACD V 的面积为12,则AF 的长度为( )A .1B .32C .2D .3【答案】C7.如图,6cm BC =,60PBC QCB Ð=Ð=°,点M 在线段CB 上以3cm/s 的速度由点C 向点B 运动,同时,点N 在射线CQ 上以1cm/s 的速度运动,它们运动的时间为()s t (当点M 运动结束时,点N 运动随之结束).在射线BP 上取点A ,在M 、N 运动到某处时,有ABM V 与MCN △全等,则此时AB 的长度为( )A .1cmB .2cm 或9cm 2C .2cmD .1cm 或9cm 2【答案】D 【详解】解:①若N ABM MC V △≌,则BM CN =,AB CM =,可得:63t t =-,3AB t =,解得: 1.5t =, 4.5cm AB =;②若ABM NCM V V ≌,则BM CM =,AB CN =,可得:363t t =-,AB t =,8.如图,ABC V 中,3AC DC ==,BAC Ð的角平分线AD BD ^于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值( )A .1.5B .3C .4.5D .990HAD Ð=°,第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
2020-20201学年第一学期第一次阶段性测试初二数学试卷一、选择题1. 点P(2,-3)关于x 轴的对称点是()A.(-2,3)B.(2,3)C.(-2,3)D.(2,-3)2. 下列运算中,正确的是()A. a6÷a2=a3B.(ab)3=a3b3C.2a+3a=5a2D.(2a+b)(2a-b)=2a2-b23. 下列图形中不是轴对称图形的是()A. 有两个角相等的三角形B. 有两个角是40°、70°的三角形C. 有一个角是45°的直角三角形D. 三边之比为2:3:4 的三角形4. 如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A. 锐角三角形B. 直角三角形C.钝角三角形D. 不能确定5. 到△ABC 的三个顶点距离相等的点是()A. 三条中线的交点B. 三条角平分线的交点C. 三条高线的交点D. 三条边的垂直平分线的交点6. 下列说法:①若直线PE 是线段AB 的中垂线,则EA=EB,PA=PB;②若EA=EB,PA=PB,则直线PE 垂直平分线段AB;③若PA=PB,则点P 必是线段AB 的中垂线上的点;④若AE=BE,则经过点E 的直线垂直平分线AB,其中正确的个数为()A. 1 个B. 2 个C. 3 个D.4 个7. 下列计算27a8 ÷13a3 ÷9a2 的顺序不正确的是()A.(27 ÷13÷9)a8-3-2 B. (27a8 ÷13a3 ) ÷9a2C.27a8 ÷(13a3 ÷9a2 ) D. (27a8 ÷9a2 ) ÷13a38. 若11a--6(a-2)0 有意义,则a 的取值范围是()A. a>2B. a<1C. a≠2 或a≠1D.a≠2 且a≠19. 如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD,则△ADE 的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状10. 如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ,以下七个结论:①AD=BE;②PQ//AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥△PCQ 是等边三角形;⑦点C 在∠AOE 的平分线上,其中正确的有()A. 3 个B. 4 个C. 5 个D. 6 个第9 题图第10 题图二、填空题11. 计算:3x2·(-2xy3)= .12. 等腰三角形的周长为14,其一边长为3,那么,它的底边长为.13. 小明从镜子里看到镜子对面的钟表里的时间是2 点30 分,实际时间为 .14. 设(1+x)(2-x)=a+bx+cx2,则b+c= .15. 已知:(x-5)x=1,则整数x= .16. 如图,l1//l2,△ABC 为等边三角形,∠ABD=35°,则∠ACE= .17. 如图,在等腰△ABC 中,∠BAC=120°,DE 是AC 的垂直平分线,线段DE=1cm,则BD= cm.18. 如图,已知∠ABC=120°,BD 平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD= .第16 题图第17 题图第18 题图三、解答题19. 计算(1)3x2y·(-2xy3)3 (2)(x5 y3 -2x4 y2 + 3x3 y5 ) ÷ (-2xy)320、先化简,再求值:3a(2a2 - 4a +3)-2a2 (3a + 4) ,其中a =-2 .21、若(x2 +px -1)(x2 - 3x +q) 的积中不含x 项与x3 项3(1)求p、q 的值;(2)求代数式(-2p2q)2 +(3pq)0 +p2019q2020 的值22、作图题:(要求保留作图痕迹,不写做法)已知:如图,∠AOB 和线段EF,在平面内求作一个点P,使得点P 到∠AOB 的两边距离相等,且到点E和点F的距离也相等。
