正余弦定理的实际应用
- 格式:docx
- 大小:124.97 KB
- 文档页数:5
正余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).解:由图知,60CAD ∠=︒.22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,sin B =. 在ABC ∆中,sin 24sin BC B AC A ⋅==.由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos60AB AB =+-⋅⋅⋅︒.整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米).答:此人所在D 处距A 还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.2.航海中正、余弦定理的应用例2 在海岸A 处,发现北偏东45︒方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C 处的缉私船奉命以/小时A C D 312120 35︒25︒ 东 北的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间? 分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到D 所需的航行时间.解:设缉私船追上走私船所需时间为t 小时,则有CD =,10BD t =.在ABC △中,∵1AB =,2AC =,4575120BAC ∠=︒+︒=︒,根据余弦定理可得BC ==根据正弦定理可得2sin120sin 2AC ABC BC ︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===,∴30BCD =︒△,30BDC ∠=︒,∴BD BC ==则有10t =0.24510t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .如图,在ABM △中,由已知,得1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.又12018066060AB =⨯=⨯(km ), A B DM 45︒75︒ 30︒ ACDB根据正弦定理,可得6sin1830'sin 6230'BM ︒=︒,进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ),可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒, 6000CD =,45ACD ∠=︒,根据正弦定理有sin 45sin 60CD AD ︒==︒, 同理,在BCD △中,180135CBD BCD BDC ∠=︒-∠-∠=︒,6000CD =,30BCD ∠=︒,根据正弦定理有sin 30sin1352CD BD CD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,根据勾股定理有:AB ====所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.30︒ 45︒ 75︒AC D 15︒解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得sin(18060)sin(60)OP PQx =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2≤-=. 当cos(260)1x -︒=即30x =︒时,S2. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.在POQ △中,由正弦定理得:sin(18030)sin(30)R Rx =︒-︒︒-,∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).∴当15x =︒时,S取得最大值2(2R .∵22(26R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.ABQ POxMN (1)ABQPOxMNED(2)。
余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。
1、航海在航海中,正余弦定理被广泛用于计算方向角。
当航行在广阔的海域或天空时,确定目标的方向是至关重要的。
通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。
2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。
由于地球是一个球体,因此需要使用球面三角学来进行计算。
通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。
3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。
例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。
通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。
4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。
例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。
通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。
正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。
即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。
2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。
即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
正、余弦定理应用举例正弦定理、余弦定理沟通了三角形中边与角的关系,用这两个定理可以实现边与角的互化,从而简化过程,指明解题方向.下面举例说明正、余弦定理在解题中的具体应用.(以下例题中角A B C ,,所对应的边分别为a b c ,,)1.判断三角形的形状对于同时含有边角关系的条件式,可用余弦定理化角为边,通过熟知的代数式变形来求解;也可用正弦定理化边为角,再用相应的三角公式求解.例1 在ABC △中,已知22(cos cos )()cos a b B c C b c A -=- ,试判断ABC △的形状. 解:根据余弦定理,得22222222222()222a c b a b c b c a a b c b c ac ab bc ⎛⎫+-+-+--=- ⎪⎝⎭, 整理得22222()()0b c b c a -+-=,因此b c =或222b c a +=,所以三角形为等腰三角形或直角三角形.例2 在ABC △中,如果cos cos a B a C b c +=+,试判断ABC △的形状. 