随机过程期末知识点(李裕奇)
- 格式:docx
- 大小:185.96 KB
- 文档页数:5
第3章《随机过程》要点
1、信号的分析方法有哪些?
2、如何区分能量信号和功率信号?什么是功率谱?如何计算功率信号的功率谱密度?
3、通信系统中的随机性体现在哪几个方面?
4、通信原理中用到了哪些典型的随机过程(信号)?
5、随机过程与随机变量的联系与区别?
6、研究随机过程的方法有哪些?(提示:从时域和频域分析,以及通信LTI系统分析方法考虑)
7、随机过程的一维概率密度、二维概率密度、一维数字特征(含义)、二维数字特征(含义)。
8、平稳过程与各态历经过程分析,重点掌握时间平均算法。
9、高斯过程定义、性质及其一维分布函数的求解方法。
10、高斯白噪声分析
11、窄带随机过程分析:定义、表达方法、性质
12、平稳信号通信LTI系统的分析方法及相应结论。
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
高等数学中的随机过程相关知识点详解近年来,随机过程被越来越多的人所关注和使用。
作为高等数学的一个分支,随机过程具有广泛的应用领域,包括金融、医学、生物学等等。
在本文中,将详细解析高等数学中的随机过程相关知识点,帮助读者更好地理解和应用这一领域的知识。
一、概率论基础在进行随机过程的学习之前,我们需要了解一些概率论的基础知识。
概率论是确定不确定性的一种科学方法,它研究的是随机事件的发生规律和概率计算方法。
在概率论中,有一些基本概念和公式,包括概率、条件概率、概率分布、随机变量等等。
1.1 概率概率是指一个事件发生的可能性大小。
通常用P来表示,它的取值范围是0到1。
当P=0时,表示这个事件不可能发生;当P=1时,表示这个事件一定会发生。
例如,掷一枚硬币正面朝上的概率为1/2,或者说P=0.5。
1.2 条件概率条件概率是指在已知某些条件下,某个事件发生的概率。
通常用P(A|B)来表示,表示在B发生的情况下,A发生的概率。
例如,从一副牌中摸两张牌,第一张是红桃,第二张是黑桃的概率为P(第二张是黑桃|第一张是红桃)=26/51。
1.3 概率分布概率分布是指所有可能事件发生的概率分布,它是概率论的基础。
在不同的情况下,概率分布也是不同的。
例如,在离散型随机变量中,概率分布通常以概率质量函数的形式给出;而在连续性随机变量中,概率分布通常以概率密度函数的形式给出。
1.4 随机变量随机变量是一种随机事件的数学描述。
它通常用大写字母表示,如X、Y、Z等等。
根据其取值的类型,随机变量可以分为离散型和连续型。
离散型随机变量只能取到有限或可数个值,如掷硬币、扔骰子等等;而连续型随机变量可以取到任意实数值,如身高、体重等等。
二、随机过程的基本概念2.1 随机过程的定义随机过程是一种描述随机事件随时间变化的方法。
它可以看作是有限维随机变量序列的无限集合,其中每个随机变量代表系统在某个时刻的状态。
随机过程的定义包括两个方面:空间(状态集合)和时间(时刻集合)。
应用随机过程学习总结(小编整理)第一篇:应用随机过程学习总结应用随机过程学习总结一、预备知识:概率论随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。
1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。
符号解释:sup表示上确界,inf 表示下确界。
本帖隐藏的内容2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。
其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。
3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。
条件期望中,最重要的是理解并记忆E(X)= E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。
二、随机过程基本概念和类型随机过程是概率空间上的一族随机变量。
因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。
同样,随机过程的有限维分布也通过某些数值特征来描述。
1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差t-s有关,r(t)= r(-t)记为宽平稳随机过程。
因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。
2、独立增量过程:若X[Tn]–X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。
若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。
兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。
应用随机过程知识点引言随机过程是概率论中一个重要的概念,它描述了随机事件随时间的演变规律。
应用随机过程的知识点在各个领域都有着广泛的应用,例如金融、电信、物流等。
本文将介绍应用随机过程的几个重要知识点,并逐步展开思路,帮助读者理解和应用这些知识点。
1. 马尔科夫链马尔科夫链是一个离散状态随机过程,其特点是未来状态的概率只依赖于当前状态,而与过去的状态无关。
这个特性使得马尔科夫链成为许多实际问题的建模工具。
下面我们通过一个简单的例子来说明。
假设有一个赌徒每天可以处于三种状态之一:破产、中等偏下和富有。
