相似三角形练习讲解
- 格式:doc
- 大小:223.00 KB
- 文档页数:4
相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【高清课程名称:相似三角形的判定(2)高清ID号:394499关联的位置名称(播放点名称):例4及变式应用】【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.3.(2014秋•揭西县校级期末)如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.【答案与解析】解:设BE=x,∵EF=32,GE=8,∴FG=32﹣8=24,∵AD∥BC,∴△AFE∽△CBE,∴=,∴则==+1①∵DG∥AB,∴△DFG∽△CBG,∴=代入①=+1,解得:x=±16(负数舍去),故BE=16.【总结升华】此题主要考查了相似三角形的判定、平行四边形的性质,得出△DFG∽△CBG 是解题关键.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了.【答案与解析】连接,,,是的中垂线,,,,.,.又, ∽,,. 【总结升华】根据求证确定相似三角形,是解决此类题型的捷径. 举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF,交AB 于E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, 又∵AF=BD,∴.DE AFEF GF= ∵△AGF ∽△ABC∴AF ACGF BC =, 即DE ACEF BC=.相似三角形的判定--巩固练习(基础)【巩固练习】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.(2015•大庆校级模拟)如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ).A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF ∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.(2015•伊春模拟)如图,在△ABC中,D为AB边上的一点,要使△ABC∽△AED成立,还需要添加一个条件为.8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.(2014秋•射阳县校级月考)如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E 是AB上一点,AF⊥CE于F,AD交CE于G点,(1)求证:AC2=CE•CF;(2)若∠B=38°,求∠CFD的度数.相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用 1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
实用标准文案相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB 上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= 135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA 方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ 是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q 作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴S ABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t ,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C ∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形与Rt△CQE不相似;∴t=或t=时,△PAD与△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC 相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC 中,AB=10cm ,BC=20cm ,点P 从点A 开始沿AB 边向B 点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似. 解答: 设经过秒后t 秒后,△PBQ 与△ABC 相似,则有AP=2t ,BQ=4t ,BP=10﹣2t , 当△PBQ ∽△ABC 时,有BP :AB=BQ :BC , 即(10﹣2t ):10=4t :20,解得t=2.5(s )(6分)当△QBP ∽△ABC 时,有BQ :AB=BP :BC , 即4t :10=(10﹣2t ):20,解得t=1.所以,经过2.5s 或1s 时,△PBQ 与△ABC 相似(10分).解法二:设ts 后,△PBQ 与△ABC 相似,则有,AP=2t ,BQ=4t ,BP=10﹣2t分两种情况:(1)当BP 与AB 对应时,有=,即=,解得t=2.5s (2)当BP 与BC 对应时,有=,即=,解得t=1s所以经过1s 或2.5s 时,以P 、B 、Q 三点为顶点的三角形与△ABC 相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB 的长为多少时,这两个直角三角形相似. 解答: 解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1) 当Rt △ABC ∽Rt △ACD 时, 2) 有=,∴AB==3;3) 当Rt △ACB ∽Rt △CDA 时, 4) 有=,∴AB==3.故当AB 的长为3或3时,这两个直角三角形相似.17.已知,如图,在边长为a 的正方形ABCD 中,M 是AD 的中点,能否在边AB 上找一点N (不含A 、B ),使得△CDM 与△MAN 相似?若能,请给出证明,若不能,请说明理由.解答: 证明:分两种情况讨论:①若△CDM ∽△MAN ,则=.∵边长为a ,M 是AD 的中点, ∴AN=a .②若△CDM ∽△NAM ,则.∵边长为a,M 是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A、B),使得△CDM与△MAN相似.当AN=a时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC 交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P 为顶点的三角形与△ABC相似.解答:解:以点Q、A、P为顶点的三角形与△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ 时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC ∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题基本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC ∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