八年级数学第一次阶段性测试(试卷总分150分测试时间120分钟)命题:马月彪校对:王益龙一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是()A.2,3,4 B.3,6,11 C.4,6,10 D.5,8,14 2.如果n边形的内角和是它外角和的3倍,则n等于()A.6 B.7 C.8 D.93.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°6.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC7.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA9.如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定10.如图,四边形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130° B.120°C.110°D.125°二、填空题(11—13每题3分,14—18题每题4分,共29分)11.点P(-2,3)关于x轴的对称点P′的坐标为。
2024-2025学年八年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版)。
第Ⅰ卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是( )A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.2.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.3.(3分)若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为( )A.50°B.80°C.65°或50°D.50°或80°【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.4.(3分)如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC=α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为( )A.30°B.45°C.60°D.75°【分析】根据全等三角形的判定与性质可得∠ECB=∠GBA,从而可得∠ABC=90°=α,再根据三角形外角的性质可得β+γ=45°,即可求解.【解答】解:如图,BE=AG,∠BEC=∠AGB=90°,EC=GB,∴△BEC≌△AGB(SAS),∴∠ECB=∠GBA,∵∠ECB+∠EBC=90°,∴∠GBA+∠EBC=90°,∴∠ABC=90°=α,∵∠β+∠CBD=90°,∠CBD+∠ABD=90°,∴∠ABD=β,∵∠ADF =∠ABD +∠BAD =45°,∴β+γ=45°,∴α﹣β﹣γ=90°﹣45°=45°,故选:B .5.(3分)如图,BO 、CO 分别平分∠ABC 、∠ACB ,OD ⊥BC 于点D ,OD =2,△ABC 的周长为28,则△ABC 的面积为( )A .28B .14C .21D .7【分析】连接OA ,作OE ⊥AB 于点E ,作OF ⊥AC 于点F ,由角平分线的性质得OD =OE =OF ,进而计算△OAB 、△OAC 、△OBC 的面积和便可得结果.【解答】解:连接OA ,作OE ⊥AB 于点E ,作OF ⊥AC 于点F ,∵BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =2,∴OD =OE =OF =2,∴S △ABC =S △OAB +S △OAC +S △OBC12AB •OE +12AC •OF +12BBC •OD =12(AB +AC +BC )•OD =12×28×2=28,故选:A .6.(3分)如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的个数( )①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个【分析】过点P作PD⊥AC于D,根据角平分线的判定定理和性质定理判断①;证明Rt△PAM≌Rt△PAD,根据全等三角形的性质得出∠APM=∠APD,判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【解答】解:①过点P作PD⊥AC于D,∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,PD⊥AC,∴PM=PN,PM=PD,∴PN=PD,∵PN⊥BF,PD⊥AC,∴点P在∠ACF的角平分线上,故①正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°,∴∠ABC+∠MPN=180°,在Rt△PAM和Rt△PAD中,PM=PD PA=PA,∴Rt△PAM≌Rt△PAD(HL),∴∠APM=∠APD,同理:Rt△PCD≌Rt△PCN(HL),∴∠CPD=∠CPN,∴∠MPN=2∠APC,∴∠ABC+2∠APC=180°,②正确;③∵PA平分∠CAE,BP平分∠ABC,∴∠CAE=∠ABC+∠ACB=2∠PAM,∠PAM=12∠ABC+∠APB,∴∠ACB =2∠APB ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D .