假设他的状态在每一天有以下转移概率: - 从破产到中等偏下的概率为0.6,到富有的概率为0.4; - 从中等偏下到破产的概率为0.3,到富有的概率为0.2; - 从富有到破产的概率为0.1,到中等偏下的概率为0.4。
我们可以用一个马尔科夫链来描述这个赌徒的状态转移过程。
首先,我们定义一个状态空间:S = {破产,中等偏下,富有}。
然后,我们可以构建一个状态转移矩阵,记为P,其中P(i, j)表示从状态i转移到状态j的概率。
根据上述例子,我们可以得到如下状态转移矩阵:P = [[0,6 0.3 0.1][0.4 0 0.4][0.4 0.2 0]]通过这个状态转移矩阵,我们可以计算赌徒在未来几天内处于各个状态的概率分布。
这个例子简单地展示了马尔科夫链的应用,它可以帮助我们理解系统的演化规律,并对未来的状态进行预测。
2. 泊松过程泊松过程是一个连续时间的随机过程,它描述了某个事件在一段时间内发生的次数,满足以下几个特性: - 事件在任意时间间隔上的发生次数是独立的; - 事件在不重叠的时间间隔上的发生次数是互不影响的; - 在一个很小的时间间隔内事件的发生概率是与时间间隔的长度成正比的。
泊松过程在实际应用中经常用于模拟和分析各种事件的到达过程,例如电话呼叫、网络流量等。
下面我们通过一个简单的例子来说明泊松过程的应用。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学理论,在通信、金融、物理等众多领域都有广泛的应用。
接下来,我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量对应于一个特定的时间点。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,股票价格就是一个随机变量。
知识点 1:随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程的时间参数是离散的,比如每天的股票收盘价;连续时间随机过程的时间参数是连续的,比如股票价格在任意时刻的取值。
知识点 2:随机过程的概率分布描述随机过程在不同时刻的概率分布是研究随机过程的重要内容。
对于离散随机过程,常用概率质量函数;对于连续随机过程,常用概率密度函数。
例题 1假设一个离散时间随机过程{Xn},n = 0, 1, 2, ,其中 Xn 取值为 0 或 1,且 P(Xn = 0) = 06,P(Xn = 1) = 04,求 X0 和 X1 的联合概率分布。
解:X0 和 X1 的可能取值组合有(0, 0)、(0, 1)、(1, 0)、(1, 1)。
P(X0 = 0, X1 = 0) = P(X0 = 0) × P(X1 = 0) = 06 × 06 = 036P(X0 = 0, X1 = 1) = P(X0 = 0) × P(X1 = 1) = 06 × 04 = 024P(X0 = 1, X1 = 0) = P(X0 = 1) × P(X1 = 0) = 04 × 06 = 024P(X0 = 1, X1 = 1) = P(X0 = 1) × P(X1 = 1) = 04 × 04 = 016二、随机过程的数字特征数字特征可以帮助我们更简洁地描述随机过程的某些重要性质。
教学⼤纲_随机过程《随机过程》教学⼤纲课程编号:121213A课程类型:□通识教育必修课□通识教育选修课□√专业必修课□专业选修课□学科基础课总学时:48 讲课学时:32实验(上机)学时:16学分:3适⽤对象:数学与应⽤数学(⾦融数学)、统计学先修课程:数学分析、⾼等代数、概率论毕业要求:1.掌握数学、统计及计算机的基本理论和⽅法;2.建⽴数学、统计等模型解决⾦融实际问题;3.具备国际视野,并且能够与同⾏及社会公众进⾏有效沟通和交流。
⼀、教学⽬标随机过程是对随时间和空间变化的随机现象进⾏建模和分析的学科,在物理、⽣物、⼯程、⼼理学、计算机科学、经济和管理等⽅⾯都有⼴泛的应⽤。
本课程介绍随机过程的基本理论和⼏类重要随机过程模型与应⽤背景,通过本课程的学习,使学⽣获得随机过程的基本知识和基本运算技能,同时使学⽣在运⽤数学⽅法分析和解决问题的能⼒得到进⼀步的培养和训练,为学习有关专业课程提供必要的数学基础。
⼆、教学内容及其与毕业要求的对应关系(⼀)教学内容随机过程的基本概念(有限维分布、数字特征,复值随机过程,特征函数),⼏种重要随机过程(独⽴过程,独⽴增量过程,伯努利过程,正态过程,维纳过程),泊松过程(定义(计数过程)与例⼦,泊松过程的叠加与分解,时间间隔与等待时间的分布,复合泊松过程,⾮齐次泊松过程),更新过程介绍,马尔科夫过程(离散时间的马尔科夫过程定义及转移概率,C-K⽅程,马⽒链的分布,遍历性与平稳分布,状态分类与分解,马⽒链的应⽤,连续时间的马尔可夫链的定义与基本性质,鞅论初步),平稳随机过程(平稳过程及相关函数,随机微积分,各态历经,谱密度)。
(⼆)教学⽅法和⼿段教师课上讲授理论知识内容及相关基本例题,学⽣课下练习及教师答疑、辅导相结合。
(三)考核⽅式实⾏过程考核和期末考试相结合的⽅式,期末闭卷考试为主(70%),平时过程考核为辅(30%)。
学期期末闭卷考试⼀次,采⽤统⼀的考题和统⼀的评分标准。
1、一家庭主妇用邮局订阅来销售杂志,她的顾客每天按比率 =6的Possion过程来订约,他们分别1/2, 1/3, 1/6的概率订阅一年,二年或三年,每个人的选择是相互独立的,对于每次订阅,在安排了订阅后,订阅一年,她得到1元手续费,令X(t)表示她在[0,t]内从销售订阅得到的总手续费,求X(t)的均值函数和方差函数