第10讲 相似三角形的性质一、新知探索与考点剖析但不知其高度又不能靠近建筑物测量,机灵的侦察员把食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住.若此时眼睛到食指的距离约为40 cm ,食指的长约为8 cm ,根据上述条件计算出敌方建筑物的高度.ABC ∽△A ′B ′C ′,且相似比为2∶3,则对应边上的高的比等于( )A .2∶3B .3∶2C .4∶9D .9∶4 2.两个相似三角形对应高之比为1∶2,那么它们对应中线之比为( )A .1∶2B .1∶3C .1∶4D .1∶83.若两个相似三角形的相似比是7∶3,则这两个三角形对应中线的比是__ __.4.如果两个相似三角形对应角平分线的比是2∶5,那么它们对应高的比是__ _.5.△ABC ∽△A 1B 1C 1,AB ∶A 1B 1=3∶5,BE 、B 1E 1分别是它们的对应中线,则BE ∶B 1E 1=__ _.6.两个相似三角形的相似比为1∶4,其中较小三角形某一条边上的中线为3,则较大三角形对应边上的中线为__ __.7.已知△ABC ∽△A ′B ′C ′,AB =4 cm ,A ′B ′=3 cm ,AD ,A ′D ′分别为△ABC 与△A ′B ′C ′的中线,下列结论中:①AD ∶A ′D ′=4∶3;②△ABD ∽△A ′B ′D ′;③△ABD ∽△A ′B ′C ′;④△ABC 与△A ′B ′C ′对应边上的高之比为4∶3.其中结论正确的序号是 _.8.如图,是一个照相机成像的示意图.(1)如果像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,则相机的焦距应调整为多少?)若△ABC∽△A′B′C′,相似比为1∶2,则△( )A.1∶2 B.2∶1 C.1∶4 D.4∶12.如图在△ABC中,点D,E分别是边AB,AC的中点,则△ADE与△ABC的周长之比等于( )A.1∶1 B.1∶2 C.1∶3 D.1∶43.两个相似三角形的对应边上的中线之比为2∶3,周长之和为20,那么这两个三角形的周长分别是( )7和13 D.6和14▱ABCD中,AE∶EB=1∶2,连接DE交AC于点F.(1)求△AEF与△CDF的周长比;(2)如果S△AEF=6 cm2,求S△CDF与S▱ABCD..(2014·重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则的面积比为( )A.3∶4 B.4∶3 C.9∶16 D.16∶92.△ABC中,点D,E分别是AB,AC边的中点,则△ADE与四边形DECB的面积之比为( )A.1∶2 B.1∶3 C.1∶4 D.1∶93.(2014·黔东南)如图,四边形ABCD中,AD∥BC,AD=1,BC=3,AC与BD相交于点O,△AOD的面积为3,则△BOC的面积是__ __.,第3题图) ,第4题图) 4.如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则AB的长为__ __.对应练习:5.(2014·随州)如图,△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△COB=( ) A.1∶4 B.2∶3 C.1∶3 D.1∶2,第5题图) ,第6题图)6.(2014·宁波)如图,四边形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( )A .2∶3B .2∶5C .4∶9 D.2∶ 37.(2014·莱芜)如图,在△ABC 中,点D ,E 分别是AB ,BC 上的点,且DE ∥AC ,若S △BDE ∶S △CDE =1∶4,则S △BDE ∶S △ACD =( )A .1∶16B .1∶18C .1∶20D .1∶24,第7题图) ,第8题图)8.如图,平行于BC 的直线DE 将△ABC 分成面积相等的两部分,则△ADE 与△ABC 的周长比是__ __.9.如图,将△PQR 沿着PQ 的方向平移到△P ′Q ′R ′位置,它们重叠部分的面积是△PQR 面积的一半,若PQ =2,则平移的距离PP ′是__ __.,第9题图)BC 上,且FD ∥AB ,EF ∥AC ,求证:△ABC ∽△FDE .例题4.如右图,在矩形ABCD 中,AB =2,BC =1,点E 是DC 上一点,∠DAE =∠BAC ,则EC 的长为__ __..两个相似多边形的一组对应边边长分别为3 cm 和4.5 cm ,那么它( )A.23 B.32 C.49 D.944.如图,已知四边形ABCD 相似于四边形A ′B ′C ′D ′,则∠A = 度;x = .二、每天一练、天天向上A 基础训练1.(2013·重庆市)已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积比为( )A. 4∶3B. 3∶4C. 16∶9D. 9∶162.已知两相似三角形的面积比为4∶1,那么这两个三角形的周长比为( ) A. 4∶1 B. 1∶4 C. 2∶1 D. 16∶13.有一块多边形草坪在地图上的面积为300 cm 2,其中一条边的长度为5 cm ,经测量,这条边的实际长度为15 m ,则这块草坪的实际面积是( )A. 100 m 2B. 270 m 2C. 2700 m 2D. 90000 m 24.如图,在△ABC 中,AD ,BE 是两条中线,则EDC S △∶ABC S △=( )A. 1∶2B. 2∶3C. 1∶3D. 1∶45.如图在△ABC 中,点D ,E 分别在AB ,AC 上,∠AED=∠B ,如果AE=2,△ADE 的面积为4,四边形BCED 的面积为5,那么AB 的长为 .6、在△ABC 中,已知DE ∥BC ,AE=3EC ,S △ABC =48,求△ADE 及四边形BCED 的面积。
ABCA 1B 1C 1相似三角形的判定是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形判定定理3和直角三角形相似的判定定理,并进行了相似三角形判定的相关综合练习.重点是灵活运用相似三角形的各个判定定理,难点是相似三角形与分类讨论及函数思想的互相结合.1、相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.可简述为:三边对应成比例,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.相似三角形的判定(二)内容分析知识结构模块一:相似三角形判定定理3知识精讲ABC DEF AB CD EF【例1】 根据下列条件判定ABC ∆与DEF ∆是否相似,如果是,那么用符号表示出来.(1)2AB cm =,3BC cm =,4CA cm =,10DE cm =,15EF cm =,20FD cm = (2)1AB cm =,2BC cm =, 1.5CA cm =,6DE cm =,4EF cm =,8FD cm =.【难度】★【答案】(1)相似,ABC DEF ∆∆∽.(2)相似,ABC EFD ∆∆∽. 【解析】略.【总结】本题考查相似三角形的判定定理3,同时注意表示相似时对应点的位置.【例2】 如图,在边长为1个单位的方格纸上,有ABC ∆与DEF ∆.求证:ABC ∆∽FDE ∆.【难度】★ 【答案】略.【解析】由图知:1BC =,2AC =,5AB =,2DE =,2EF =,10DF =.22BC AC AB DE EF DF ===,∴ABC FDE ∆∆∽.