二.填空题(共10小题,满分30分,每小题3分)7.(3分)“线段、角、三角形、圆”这四个图形中,一定是轴对称图形的有 个.【分析】根据轴对称图形的概念分析判断即可得解.【解答】解:线段是轴对称图形,对称轴是线段的垂直平分线和线段本身所在的直线,角是轴对称图形,对称轴是角平分线所在的直线,三角形不一定是轴对称图形,圆是轴对称图形,对称轴是经过圆心的直线.综上所述,是轴对称图形的有3个.故答案为:3.8.(3分)请仔细观察用直尺和圆规作一个角∠A 'O 'B '等于已知角∠AOB 的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A 'O 'B '=∠AOB 的依据是 .【分析】由作法易得OD =O ′D ′,OC =O ′C ′,CD =C ′D ′,依据SSS 定理得到△COD ≌△C 'O 'D ',由全等三角形的对应角相等得到∠A ′O ′B ′=∠AOB .【解答】解:由作法易得OD =O ′D ′,OC =O ′C ′,CD =C ′D ′,在△COD 与△C ′O ′D ′中,OD =O′D′OC =O′C′CD =C′D′,∴△COD ≌△C 'O 'D '(SSS ),∴∠A 'O 'B '=∠AOB (全等三角形的对应角相等).故答案为:SSS .9.(3分)如图,△ABC ≌△ADE ,延长BC ,分别交AD ,ED 于点F ,G ,若∠EAB =120°,∠B =30°,∠CAD =10°,则∠CFD = .【分析】利用全等三角形的性质求出∠CAB =∠EAD =55°,再利用三角形的外角的性质求解.【解答】解:∵△ABC ≌△ADE ,∴∠CAB =∠EAD ,∵∠EAB =120°,∠DAC =10°,∴∠CAB =∠EAD =12(120°﹣10°)=55°,∴∠FAB =∠CAD +∠CAB =10°+55°=65°,∴∠CFD =∠FAB +∠B =65°+30°=95°.故答案为:95°.10.(3分)如图,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .若BM =3cm ,CN =2cm ,则MN = cm .【分析】根据平行线性质和角平分线的性质先证出∠MBO =∠MOB ,∠NOC =∠NCO ,从而得出OM =BM ,ON =CN ,再根据MN =MO +ON ,即可求出MN 的值.【解答】解:∵MN ∥BC ,∴∠OBC =∠MOB ,∠OCB =∠NOC ,∵OB 是∠ABC 的角平分线,OC 是∠ACB 的角平分线,∴∠MBO =∠OBC ,∠NCO =∠OCB ,∴∠MBO =∠MOB ,∠NOC =∠NCO ,∴OM=BM,ON=CN,∵BM=3cm,CN=2cm,∴OM=3cm,ON=2cm,∴MN=MO+ON=3+2=5cm;故答案为:5.11.(3分)如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数有 个.【分析】分两种种情况,CA=CB,BA=BC.【解答】解:如图所示:分两种种情况:当C在C1,C2,C3,C4位置上时,AC=BC;当C在C5,C6位置上时,AB=BC;即满足点C的个数是6,故答案为:6.12.(3分)如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为 .【分析】利用直角三角形斜边中线的性质即可解决问题.【解答】解:在Rt △BAC 和Rt △BDC 中,∵∠BAC =∠BDC =90°,O 是BC 的中点,∴AO =12BC ,DO =12BC ,∴DO =AO ,∵AO =3,∴DO =3,故答案为3.13.(3分)如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若BC =6,则AE +AF = .【分析】根据等边三角形的性质可得AB =AC =BC =6,∠B =∠C =60°,再根据垂直定义可得∠DEB =∠DFC =90°,从而可得∠EDB =30°,∠FDC =30°,然后利用含30度角的直角三角形的性质可得BE =12BD ,CF =12CD ,从而可得BE +CF =12BC =6,最后利用线段的和差关系进行计算即可解答.