0()cossin,0,,[1,1]()(),{(),0}.tXtAtBttABYtXsdsYtt例1 设相互独立同服从区间上的均匀分布,
令求的均值函数和协方差函数
0{(),0}1Wiener()(),0{(),0}.tWttXtWsdstXtt例2 设是参数为的过程,令,求的均值函数与相关函数
例二解 00()()()0 .ttXmtEWsdsEWsds
00(,)(,)stXWRstRuvdudv 200min(,)stuvdudv
200min(,)suduuvdv
20min(,)studuuvdv
22000sustuduvdvudv
()st
22(3) ,6sts()st 由 s 与 t 的对称性 22
223,0;6,3,0.6XstsstRstsstts
()() , (0,2)XtacosttU例4:求随机相位正弦波~的均值函数、方差函数和自相关函数。
1 022 0 f
解:由假设的概率密度为:
其他
()[()]XtEXt于是Eacost
2
01
02acostd
1212(,)[()()]XRttEXtXt212[()()]Eacostcost
22
120
1()()2acostcostd
221()2acostt21
2
2ttacos
===
22()(,)()XXXtRttt
2
(,)2XaRtt
002424502451,00,1,23104411142431044100,1,23 1 0,1,1;2 1,1,0|0;3 1,1,0ni
XnpPXiiPXXXPXXXXPXXX例:设是具有三个状态的齐次马氏链,一步转移概率矩阵为初始分布试求:
1,0,1,2,,0,1,2, ,1,2,nuvuvijikkjkXnuvTPPPijchapmankolmogorovCK
设是一齐次马氏链,则对任意的有:
这就是著名的方程,简称方程 CK解:由方程可得二步转移概率矩阵为:551
81616
2531
16216
391
16164
2PP
02400111
5511
0,1,1022316296PXXXpPP1
24500111102 1,1,0|02255111624128PXXXXPPP
24521110
0011112211110
3 1,1,01(2){(0)(2)(0)(2)(0)(2)}(2)59111111()31621624192PXXXPXPPpPpPpPPP
例4:某计算机机房的一台计算机经常出故障,研究者每隔15分钟观察一次计算机的运行状态,收集了24个小时的数(共作97次观察),用1表示正常状态,用0表示不正常状态,所得的数据序列如下: 11100100111111100111101111110011111111100011 01101111011011010111101110111101111110011011 111100111 设Xn为第n(n=1,2,…,97)个时段的计算机状态,可以认为它是一个齐次马氏链. 求(1)一步转移概率矩阵; (2)已知计算机在某一时段(15分钟)的状态为0,问在此条件下,从此时段起,该计算机能连续正常工作45分钟(3个时段)的条件概率. 解: (1) 设Xn为第n(n=1,2,…,97)个时段的计算机状态,可以认为它是一个齐次马氏链,状态空间I={0,1}, 96次状态转移情况是: 0→0:8次; 0→1:18次; 1→0:18次; 1→1:52次; 因此一步转移概率可用频率近似地表示为:
001880|0, 81826nnPPXX
01118180|181826nnPPXX
10118181|0,185270nnPPXX
11152521|1185270nnPPXX
8182626:18527070P即 00,:X(2)某一时段的状态为0,定义其为初始状态,即所求概率为
12301,1,1|0PXXXX
10201
3012011111
1|01|0,11|0,1,1PXXPXXXPXXXXPPP
1852520.382267070
,13,12,.0,1,(01).{,1}.51,53,55?nnXnXn设任意相继的两天中雨天转晴天的概率为晴天转雨天的概率为任一天晴或雨是互为逆事件以表示晴天状态以表示雨天状态表示第天状态或试写出马氏链的一步转移概率矩阵又已知月日为晴天问月日为晴天月日为雨天的概率各等于多少
由于任一天晴或雨是互为逆事件且雨天转 13,12,晴天的概率为晴天转雨天的概率为 故一步转移概率和一步转移概率矩阵分别为
113,1,023,1,112,0,012,0,1nnijijPXjXiijij
又由于2
01051271217181118P
51,53故月日为晴天月日为晴天的概率为00(2)5120.4167,P
40100.40050.5995,10.39970.6003P又由于
010121211323P
51,55故月日为晴天月日为雨天的概率为 01(4)0.5995.P ,,q.(1),1,1,.2.{,1}n{,1}.nnppqrXnXn甲乙两人进行某种比赛设每局比赛中甲胜的概率为乙胜的概率为设每局比赛后胜者得分负者得分平局不记分当两人中有一个人得到分时比赛结束以表示比赛至第局时甲获得分数,则为齐次马尔可夫链
(1);(2)2;(3)1,2. 写出状态空间 求步转移概率 问在甲获得分的情况下最多再赛局可以结束的概率 (1)2,1,0,1,2.S
(2)21012211(1)0121qrpPqrpqrp
(3)1,2,,在甲获得分的情况下再赛局甲胜所求 概率为(2)12(1).pppprpr
2222222
210122112(1).02221221qrprpqprpPqrqrpqprpqqrrpqppr