【总结】本题考查相似三角形的判定定理3.【例3】 如图,D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点.求证:DEF ∆∽ABC ∆. 【难度】★ 【答案】略. 【解析】D 、E 、F 分别是边BC 、CA 、AB 的中点,∴12DE AB =,12FE BC =,12DF AC =.∴2AB BC AC DE EF DF===,∴DEF ∆∽ABC ∆. 【总结】本题考查相似三角形的判定定理3和三角形中位线的性质.例题解析AB CDEAB CD【例4】 ABC ∆的边长分别为a 、b 、c ,111A B C ∆的边长分别为a 、b 、c ,则ABC ∆与111A B C ∆(选填“一定”、“不一定”或“一定不”)相似.【难度】★★ 【答案】不一定.【解析】若a b c ==时,相似;若a 、b 、c 中有两个不等,那么它们就不相似. 【总结】本题考查相似三角形的判定定理3,同时穿插了分类讨论的思想.【例5】 如图,点D 为ABC ∆内一点,点E 为ABC ∆外一点,且满足AB BC ACAD DE AE ==.求证:ABD ∆∽ACE ∆.【难度】★★【答案】略.【解析】AB BC ACAD DE AE == ∴A B C A D E ∆∆∽. ∴BAC DAE ∠=∠, 即BAD DAC CAE DAC ∠+∠=∠+∠.∴BAD CAE ∠=∠.AB ACAD AE= ∴ABD ∆∽ACE ∆. 【总结】本题考查相似三角形的判定定理3和相似三角形的性质知识.【例6】 如图,在ABC ∆中,90ABC ∠=︒,30ACB ∠=︒,2AC =,23CD =,4AD =.求证:ABC ∆∽ACD ∆.【难度】★★ 【答案】略. 【解析】90ABC ∠=︒,30ACB ∠=︒,2AC =.∴112AB AC ==,∴在Rt ABC ∆中,3BC =.23CD =,4AD =, ∴12A B A C B C A C A D C D ===,∴ABC ∆∽ACD ∆. 【总结】本题考查相似三角形的判定定理3和直角三角形的勾股定理知识.ABCDEF【例7】 已知:如图,在t R ABC ∆中,90ACB ∠=︒,2AC =,4BC =,点D 在BC 边上,且CAD B ∠=∠. (1)求AD 的长;(2)取AD 、AB 的中点E 、F ,联结CE 、CF 、EF .求证:CEF ∆∽ADB ∆. 【难度】★★ 【答案】略. 【解析】(1)90ACB ∠=︒,CAD B ∠=∠,CAD CBA ∴∆∆∽ ∴CD AC AD AC CB AB==. ∴2AC CD CB =∙ ∴1CD =.∴在Rt ADC ∆中,5AD =.(2)点E F 、分别是AD 、AB 的中点,∴12EF BD =. 在Rt ADC ∆、Rt ABC ∆中,12CE AD =,12CF AB =. ∴12CE CF EF AD AB BD ===,∴CEF ∆∽ADB ∆.【总结】本题考查相似三角形的判定定理3、直角三角形的性质和三角形中位线等知识.【例8】 如图,在梯形ABCD 中,AB // CD ,90A ∠=︒,2AB =,3BC =,1CD =,点E是AD 的中点.(1)求证:CDE ∆∽EAB ∆;(2)CDE ∆与CEB ∆有可能相似吗?若相似,请证明;若不相似,请说明理由. 【难度】★★★ 【答案】略.【解析】(1)证明:过点C 作CF AB ⊥,垂足为F ,如图. 9090A CFB ∠=∠=,,//AD CF ∴.又//AB CD ,∴四边形AFCD 是平行四边形.又90A ∠=,∴平行四边形AFCD 是矩形. 1AF CD AD CF ∴===,,1BF ∴=.在Rt FBC ∆中,2222CF BC BF =-=,22AD ∴=. 点E 是AD 的中点 2E D E A ∴==.∴22DE CD AB AE ==又90D A ∠=∠=,∴CDE ∆∽EAB ∆.(本题还可用其它方法证明)(2)CDE ∆与CEB ∆相似.在Rt DCE ∆中,223CE DC DE =+=, 在Rt CBF ∆中,226BE AE AB =+=,3CE BE CBCD DE CE===, ∴C D E ∆∽CEB ∆. 【总结】本题考查了梯形及相似三角形的判定,着重考查学生对相似三角形的判定方法的理解及运用能力.本题实际上是“一线三直角”模型.ABCD EF1、直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似.如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =,那么ABC ∆∽111A B C ∆.【例9】 在Rt ABC ∆和Rt DEF ∆中,90C F ∠=∠=︒.依据下列各组条件判定这两个三角形是否相似,并说明理由. (1)55A ∠=︒,35D ∠=︒;(2)9AC =,12BC =,6DF =,8EF =; (3)3AC =,4BC =,6DF =,8DE =; (4)10AB =,8AC =,15DE =,9EF =. 【难度】★【答案】(1)相似,两三角形有两组角对应相等,故相似; (2)相似,两三角形两边对应成比例且夹角相等,故相似;(3)不相似,两三角形两边对应成比例且有一角相等,但此角不是夹角,故不相似; (4)相似,斜边和直角边对应成比例,故相似. 【解析】略.【总结】本题考查了相似三角形的判定方法,要灵活运用.模块二:直角三角形相似的判定定理知识精讲例题解析ABC A 1B 1C 1ABC DABDCABCD【例10】 如图,在ABC ∆和111A B C ∆中,AD BC ⊥,1111A D B C ⊥,垂足为D 和1D ,且111111AC AB ADAC A B A D ==. 求证:ABC ∆∽111A B C ∆. 【难度】★ 【答案】略. 【解析】证明:AD BC ⊥,1111A D B C ⊥,∴11190ADC A D C ∠=∠=.又111111AC AB ADAC A B A D ==, ∴111Rt ADC Rt A D C ∆∆∽,∴1C C ∠=∠.同理可得:1B B ∠=∠, ∴ABC ∆∽111A B C ∆.【总结】本题考查了直角三角形相似的判定方法.【例11】 如图,四边形ABCD 中,90BAC ADC ∠=∠=︒,AD a =,BC b =,AC ab =.求证:DC BC ⊥.【难度】★ 【答案】略. 【解析】证明:AD a =,BC b =,AC ab =,∴2AC AD BC =∙. ∴AC BCAD AC=. 又90BAC ADC ∠=∠=,∴ADC CAB ∆∆∽. ∴ACD B ∠=∠.又90B ACB ∠+∠=,∴90ACD ACB ∠+∠=.∴D C B C ⊥.【总结】本题考查了直角三角形相似的判定方法,同时考查了相似三角形的性质等知识.ABCDABCDF G【例12】 如图,AB AD ⊥,BD DC ⊥,且2BD AB BC =.求证:ABD DBC ∠=∠.【难度】★ 【答案】略. 【解析】证明:AB AD ⊥,BD DC ⊥,∴90BAD BDC ∠=∠=.2BD AB BC =, ∴BC BDBD AB=.∴BAD BDC ∆∆∽. ∴A B D D B C ∠=∠.【总结】本题考查了直角三角形相似的判定方法,同时考查了相似三角形的性质等知识.【例13】 如图,在ABC ∆中,CD AB ⊥于D ,DF AC ⊥于F ,DG BC ⊥于G .求证:CF CA CG CB =.【难度】★★ 【答案】略. 【解析】证明:CD AB ⊥,DF AC ⊥,∴90ADC CFD ∠=∠=.