【解答】解:∵△ABC 是等边三角形,∴AB =AC =BC =6,∠B =∠C =60°,∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°,∴∠EDB =90°﹣∠B =30°,∠FDC =90°﹣∠C =30°,∴BE =12BD ,CF =12CD ,∴BE +CF =12BD +12CD =12BC =3,∴AE +AF =AB +AC ﹣(BE +CF )=9,故答案为:9.14.(3分)如图,在△ABC 中,AD 为BC 边的中线,E 为AD 上一点,连接BE 并延长交AC 于点F ,若∠AEF=∠FAE,BE=4,EF=1.6,则CF的长为 .【分析】延长AD至G,使DG=AD,连接BG,可证明△BDG≌△CDA(SAS),则BG=AC,∠CAD=∠G,根据AF=EF,得∠CAD=∠AEF,可证出∠G=∠BEG,即得出AC=BE=4,然后利用线段的和差即可解决问题.【解答】解:如图,延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,BD=CD∠BDG=∠CDA DG=DA,∴△BDG≌△CDA(SAS),∴BG=AC,∠CAD=∠G,∵∠AEF=∠FAE,∴∠CAD=∠AEF,∵∠BEG=∠AEF,∴∠CAD=∠BEG,∴∠G=∠BEG,∴BG=BE=4,∴AC=BE=4,∵∠AEF=∠FAE,∴AF=EF=1.6,∴CF=AC﹣AF=4﹣1.6=2.4.故答案为:2.4.15.(3分)如图,在△ABC中,∠A=56°,∠C=46°,D是线段AC上一个动点,连接BD,把△BCD沿BD折叠,点C落在同一平面内的点C'处,当C'D平行于△ABC的边时,∠CDB的大小为 .【分析】分三种情况讨论,一是C′D∥AB,则∠ADC′=∠A=56°,所以∠CDC′=124°,得∠CDB=118°;二是C′D∥BC,则∠ADC'=∠C=46°,得∠CDB=67°;三是由于点D在AC 上,所以不存在C′D与AC平行的情况,于是得到问题的答案.【解答】解:∵把△BCD沿BD折叠,点C落在点C′处,∴∠CDB=∠C′DB,当C′D∥AB时,如图1,则∠ADC′=∠A=56°,∴∠CDC′=180°﹣∠ADC′=124°,∴∠CDB=12×(360°﹣124°)=118°;当C′D∥BC时,如图2,则∠ADC'=∠C=46°,∴∠CDB=12×(180°﹣46°)=67°;∵点D在AC上,∴不存在C′D与AC平行的情况,综上所述,∠CDB=118°或∠CDB=67°,故答案为:118°或67°.16.(3分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点C在直线l上.点P从点A出发,在三角形边上沿A→C→B的路径向终点B运动;点Q从B点出发,在三角形边上沿B→C→A的路径向终点A运动.点P和Q分别以1单位/秒和2单位/秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点要继续运动,直到两点都到达相应的终点时整个运动才能停止.在某时刻,分别过P和Q作PE⊥l于点E,QF⊥l于点F,则点P的运动时间等于 秒时,△PEC与△CFQ全等.【分析】分四种情况,点P在AC上,点Q在BC上;点P、Q都在AC上;点P到BC上,点Q 在AC上;点Q到A点,点P在BC上.【解答】解:∵△PEC与△CFQ全等,∴斜边PC=斜边CQ,分四种情况:当点P在AC上,点Q在BC上,如图:∵CP=CQ,∴6﹣t=8﹣2t,∴t=2,当点P、Q都在AC上时,此时P、Q重合,如图:∵CP=CQ,∴6﹣t=2t﹣8,∴t=14 3,当点P到BC上,点Q在AC上时,如图:∵CP =CQ ,∴t ﹣6=2t ﹣8,∴t =2,不符合题意,当点Q 到A 点,点P 在BC 上时,如图:∵CQ =CP ,∴6=t ﹣6,∴t =12,综上所述:点P 的运动时间等于2或143或12秒时,△PEC 与△CFQ 全等,故答案为:2或143或12.三.解答题(共8小题,满分72分)17.(6分)如图所示,E 为AB 延长线上的一点,AC ⊥BC ,AD ⊥BD ,AC =AD求证:∠CEA =∠DEA .【分析】首先利用“HL ”证明Rt △ABC ≌Rt △ABD ,得出∠CAB =∠DAB ,进一步利用“SAS ”证得△ACE ≌△ADE ,证得∠CEA =∠DEA .【解答】证明:∵AC ⊥BC ,AD ⊥BD ,∴∠ACB =∠ADB =90°,在Rt △ABC 和Rt △ABD 中,AC =AD AB =AB∴Rt △ABC ≌Rt △ABD (HL ),∴∠CAB=∠DAB,在△ACE和△ADE中,AC=AD∠CAE=∠DAE AE=AE∴△ACE≌△ADE(ASA),∴∠CEA=∠DEA.18.(6分)已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.【分析】(1)连接BM、DM,根据直角三角形斜边上的中线等于斜边的一半可得BM=DM=12 AC;(2)根据等腰三角形三线合一的性质证明即可.