解:根据正弦定理,得sin (cos cos )sin sin A B C B C +=+, 即2sincos 2cos cos 2sin cos 222222A ABC B C B C B C +-+-= , 在ABC △中,∵cos sin 22A B C +=,sin cos 22A B C +=, 上式可化简为22sin 12A =,∴2cos 12sin 1102A A =-=-=. 又0πA <<,∴π2A =. 故ABC △为直角三角形. 2.求三角函数的值对于三角形中的求值问题,通常将各三角函数式化为正弦、余弦的形式,为运用正弦定理和余弦定理创造条件.例3 在ABC △中,如果222225a b c +=,求cot cot cot C A B+的值. 解:cos cot sin cos cos cot cot sin sin CC C A B A B A B=++ 2sin sin cos sin sin cos sin cos cos sin sin sin A B C A B C B A B A C C==+ , 由正弦定理和余弦定理可知22222222cot cot cot 22C ab a b c a b c A B c ab c +-+-==+ ,将已知条件222225a b c +=代入上式得2225cot 32cot cot 24c c C A B c -==+. 3.证明三角恒等式对于三角形中边角关系的证明问题,可以用正弦定理、余弦定理,实现边的关系与角的关系的相互转化,从而达到证明的目的.例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:∵2222cos 2222a c b bc c b c a B ac ac a b+-++====, ∴22222222222cos 22cos 1214222a a b b bc b c b B B b b b b -+--=-=⨯-===. 又222222()cos 222b c a b c bc b c b A bc bc b+-+-+-===, ∴cos cos 2A B =,而A B ,是三角形的内角,∴2A B =.4.在解析几何中的应用例5 已知点P 到两定点(10)M -,、(10)N ,点N 到直线PM 的距离为1,求直线PN 的方程.分析:如右图,求出直线PN 的斜率即可,问题转化为在PMN △中求PNM ∠,由正弦定理易求得sin PNM ∠. 解:因为2MN =,点N 到直线PM 的距离为1,∴30PMN ∠=. 由正弦定理,得sin sin PM PN PNM PMN =∠∠,又PMPN =sin PNM ∠=, ∴45PNM ∠= 或135 ,∴直线PN 的倾斜角为45 或135 ,∴1PN k =±,∴直线PN 的方程为1y x =-或1y x =-+.。
正、余弦定理在实际生活中的应用正、余弦定理是解决三角形中各种角和边的关系的数学定理,在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决问题。
首先,正、余弦定理在建筑设计中有着重要的应用。
在设计建筑物的过程中,设计师需要考虑到各个角度和边的关系,确保建筑物的结构稳固。
正、余弦定理可以帮助设计师计算出各个角的大小,以及边的长度,从而确保建筑物的各个部分都符合设计要求。
其次,正、余弦定理在地理测量中也有着重要的应用。
地理测量需要测量地表上各种地理现象的位置和距离,这就需要考虑到三角形的各个角和边的关系。
利用正、余弦定理,地理测量员可以计算出地表上各种地理现象之间的距离和方向,从而为地理学研究提供数据支持。
此外,正、余弦定理在航海航空中也有着重要的应用。
航海员和飞行员需要根据地图上的各种地理现象和飞行路径来确定航行方向和
距离。
利用正、余弦定理,航海员和飞行员可以计算出航行方向和距离,确保航行的安全和准确。
最后,正、余弦定理在工程建设中也有着重要的应用。
工程建设需要考虑到各种地形和地貌的情况,从而确定工程设计方案和施工路径。
利用正、余弦定理,工程师可以计算出各种地形和地貌之间的距离和角度,从而确保工程建设的顺利进行。
综上所述,正、余弦定理在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决各种问题。
正、余弦定理的应用不仅帮助我们解决各种实际问题,还为我们的生活和工作提供了便利和支持。
因此,正、余弦定理在实际生活中的应用是非常重要的。
正余弦定理的实际应用
一、知识回顾
1.用正弦定理和余弦定理解三角形的常见题型
测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角
(1)仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).
(2)方位角
指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.
(4)坡度:坡面与水平面所成的二面角的度数.
二、解题技巧
一个步骤
解三角形应用题的一般步骤:
(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.
(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.
(3)根据题意选择正弦定理或余弦定理求解.
(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.
两种情形
解三角形应用题常有以下两种情形
(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.
(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时
需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.三、例题讲解
(一)、测量距离问题
例1、如图所示,
为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和
∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.
变式1、如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛
上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,
于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间
距离与另外哪两点间距离相等,然后求B,D的距离.
(二)、测量高度问题
例2、如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C
测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
变式2、如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.
(三)正、余弦定理在平面几何中的综合应用
例3、如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.
变式3如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC =14,DC=6,求AB的长.
(四)航海问题
例4、如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.
变式4、如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?。