又DCF DCA ∠=∠, ∴DCF ACD ∆∆∽. ∴DC CF AC DC=,即2DC CA CF =∙.同理可得:2DC CG CB =∙, ∴CF CA CG CB =.【总结】本题考查了直角三角形相似的判定方法,同时考查了相似三角形的性质等知识.【例14】 已知直角三角形斜边上的高为12,并且斜边上的高把斜边分成3:4两段,则斜边上的中线长是.【难度】★★ 【答案】73.【解析】解:如右图,在Rt ABC ∆中,90ACB ∠=, CD AB ⊥于点D ,AE EB =.设3AD x =,4BD x =,12CD =.易证Rt ADC Rt CDB ∆∆∽,得DC BDAD DC=,得2DC AD DB =∙,所以21234x x =∙解得23x =,7143AB x ==,而12CE AB =,所以73CE =. 【总结】本题考查了直角三角形相似的判定方法,同时考查了直角三角形斜边上的中线等相关知识.A BCDEFABCDEFM【例15】 如图,直角梯形ABCD 中,90BCD ∠=︒,AD // BC ,BC CD =,E 为梯形内一点,且90BEC ∠=︒.将BEC ∆绕点C 旋转90°使BC 与DC 重合,得到DCF ∆,连接EF 交CD 于点M .已知5BC =,3CF =,求:DM MC 的值.【难度】★★【答案】43.【解析】解:由旋转的性质得:BEC DFC ∆≅∆, 且90BCD ECF ∠=∠=.903BEC ECF EC FC ∴∠=∠===,,5BC CD ==.∴180ECF DFC ∠+∠=, ∴//EC DF .∴DM DFMC EC=.在Rt DCF ∆中,224DF DC CF =-=.∴43DM MC =. 【总结】本题考查了旋转的性质,三角形一边的平行线等相关知识.【例16】 如图,在ABC ∆中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F ,求证:CEF ∆∽CBA ∆.【难度】★★ 【答案】略. 【解析】证明:CD AB ⊥,DE AC ⊥,∴90ADC CED ∠=∠=.又DCE DCA ∠=∠, ∴DCE ACD ∆∆∽. ∴DC CF AC DC=,即2DC CA CE =∙. 同理,可得:2DC CF CB =∙.∴CA CE CF CB ∙=∙, 即 CF CEAC CB =.又FCE BCA ∠=∠, ∴CEF CBA ∆∆∽.【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.ABCD EF【例17】 在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,E 是AC 边上的一个动点(不与A 、C 重合),CF BE ⊥于点F ,连接DF . (1)求证:2CB BF BE =; (2)求证:BF AE FD BA =.【难度】★★ 【答案】略. 【解析】证明:(1)90ACB ∠=,CF BE ⊥,∴90ACB CFB ∠=∠=.又CBF CBE ∠=∠,∴CBF EBC ∆∆∽. ∴CB BEBF CB=,∴2CB BF BE =∙.(2)90ACB ∠=,CD BA ⊥,∴90ACB CDB ∠=∠=.又CBD CBA ∠=∠,∴CBD ABC ∆∆∽. ∴CB ABBD CB=,即2CB BD BA =∙. ∴BF BE BD BA ∙=∙, ∴FB BD BA BE= 又ABE FBD ∠=∠,∴FBD ABE ∆∆∽. ∴FB FDBA AE=.∴BF AE FD BA ∙=∙.【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.【例18】 求证:如果一个三角形的两边和第三边的中线与另一个三角形的对应线段成比例,那么这两个三角形相似.【难度】★★★ 【答案】略.【解析】已知:如图,AD 、11A D 分别是ABC ∆、111A B C ∆边BC 、11B C 上的中线,且111111AC AB ADAC A B A D ==.求证:ABC ∆∽111A B C ∆. 证明:分别延长AD 、11A D 到点1E E 、. 使得1111DE AD D E A D ==,. ∴111122AE AD A E A D ==,.AD 、11A D 分别是ABC ∆、111A B C ∆边BC 、11B C 上的中线,∴1111BD DC B D D C ==,.111111ADB ADC A D B A D C ∠=∠∠=∠, , ∴ADB EDC ∆≅∆,111111A D B E D C ∆≅∆ ∴1111BAD E B A D E ∠=∠∠=∠,.111111AC AB AD AC A B A D ==,∴111111AC AB AEAC A B A E ==. ∴111AEC A E C ∆∆∽,∴1111E E CAD C A D ∠=∠∠=∠, ∴111BAD B A D ∠=∠ ,∴111BAC B AC ∠=∠.又1111AB ACA B AC =, ∴111ABC A B C ∆∆∽. 【总结】本题考查了三角形相似的判定方法,并且考查学生通过倍长中线来转化边角的方法.ABCDEF【例19】 如图,在Rt BDC ∆中,点E 在CD 上,DF BC ⊥于F ,DG BE ⊥于G .求证:FG BC CE BG =.【难度】★★★ 【答案】略.【解析】证明:联结GF . 90BDC ∠=,DF BC ⊥, ∴90BDC DFB ∠=∠=.又CBD FBD ∠=∠, ∴DBF CBD ∆∆∽. ∴DB BF BC DB=, ∴2D B B F B C =∙. 90EDB ∠=,GD BE ⊥, ∴90DGB EDB ∠=∠=.又EBD GBD ∠=∠, ∴GBD DBE ∆∆∽. ∴DB EBBG DB=, ∴2DB BG BE =∙. ∴BF BC BG BE ∙=∙, 即FB BGBE BC=. 又GBF EBC ∠=∠, ∴GBF CBE ∆∆∽.∴GB FG BC CE=, ∴FG BC CE BG ∙=∙. 【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识,综合性较强,需要通过多次相似证的结论成立.【例20】 如图,90CAB ∠=︒,AD CB ⊥,ACE ∆、ABF ∆是正三角形.求证:DE DF ⊥.【难度】★★★ 【答案】略. 【解析】证明:ACE ∆、ABF ∆是正三角形,∴AC CE AB AF ==,,6060FAB ACE ∠=∠=,.AD BC ⊥, ∴90BDA ADC ∠=∠=. ∴90CAD ACD ∠+∠=.90BAC ∠=, ∴90BAD DAC ∠+∠=. B A D D C A ∴∠=∠. ∴DBA DAC ∆∆∽. ∴C D A C A D A B =. ∴C D E CA D A F =.FAB BAD DCA ACE ∠+∠=∠+∠, ∴F A D D C E ∠=∠.∴FAD ECD ∆∆∽. ∴A D F E D C ∠=∠.90ADE EDC ∠+∠=, ∴90ADF EDA ∠+∠=. ∴D E D F⊥. 【总结】本题考查了三角形相似的判定方法、等边三角形的性质等知识.BCD EFGAB CDEP1、相似三角形判定定理1:两角对应相等,两个三角形相似.2、相似三角形判定定理2:两边对应成比例且夹角相等,两个三角形相似.3、相似三角形判定定理3:三边对应成比例,两个三角形相似.4、直角三角形相似的判定定理:斜边和直角边对应成比例,两个直角三角形相似.【例21】根据下列条件,能判定ABC ∆和DEF ∆相似的个数是().