【解答】(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=12 AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.19.(8分)作图:(1)如图1,△ABC在边长为1的正方形网格中:①画出△ABC关于直线l轴对称的△DEF(其中D、E、F是A、B、C的对应点);②直接写出△DEF的面积= .(2)如图,画一个等腰△ABC,使得底边BC=a,它的高AD=h(保留作图痕迹,不写作法).【分析】(1)①分别作出点A,B,C关于直线l的对称点,再顺次连接即可得;②利用割补法求解可得;(2)先画BC=a,进而作出BC的垂直平分线DM,交BC于D,以D为圆心,h为半径画弧,交DM于点A,连接AB,AC即可.【解答】解:(1)①如图1所示,△DEF即为所求;;②△DEF的面积为4×5﹣0.5×1×5﹣0.5×1×4﹣0.5×3×4=9.5,故答案为:9.5;(2)如图2所示.△ABC就是所求的三角形..20.(8分)如图,△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,连接AE,AG.(1)若△AEG的周长为10,求线段BC的长;(2)若∠BAC=104°,求∠EAG的度数.【分析】(1)根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据三角形的周长公式计算,得到答案;(2)根据三角形内角和定理得到∠B+∠C=76°,根据等腰三角形的性质求出∠EAB+∠GAC,结合图形计算即可.【解答】解:(1)∵DE垂直平分AB,GF垂直平分AC,∴EA=EB,GA=GC,∵△AEG的周长为10,∴AE+EG+AG=10,∴BC=BE+EG+GC=AE+EG+GC=10;(2)∵∠BAC=104°,∴∠B+∠C=180°﹣104°=76°,∵EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAB+∠GAC=∠B+∠C=76°,∴∠EAG=∠BAC﹣(∠EAB+∠GAC)=104°﹣76°=28°.21.(10分)如图,△ABC D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求证:DE平分∠ADC;=15,求△ABE的面积.(2)若AB=7,AD=4,CD=8,且S△ACD【分析】(1)过点E作EG⊥AD于G,EH⊥BC于H,先通过计算得出∠FAE=∠CAD=40,根据角平分线的性质得EF=EG,EF=EH,进而得EG=EH,据此根据角平分线的性质可得出结论;(2)设EG=x,由(1)得:EF=EH=EG=x,根据S=15,AD=4,CD=8可求出x=2.5,△ACD故得EF=2.5,然后S△ABE=1/2AB•EF可得出答案.【解答】(1)证明:过点E作EG⊥AD于G,EH⊥BC于H,如图:∵EF⊥AB,∠AEF=50°,∴∠FAE=90°﹣50°=40°,∵∠BAD=100°,∴∠CAD=180°﹣100°﹣40°=40°,∴∠FAE=∠CAD=40,即CA为∠DAF的平分线,又EF⊥AB,EG⊥AD,∴EF=EG,∵BE是∠ABC的平分线,∴EF=EH,∴EG=EH,∴点E在∠ADC的平分线上,∴DE平分∠ADC;(2)解:设EG=x,由(1)得:EF=EH=EG=x,∵S△ACD=15,AD=4,CD=8,∴12AD•EG+12CD•EH=15,即:4x+8x=30,解得:x=2.5,∴EF=x=2.5,∴S△ABE =12AB•EF=12×7×2.5=354.22.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,EC⊥AC,垂足为C,AE交线段BC于F,D是AC边上一点,连接BD,且BD=AE.(1)求证:CE=AD;(2)BD与AE有怎样的位置关系?证明你的结论;(3)当∠CFE=∠ADB时,求证:BD平分∠ABC.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可;(3)证出FB=AB,由等腰三角形的性质可得出结论.【解答】(1)证明:∵∠BAC=90°,EC⊥AC,∴∠ACE=∠BAD=90°,在Rt△ACE和Rt△BAD中,AE=BD CA=AB,∴Rt△ACE≌Rt△BAD(HL),∴CE=AD;(2)解:BD⊥AE,证明:∵△ACE≌△BAD,∴∠CAE=∠ABD,∴∠AOD=∠BAE+∠ABD=∠BAE+∠CAE=∠BAC=90°,∴AE⊥BD.(3)证明:∵∠ADB+∠DAE=∠DAE+∠BAE=90°,∴∠ADB=∠BAE,∵∠CFE=∠ADB,∠CFE=∠AFB,∴∠AFB=∠BAE.∴FB=AB,∵BD⊥AE,∴∠ABD=∠FBD,即BD平分∠ABC.23.(12分)(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,进而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,进而得出△BDF≌△AEF=EF,∠BFD=∠AFE,而得出∠DFE=60°,即可推出△DEF为等边三角形.