(1)35ABC ∠=︒,75ACB ∠=︒,80EDF ∠=︒,35DEF ∠=︒; (2)3AB =,2BC =,30ABC ∠=︒,6DE =,4EF =,30EDF ∠=︒;(3)2AB =,3BC =,4AC =,12DE =,13EF =,14DF =;(4)6AB =,2CB =,2AC =,3DE =,1EF =,2DF =. (A )1个 (B )2个(C )3个(D )4个【难度】★ 【答案】A【解析】(1)(2)(3)不相似,(4)相似 【总结】本题考查了三角形相似的判定知识.【例22】 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出ABP ∆与ECP ∆相似的是( ).(A )APB EPC ∠=∠ (B )90APE ∠=︒ (C )P 是BC 的中点 (D ):2:3BP BC =【难度】★ 【答案】C 【解析】略.【总结】本题考查了三角形相似的判定知识.模块三:相似三角形的判定综合知识精讲例题解析ABCDEFGH123ABCD【例23】 已知ABC ∆中,AB AC =,36A ∠=︒,BD 是角平分线,求证:ABC ∆∽BCD ∆.【难度】★【答案】略. 【解析】证明:36AB AC A =∠=,,∴72ABC ACB ∠=∠=.又BD 是角平分线, ∴36ABD DBC ∠=∠=.∴A DBC ∠=∠, A B C B C D ∠=∠,∴ABC BCD ∆∆∽.【总结】本题考查了三角形相似的判定知识,此三角形是黄金三角形.【例24】 在ABC ∆中,12AB =,15AC =,D 为AB 上一点,3ABBD=,在AC 上取一点E ,得到ADE ∆,若ADE ∆与ABC ∆相似,则AE =.【难度】★★ 【答案】10或325. 【解析】若ADE ∆与ABC ∆相似,则分两种情况:ABC ADE ∆∆∽或ABC AED ∆∆∽,得AD AE AB AC =或AD AEAC AB =,即可得解. 【总结】灵活运用相似三角形的性质定理是解本题的重点,注意分类讨论.【例25】 如图,四边形ABDC 、CDFE 、EFGH 是三个正方形,则123∠+∠+∠的值为多少?【难度】★★ 【答案】90.【解析】解:设正方形ABDC 、CDFE 、 EFHG 的边长为1.则2AD =,5AF =,1DF =,2HD =,10AH =. ∴2AD DH AHDF AD AF===, ∴A D H F D A ∆∆∽. ∴3D A F ∠=∠. 四边形ABDC 是正方形, ∴A B B D =. ∴145∠=.又21DAF ∠+∠=∠, ∴231∠+∠=∠. ∴12390∠+∠+∠=.【总结】灵活运用相似三角形的判定定理来转化角度是解本题的关键.ABCDEABCDEN M【例26】 如图,正方形ABCD 的边长为2,AE EB =,1MN =,线段MN 的两端在CB 、CD 上滑动,当CM 为何值时,AED ∆与以M 、N 、C 为顶点的三角形相似.【难度】★★ 【答案】当CM 为55或255时,ADE ∆与以 M 、N 、C 为顶点的三角形相似. 【解析】解:四边形ABDC 是正方形, ∴2AB AD ==. 又AE EB =, ∴1AE =.在Rt CMN ∆中,222MN CM CN =+.① 当55CM = 时,255CN =,∴5AE AD CM CN ==, ∴A D E C N M ∆∆∽;② 当255CM =时,55CN =,∴5AE AD CN CM ==, ∴A D E C M N ∆∆∽. 【总结】本题考查了相似三角形的判定及正方形的性质相关知识点.【例27】如图,AB AC =,2AC AD AE =,求证:BC 平分DBE ∠.【难度】★★ 【答案】略. 【解析】证明:AB AC =,2AC AD AE =∙,∴2AB AD AE =∙, 即AB AEAD AB=.又A A ∠=∠, ∴ABD AEB ∆∆∽.∴ABD E ∠=∠. 又AB AC =, ∴A B D D B C A C ∠+∠=∠.又CBE E ACB ∠+∠=∠, ∴C B D C B E ∠=∠.即BC 平分DBE ∠.【总结】本题考查了相似三角形的判定及三角形外角的性质.【例28】 如图,在ABC ∆中,M 在AB 上,且8MB =,12AB =,16AC =,在AC 上求作一点N ,使AMN ∆与原三角形相似,并求AN 的长.【难度】★★ 【答案】3AN =或163. 【解析】解:如右图,要使AMN ∆与原三角形相似,有两种情况:128A B B M ==,,∴4AM =.① 当//MN BC 时,AMN ABC ∆∆∽. ∴A M A N AB AC =,即41216AN =,∴163AN =. ② 当MN 与BC 不平行时,ANM ABC ∆∆∽. ∴AM AN AC AB =,即41612AN=,∴3AN =.∴3AN =或163. 【总结】灵活运用相似三角形的性质定理是解本题的重点.【例29】如图,EM AM ⊥,CE DE =.求证:2ED DM AD CD =.【难度】★★ 【答案】略.【解析】证明:过点E 作EH CD ⊥于点H ,得90EHD ∠=.EC ED =,EH CD ⊥,∴12DH CD =.EM AM ⊥,∴90M ∠=. ∴E H D M∠=∠. 又EDH MDA ∠=∠, ∴EHD AMD ∆∆∽.∴DM AD DH ED=, 即DM ED DA HD ∙=∙.∴12DM ED DA CD ∙=∙,即2ED DM DA CD ∙=∙.【总结】本题考查了相似三角形的判定及等腰三角形的性质等相关知识.ABCDEFABCDEF【例30】 如图,在ABC ∆和DEF ∆中,90A D ∠=∠=︒,3AB DE ==,24AC DF ==.(1)判断这两个三角形是否相似,并说明为什么;(2)能否分别过点A 、D 在这两个三角形中各作一条辅助线,使ABC ∆分割成的两个三角形与DEF ∆分割成的两个三角形分别对应相似?证明你的结论.【难度】★★★【答案】(1)不相似,一组角相等,但夹它的两边不对应成比例,故不相似;(2)能,理由略.【解析】(2)题分割如下:作BAM E ∠=∠交BC 于点M ,作EDN B ∠=∠交EF 于点N ,可证明BAM DEN ∆∆∽,再证明另一对也相似即可.【总结】本题考查了相似三角形的判定知识.【例31】 如图,在ABC ∆中,3AB AC ==,2BC =,点D 、E 、F 分别在AC 、AB 、BC边上,BEF ∆沿着直线EF 翻折后与DEF ∆重合,设CD x =,BF y =.试问DFC ∆是否有可能与ABC ∆相似,如有可能,求出CD 的长;如不可能,说明理由.【难度】★★★【答案】DFC ∆有可能与ABC ∆相似,此时65CD =或23. 【解析】解:翻折后,BF DF =.当DFC ABC ∆∆∽时,DFC C B ∠=∠=∠.BF DF CD x ∴===,2CF x =-.CD CF CA CB ∴=,即232x x -=. 65x ∴=; 当DFC ACB ∆∆∽时,FDC C B ∠=∠=∠,1BF DF CF ∴===.CD CF CB CA ∴=,即213x =. 23x ∴=. ∴65CD =或23. 【总结】本题考查了相似三角形的判定、翻折变换(折叠问题)等的相关知识.ABCDEF 【例32】 如图,ABC ∆是等边三角形,D 是AC 上的一点,BD 的垂直平分线交AB 于E ,交BC 于F .(1)当点D 在边AC 上移动时,DEF ∆中哪一个角的大小始终保持不变?并求出它的度数;(2)当点D 在边AC 上移动时,ADE ∆与哪一个三角形始终相似?并写出证明过程.又问:当点D 移动到什么位置时,这两个三角形的相似比为1? (3)若等边三角形ABC 的边长为6,2AD =,试求:BE BF 的值.【难度】★★★【答案】(1)EDF ∠始终不变,且等于60;(2)ADE CFD ∆∆∽.证明略;当点D 移动到AC 中点处时,这两个三角形的相似比为1;(3)45BE BF =.【解析】(1)翻折前后对应角相等;(2)相似比为1,说明ADE CFD ∆≅∆,得DE DF =. 又DB EF ⊥,所以DB 垂直平分EF ,得BD 平分ABC ∠,则ABC ∆是等边三角形,进而得出结论;(3)45AED CFD C BE DE BF DF C ∆∆===.【总结】本题考查了相似三角形的判定、翻折变换(折叠问题)、相似三角形的性质等的相关知识.A BCD E FGHK【习题1】 如图,网格里面有许多三角形.在下列所列出的各三角形之中,不能够与ABC ∆ 相似的是( )(A )BCD ∆ (B )BDE ∆(C )BFG ∆(D )FGH ∆【难度】★ 【答案】A【解析】三边对应成比例,两三角形相似. 【总结】本题考查了相似三角形的判定知识.【习题2】 下列命题中,说法正确的个数是( )(1)有一个锐角相等的两个直角三角形一定相似;(2)斜边和一条直角边对应相等的两个直角三角形一定相似;(3)两个等腰三角形腰上的高和腰对应成比例,则这两个三角形必相似; (4)两边对应成比例的两个三角形相似. (A )1个 (B )2个(C )3个(D )4个【难度】★ 【答案】B【解析】(1)(2)正确;(3)错误,举反例如下图,ABC ∆是等边三角形,CG AB ⊥于点G ,DEF ∆是顶角为120的等腰三角形,FH ED ⊥交ED 的延长线于点H ,ACG DFH ∆∆∽,但ABC ∆与DEF ∆不相似;(4)错误.【总结】本题考查了相似三角形的判定知识.随堂检测ABC DEF ABCDEF【习题3】 如图,AC BD ⊥,DE AB ⊥,AC 与ED 交于点F ,3BC =,1FC =,5BD =,则AC =.【难度】★ 【答案】6.【解析】由ACB DCF ∆∆∽,得CF CDCB AC=. 【总结】本题考查了相似三角形的判定及性质知识,此图是比 较重要的相似基本模型.【习题4】 在ABC ∆中,点G 为重心,若BC 边上的高为6,求点G 到BC 的距离. 【难度】★★ 【答案】2.【解析】解:如图,联结AG 并延长交BC 于点D ,分别作GE BC ⊥、 A F B C ⊥于点E 、F .由题知,6AF =.点G 为重心, ∴13DG DA =. 又//GE AF , ∴G E D GA F D A=. ∴2GE =. 【总结】本题考查了重心的知识,构造相似形来解答问题.【习题5】 如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,E 为AC 上一点,CF BE ⊥ 于F ,联结DF .求证:BD DFBE AE=. 【难度】★★ 【答案】略. 【解析】证明:90ACB ∠=,CF BE ⊥, ∴90ACB CFB ∠=∠=.又CBF CBE ∠=∠, ∴CBF EBC ∆∆∽.∴CB BE BF CB=,即2CB BF BE =∙. 同理,得:2CB BD BA =∙. ∴B F B E B D B A ∙=∙, ∴F B B DB A B E=. 又ABE FBD ∠=∠, ∴FBD ABE ∆∆∽. ∴B D F DB E A E=. 【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.ABCDEABCDEO【习题6】 已知梯形ABCD 中,AB // CD ,90B ∠=︒,3AB =,6CD =,12BC =,点E在BC 边上自B 点向C 点移动,求使得ABE ∆与ECD ∆相似的BE 的值.【难度】★★【答案】4或632±.【解析】解:由题知:90B C ∠=∠=. ABE ∆与ECD ∆相似,分两种情况:设BE x =.(1)ABE DCE ∆∆∽,得:AB BEDC CE=, 即3612x x=-,解得4x =; (2)ABE ECD ∆∆∽,得:AB BEEC DC=, 即3126x x =-,得212180x x -+=, 解得632x =±;综上:BE =4或632±.【总结】本题考查了相似三角形的性质,着重考查学生分类讨论思想的应用.【习题7】 如图,梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,过点B 作BE //CD 交CA 的延长线于点E ,求证:2OC OA OE =.【难度】★★ 【答案】略. 【解析】//AD CB , ∴C O B OO A O D=. //BE CD , ∴C OD OO E O B=.∴CO OAOE OC=, ∴2O C O A O E =∙. 【总结】本题考查三角形一边的平行线定理的应用.A BCPQ【习题8】 如图,在ABC ∆中,90C ∠=︒,8BC cm =,6AC cm =,点P 从B 出发,沿 BC 方向以2cm/s 的速度移动到C 点,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动到A 点.若点P 、Q 分别同时从B 、C 出发,经过多少时间CPQ ∆与CBA ∆相似?【难度】★★【答案】125t =或3211时,CPQ ∆与CBA ∆相似.【解析】设经过t 秒CPQ ∆与CBA ∆相似,则 2BP t =,CQ t =,∴82CP t =-.要使CPQ ∆与CBA ∆相似,有两种情况:①当CPQ CBA ∆∆∽,∴CP CQCB CA=,即8286t t -=,∴125t =; ②当CPQ CAB ∆∆∽,∴CP CQCA CB=, 即8268t t -=。
相似三角形解题方法【基本图形】两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.【方法精讲】一、、“三点定形法”例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC.求证: BA AC AF AE (判断“横定”还是“竖定”? )例2、如图,CD 是Rt△ABC 的斜边AB 上的高,△BAC 的平分线分别交BC 、CD 于点E 、F ,AC·AE=AF·AB 吗?说明理由。
分析方法:1)先将积式______________2)______________(“横定”还是“竖定”?)练习1、已知:如图,△ABC中,∠ACB=900,AB的垂直平分线交AB于D,交BC延长线于F。
求证:CD2=DE·DF。
二、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.1、等量过渡法(等线段代换法)例1:如图3,△ABC中,AD平分△BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.2、等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。
例2:如图4,在△ABC中,△BAC=90°,AD△BC,E是AC的中点,ED交AB的延长线于点F.求证:AB DF AC AF.3、等积过渡法(等积代换法)思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。
相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