【解答】(1)证明:如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠BDA=∠CEA ∠CAE=∠ABD AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立.理由:如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,∠BDA=∠CEA ∠CAE=∠ABD AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)证明:如图3,由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,在△DBF和△EAF中,BD=AE∠DBF=∠FAE BF=AF,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.24.(12分)定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图1,BE 是△ABD 的“双等腰线”,AD 、BE 是△ABC 的“三等腰线”.(1)请在图2三个图中,分别画出△ABC 的“双等腰线”,并做必要的标注或说明.(2)如果一个等腰三角形有“双等腰线”,那么它的底角度数是 .(3)如图3,△ABC 中,∠C =32∠B ,∠B <45°.画出△ABC 所有可能的“三等腰线”,使得对∠B 取值范围内的任意值都成立,并做必要的标注或说明.(每种可能用一个图单独表示,如果图不够用可以自己补充)【分析】(1)根据等腰三角形的性质和三角形内角和解答即可;(2)设底角度数为x,分三种情况利用等腰三角形的性质和三角形内角和解答即可;(3)根据两种情况、利用等腰三角形的性质和三角形内角和解答即可.【解答】解:(1)如图2,取AB的中点D,则AD=CD=BD,∴△ADC和△BCD是等腰三角形;如图3,取CD=BC,则∠CDB=∠B=70°,∵∠A=35°,∴∠ACD=70°﹣35°=35°,∴∠ACD=∠A,∴AD=CD=BC,∴△ADC和△BCD是等腰三角形;如图4,作AB的垂直平分线DE,交AC于D,交AB于E,连接BD,∴AD=BD,∴∠A=∠ABD=27°,∴∠CDB=54°,∵∠ABC=81°,∴∠CBD=81°﹣27°=54°=∠BDC,∴CD=BC,∴△ADB和△BCD是等腰三角形;(2)①设△ABC是以AB、AC为腰的锐角三角形,BD为“双等腰线”,如图5,当AD=BD,BD=BC时,设∠A=x°,则∠ABD=x°,∴∠BDC=∠C=2x°,∴∠ABC=∠C=2x°,∵∠A+∠ABC+∠C=180°,∴x°+2x°+2x°=180°,∴x=36°,2x=72°,∴∠C=72°,②设△ABC是以AB、AC为腰的钝角三角形,AD为“双等腰线”,如图6,当AB=BD,AD=CD时,设∠B=y°,则∠C=y°,∵AD=CD,∴∠DAC=∠C=y°,∴∠ADB=2y°,∵AB=BD,∴∠BAD=∠ADB=2y°,∵∠B+∠BAD+∠ADB=180°,∴y°+2y°+2y°=180°,∴y=36°,∴∠B=∠C=36°,③设△ABC是以AB、AC为腰的直角三角形,AD为“双等腰线”,如图7,当AB =BD ,AD =CD 时,AD 为BC 的垂直平分线,设∠B =z °,则∠C =z °,∠BAD =z °,∴∠B +∠BAD =90°,∴z °+z °=90°,∴z =45°,∴∠B =∠C =45°,④设顶角为x ,可得,x +3x +3x =180°解得:x =(1807)°,∴∠C =3x =(5407)°,故答案为:72°或36°或45°或(5407)°;(3)∵要画出使得对∠B 取值范围内的任意值都成立的“三等腰线”,∴不能使∠B 等于具体的数值,∴值需要使分割后的三个等腰三角形的底角成比例即可,第一种画法:如图8,∵∠C=32∠B,设∠B=2x°,∠C=3x°,当AD、DE将△ABC分成BD=DE,DE=AE,AD=AC的三个等腰三角形时,则有∠BED=∠B=2x°,∠ADC=∠C=3x°,∵∠EDC=∠B+∠BED=4x°,∴∠EDA=∠EDC﹣∠ADC=x°,∴∠EAD=x°,∴“三等腰线”使得三个等腰三角形的底角比为∠B:∠C:∠EDA=2:3:1,即可使得对∠B取值范围内的任意值都成立,第二种画法:∵∠C=32∠B,设∠B=2x°,∠C=3x°,当AD、DE将△ABC分成BE=DE,AD=AE,AD=CD的三个等腰三角形时,则∠EDB=∠B=2x°,∠DAC=∠C=3x°,∵∠AED=∠B+∠BDE=4x°,∴∠EDA=4x°,因此,“三等腰线”使得三个等腰三角形的底角比为∠B:∠C:∠AED=2:3:4,即可使得对∠B取值范围内的任意值都成立,综上所述,如图所示的两种“三等腰线”可以使得对∠B取值范围内的任意值都成立.。
八年级数学第一次学情调研一、选择题(每小题3分,共18分。
)学生姓名 __________ 得分______________1.在下面的汽车标志图形中,是轴对称图形有(A. 1个B. 2个C. 3个D. 4个2.如图,在△力氏中,ZA=36° , ABAC,劭是的角平分线.若在边上截取B&BC,连接化;则图中等腰三角形共有()A. 2 个B. 3 个C. 4 个.D. 5 个3.下列四组线段中,可以构成直角三角形的是()A. 4, 5, 6B. 1.5, 2, 2.5C. 2, 3, 4D. 1,迈,34.已知等腰三角形的一个角是100°,则它的顶角是()A. 40°B. 60°C. 80°D. 100°5.一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7B. 9C. 12D. 9 或126.在元旦联欢会上,3名小朋友分别站在AABC三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置时在AABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三边中线的交点D.三边上高的交点二、填空题(本大题共10小题,每小题3分,共30分・)7.4的平方根是_____ ・8.黑板上写着IBS02在正对着黑板的镜子里的像是—・9.若一正数的两个平方根分别是2a・1与2a+5,则这个止数等于___________ ・10.已知三角形ABC中ZC=90° , AC二3, BC=4,则斜边AB上的高为 _________ ・11.如图所示,AB二AC, AD二AE, ZBAC=ZDAE, Zl=25°, Z2=30°,则Z3二 ___________ .12.如图,在AABC中,AB=AC, DE是AB的中垂线,ABCE的周长为16, BC=7,则AB的长为_______ .13.如图,BD是ZABC的角平分线,DE±AB于E, AABC的面积是30cm2, AB=14cm,14••如图,用四个全等的等腰梯形拼成四边形ABCD, .15.如图,E 为正方形ABCD 边AB 上一点,BE=3AE=6, PA+PE 的最小值是 ・第15题16. 如图:已知在RtAABC 中,ZACB =90°, ZBAC =30°,在直线AC 上找点P,使得AABP 是等腰三角形,则ZAPB 的度数为 ________________________ ・三、解答题(本大题共11小题,共102分,请在答题纸指定区域内作答。
苏科版数学 八年级上学期 期末测试题1、下列说法中,正确的个数是( )(1)轴对称图形只有一条对称轴,(2)轴对称图形的对称轴是一条线段,(3)两个图形成轴对称,这两个图形是全等图形,(4)全等的两个图形一定成轴对称,(5)轴对称图形是指一个图形,而轴对称是指两个图形而言。
A 1个B 2个C 3个D 4个2、轴对称图形的对称轴的条数( )A 只有一条B 2条C 3条D 至少一条3、下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段4、到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5、 在△ABC 中,AB=AC ,BC=5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( )A 、12cmB 、6 cmC 、 7 cmD 、5 cm6、如图,⊿ABC 中,BC =10,边BC 的垂直平分线分别交AB 、AC 于点E 、F ,BE =7,⊿BCE 的周长为_____。
7、如图,A 、B 是公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。
8、点Q 在∠AOB 的平分线上,QA ⊥OA 于A ,QB ⊥OB 于B ,则AQ =____ ,理由是_____________________________________。
9、如图,∠C=900,∠1=∠2,若BC=10,BD=6,则D到边AB的距离为_____。
10、如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________。
依据是_______________________________。
新苏科版八年级数学上册第一次阶段调研试卷
一、选择题:
1、如图,下列图案中,其中是轴对称图形的有 ( )
A、1个 B、2个 C、3个 D、4个
2、如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为 ( )
A:2 B:3 C:5 D:2.5
3.下列说法中,正确的是 ( )
A、关于某直线对称的两个三角形是全等三角形
B、全等三角形是关于某直线对称的
C、两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧
D、有一条公共边的两个全等三角形关于公共边所在的直线对称
4.下列条件中不能判断两个三角形全等的是 ( ) A、
有两边和它们的夹角对应相等. B、有两边和其中一边的对角对应相等.