专题4.22 利用相似三角形测高(知识讲解)【学习目标】1、理解并掌握用不同方法构造相似三角形测高的原理2、通过典型实例认识现实生活中物体的相似,掌握把实际问题抽象为数学问题方法.【要点梳理】测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.特别说明:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.特别说明:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、利用相似三角形测高1.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时,(如图1)点B离地高1.5米;当AB的另一端点B碰到地面时,(如图2)点A离地高1米,求跷跷板AB的支撑点O到地面的距离为多少米?【答案】跷跷板AB 的支撑点O 到地面的距离为0.6米.【分析】过点B 作BN ⊥AH 于点N ,AM ⊥BH 于点M ,直接利用相似三角形的判定与性质分别得出OH AO BN AB=,OH BO AM AB =,即可得出答案. 解:如图所示:过点B 作BN ⊥AH 于点N ,AM ⊥BH 于点M ,可得HO ∥BN ,则△AOH ∽△ABN , 故OH AO BN AB=, ∵AB 长为3米,BN 长为1.5米, ∴1.53OH AO =, ∴2OH OA =同理可得:△BOH ∽△BAM , 则OH BO AM AB=, ∵AB 长为3米,AM 长为1米, ∴313OH AO -=,即3213OH OH -= ∴OH =0.6,答:跷跷板AB 的支撑点O 到地面的距离为0.6米.【点拨】此题主要考查了相似三角形的应用,正确得出比例式,建立方程是解题关键.【变式1】李师傅用镜子测量一棵古树的高,但树旁有一条小河,不便测量镜子与树之间的距离,于是他两次利用镜子,第一次把镜子放在C 点(如图所示),人在F 点正好在镜中看到树尖A ;第二次他把镜子放在C '处,人在F '处正好看到树尖A .已知李师傅眼睛距地面的高度为1.7m ,量得CC '为12m ,CF 为1.8m ,C F ''为3.84m ,求树高.【答案】这棵古树的高为10m【分析】根据反射定律可以推出∠ACB =∠ECF ,∠AC′B =∠E′C′F′,所以可得∠BAC∠∠FEC 、∠AC′B∠∠E′C′F′,再根据相似三角形的性质解答.解:根据反射定律可以推出∠ACB =∠ECF ,∠AC′B =∠E′C′F′,∠∠BAC∠∠FEC 、∠AC′B∠∠E′C′F′,设AB =x ,BC =y ∠ 1.7 1.8=1.7 3.8412x y x y ⎧⎪⎪⎨⎪=⎪+⎩解得1018017x y =⎧⎪⎨=⎪⎩. ∠这棵古树的高为10m .【点拨】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.【变式2】如图,小明同学为了测量路灯OP 的高度,先将长2m 的竹竿竖直立在水平地面上的B 处,测得竹竿的影长3m BE =,然后将竹竿向远离路灯的方向移动5m 到D 处,即5m BD =,测得竹竿的影长5m DF =(AB 、CD 为竹竿).求路灯OP 的高度.【答案】路灯OP 的高度为7m【分析】先根据AB ∠OF ,CD ∠OP 可知△EAB ∠∠EPO ,同理可得△FCD ∠∠FPO ,再由相似三角形的对应边成比例即可得出OP 的值.解:由已知得,2AB CD ==m ,3BE =m ,5BD =m ,5DF =m ,90POE ABE CDF ∠=∠=∠=︒,AEB PEO ∠=∠,CFD PFO ∠=∠,∠在EAB ∆和EPO ∆中,AEB PEO ABE POE ∠=∠⎧⎨∠=∠⎩,∠EAB ∆∠EPO ∆ ∠AB OP BE OE =,即233OP OB =+, ∠263OB OP +=,在FCD ∆和FPO ∆中CFD PFO CDF POF∠=∠⎧⎨∠=∠⎩, ∠FCD ∆∠FPO ∆, ∠CD OP DF OF =,即2510OP OB =+, ∠2205OB OP +=,∠263OB OP +=,2205OB OP +=,∠7.5OB =,7OP =,即路灯OP 的高度为7m .【点拨】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题关键.【变式3】 在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB =2米,它的影子BC =1.6米,木杆PQ 的影子有一部分落在墙上,PM =1.2米,MN =0.8米,求木杆PQ 的长度.【答案】2.3米【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可解:如图,过点N 作ND ∠PQ 于D ,则DN =PM ,∠∠ABC ∠∠QDN ,AB QD BC DN∴=. ∠AB =2米,BC =1.6米,PM =1.2米,NM =0.8米, 2 1.21.6AB DN QD BC ⨯===1.5(米), ∠PQ =QD +DP =QD +NM =1.5+0.8=2.3(米).答:木杆PQ 的长度为2.3米.【点拨】此题考查相似三角形的应用和平行投影,解题关键在于掌握相似三角形的性质.【变式4】 某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB )的高度为4.8米,右侧路灯(CD )的高度为6.4米,两路灯之间的距离(BD )为12米,已知小明的身高(EF )为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F 是BD 的中点)时,小明测得自己在两路灯下的影长FP = 米,FQ = 米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP =FQ ),请问时小明站在什么位置,为什么?【答案】(1)3,2(2)离B 地24m 5(或离D 地36m 5),理由见分析 【分析】(1)通过证明CDQ EFQ ,ABP EFP ,再根据相似三角形的性质进行求解即可;(2)由(1)得,EF QF CD QD =,EF PF AB BP=,设FP FQ x ==,可求出512BD x ==,求出x 的值,即可求解. (1)解:由题意得,,CDQ EFQ CQD EQF ∠=∠∠=∠,CDQ EFQ ∴,EF QF CD QD∴=, 4.8, 6.4,12, 1.6AB CD BD EF ====,点F 是BD 的中点,6BF DF ∴==,1.66.46QF QF∴=+, 解得2QF =;,ABP EFP APB EPF ∠=∠∠=∠,ABPEFP ∴, EF PF AB BP∴= 4.8, 6.4,12, 1.6AB CD BD EF ====,点F 是BD 的中点,6BF ∴=,1.64.86PF PF∴=+, 解得3PF =;故答案为:3;2;(2)小明站在离B 点245米处的位置,理由如下: 由(1)得,EF QF CD QD =,EF PF AB BP=, 4.8, 6.4,12, 1.6AB CD BD EF ====,设FP FQ x ==,1.6 1.6,6.4 4.8x x QD BP∴==, 4,3QD x BP x ∴==,,2BQ x DP x ∴==,512BD x ∴==, 解得125x =, 2425BF x ∴==,所以,小明站在离B点245米处的位置.【点拨】本题考查了相似三角形的判定和性质,准确理解题意,熟练掌握知识点是解题的关键.类型二、利用相似三角形测距离2.综合与实践某“综合与实践”小组开展了测量本校旗杆高度的实践活动,他们制定了测量方案,并利用课余时间完成了实地测量.他们在旗杆底部所在的平面上,放置一个平面镜E.来测量学校旗杆的高度,当镜子中心与旗杆的距离20EB=米,镜子中心与测量者的距离2ED=米时,测量者刚好从镜子中看到旗杆的顶端点A.