C、有两角和它们的夹边对应相等. D、有两角和其中一角的对边对应相等.
5.在ΔABC和ΔFED中,∠A=∠F,∠B=∠E,要使这两三角形全等,还需要的条件是 ( )
A、AB=DE B、BC=EF C、AB=FE D、∠C=∠D
6.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有 ( )
A、 2对 B、3 对 C、4对 D、5对
7.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其
运用全等的方法是 ( )
A、SAS B、ASA C、AAS D、SSS
第6题 第 7题 第8题
8.AD是ABC△的中线, DEDF.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF
∥CE;④△BDF≌△CDE.其中正确的有 ( )
A、1个 B、2个 C、3个 D、4个
9.下列说法正确的是 ( )
A、两边和一角对应相等的两三角形全等 B、两边对应相等的两个三角形全等
C、一锐角和一边对应相等的两个直角三角形全等 D、所有的等边三角形都全等
F E
D
A
B C
A
D
C
B
E
F
(第2题)
F
E
C
B
A
10 如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(
A.CB=CD B.∠BAC=∠DAC
C.∠BCA=∠DCA D.∠B=∠D=90°
二、填空题:(每空3分,共21分
12. 如图,已知△ABC的两条高AD、BE交于F,AE=BE,若要运用“HL”说明△AEF≌△BEC,
还需添加条件: .
13. 如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有_________对.
第12题 第13题 第14题
14. 如图,方格纸中△ABC的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点
三角形,图中与△ABC全等的格点三角形共有__________个(不含△ABC).
15、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______;
第16题
16.如图,一个直角三角形ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分
别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到 位置时,才
能使ΔABC≌ΔQPA.。
三.解答题
17. 如图所示,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD, 垂足分别为F、E,BF=CE,
求证:AB∥CD.
P
Q
C A
B
x
A
D
C
B
E
F
AFCEB
D
(第14题)
D
C
B
A
第15题
18.作图题
(1)作出△ABC关于直线l对称的△DEF
C
A
B l
第(1)题 第(2)题
(2)如图②:在3×3网格中,已知线段AB、CD,以格点为端点画线段,使它与AB、CD组成轴
对称图形.(画出所有可能)
19.已知:AB=AD,BC=DE,AC=AE,试说明:∠1=∠2 .
20. 已知如图,BE⊥CD,BE=DE,BC=DA,
求证:(1)△BEC≌△DA (2)DF⊥BC
A
C
D
1
E
2
B
21.△ABC中,∠ ACB=90°,AC=BC,直线l过点C,BD⊥ l,AE⊥ l,垂足分别为D、E。
(1)当A、B在直线l同侧时,如图1,
① 证明:△AEC≌△DCB;
② 若AE=3 ,BD=4 ,计算△ACB的面积.(提示:间接求)
(2)当A、B在直线l两侧时,如图2,若AE=3 ,
BD=4,连接AD,BE直接写出梯形ADBE
的面积 .
22、(13分)如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥
AC,若AB=CD.
(1)图①中有 对全等三角形,并把它们写出来
(2)求证:BD与EF互相平分于G;
(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是
否成立,如果成立,请予证明.
第