已知测量者的身高为1.6米,测量者的眼睛距地面的高度为1.5米,求学校旗杆的高度是多少米.任务一:在计算过程中C,D之间的距离应该是米.任务二:根据以上测量结果,请你帮助“综合与实践”小组求出学校旗杆AB的高度.任务三:该“综合与实践”小组在制定方案时,讨论过“利用测量者在阳光下的影子测量旗杆的高度”的方案,请你再备用图中画出该方案的示意图,并说明必要的已知条件.【答案】任务一:1.5;任务二:学校旗杆的高度是15米;任务三:如图见分析,点A,M,F三点共线,已知测量者的身高MN,影长FN,旗杆的影长FB即可求得旗杆AB的高度【分析】(1)C,D之间的距离应是测量者的眼睛距离地面的距离,即可作答;(2)因为入射光线和反射光线与镜面夹角相等,所以△CDE∠∠ABE,再根据相似三角形的对应边成比例解答即可;(3)点A,M,F三点共线,已知测量者的身高MN,影长FN,旗杆的影长FB,即可求得旗杆AB的高度.解:任务一:C,D之间的距离应是测量者的眼睛距离地面的距离,即为1.5米,故答案为:1.5;任务二:由已知,∠DEC=∠BEA,∠CDE=∠ABE=90°,∴△CDE∠∠ABE,CD DEAB BE∴=,1.5220AB∴=,∴AB=15,所以,学校旗杆的高度是15米;任务三:如图所示,点A,M,F三点共线,已知测量者的身高MN,影长FN,旗杆的影长FB,即可求得旗杆AB的高度.【点拨】此题考查了相似三角形的判定和性质,解题关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形中,利用相似比列出方程即可求出.【变式1】为了测量一棵大树的高度,准备了如下测量工具:∠镜子;∠皮尺;∠长为2m的标杆;∠高为1.5m的测角仪(能测量仰角和俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是___;(用工具序号填写)(2)在下图中画出你的测量方案示意图;(3)你需要测量示意图中的哪些数据,并用a,b,c,α,β等字母表示测得的数据;(4)写出求树高的算式:AB=___m.(用a,b,c,α,β等字母表示)【答案】(1)∠∠(2)见分析(3)EA(镜子离树的距离)=am,EC(人离镜子的距离)=bm,DC(目高)=cm(4)ac b【分析】此题要求学生根据题意,自己设计方案,答案不唯一;可借助相似三角形的对应边成比例的性质进行设计测量方法,先测得CE,EA与CD的大小,根据相似三角形的性质;可得:CE DCEA AB=;即AB=acb.(1)解:∠∠;(2)解:测量方案示意图;(3)解:EA(镜子离树的距离)=amEC(人离镜子的距离)=bm,DC(目高)=cm;(4)解:根据相似三角形的性质;可得:CE DC EA AB=;即AB=acb.【点拨】本题考查相似三角形的应用,构造相似三角形,借助相似三角形的性质解决问题.【变式2】枣庄某学校九年级一班进行课外实践活动,王嘉同学想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,王嘉边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得王嘉落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知王嘉的身高EF是1.7m,请你帮王嘉求出楼高AB.【答案】26.2米【分析】过点D作DN∠AB,垂足为N.交EF于M点,由四边形CDME、ACDN是矩形,得AN=ME=CD=1.2(m),DN=AC=30(m),DM=CE=0.6(m),得MF=EF﹣ME=1.7﹣1.2=0.5(m),依题意知,EF∠AB,则△DFM∠∠DBN,DM MFDN BN=解得BN=25(m),即可AB=BN+AN=25+1.2=26.2(m).解:过点D作DN∠AB,垂足为N.交EF于M点,∠四边形CDME、ACDN是矩形,∠AN=ME=CD=1.2(m),DN=AC=30(m),DM=CE=0.6(m),∠MF=EF﹣ME=1.7﹣1.2=0.5(m),∠依题意知,EF∠AB,∠∠DFM∠∠DBN,∠DM MF DN BN=,即:0.60.5 30BN=,∠BN=25(m),∠AB=BN+AN=25+1.2=26.2(m).答:楼高为26.2m.【点拨】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.【变式3】在“测量物体的高度”活动中,某数学兴趣小组的两名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作;小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)在横线上直接填写甲树的高度为_____________米;(2)画出测量乙树高度的示意图,并求出乙树的高度.【答案】(1) 5.1 (2) 4.2米【分析】(1)根据测得一根长为1米的竹竿的影长为0.8米,利用比例式直接得出树高; (2)根据辅助线作法得出假设没有墙时影子长度,即可求出答案.(1)解:根据题意得:10.8 4.08=x 解得: 5.1x =(米),故答案为:5.1.(2)解:假设AB 是乙树,∠ 2.4BC =(米) 1.2CD =(米) ∠10.8=CD CE , ∠1.210.8=CE , ∠0.96CE =(米), ∠10.8 2.40.96=+AB , ∠ 4.2AB =(米),答:乙树的高度为4.2米.【点拨】本题主要考查了相似三角形的应用,根据同一时刻影长与高成比例以及假设没有墙时求出影长是解决问题的关键.。
.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。
相似三角形练习
例1、如图,直角梯形ABCD中,∠ADC=90°, ∠DFC=∠AEB ,AD∥BC,点E在BC上,点 F在AC上,
(1)求证:△ADF∽△CAF
(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯
形ABCD的面积
例2、已知:如图,在平面直角坐标系中,ABC△是直角三角形,90ACB,点AC,的坐标分别为
(30)A,,(10)C,
,43ACBC
(1)求过点AB,的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得ADB△与ABC△相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如PQ,分别是AB和AD上的动点,连接PQ,设APDQm,问是否存
在这样的m使得APQ△与ADB△相似,如存在,请求出m的值;如不存在,
请说明理由.
一、填空题
1、在比例尺为1︰2000的地图上测得AB两地间的图上距离为5cm,C地图上面积为15cm2,则AB两地间
的实际距离为 m,C地的实际面积是_______________.
2、如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若1AG,2BF,
90GEF
,则GF的长为 .
3、正△ABC中,D、E分别在AC 、AB上,且E是AC的中点,13CDAB,则图中的一对相似三角形是__________
4、如图,边长为4的等边△ABC被平行于BC的一张矩形纸片覆盖一部分,矩形与AB、AC的交点分别是
D、E和F、G,则图中阴影部分的面积是______。
5、在△ABC中,AB=6,AC=4,P是AC的中点,过P的直线交AB于点Q,若以APQ为顶点的三角形与△
ABC相似,则AQ的长为__________.
第2题 第3题 第4题 第5题
A
C O
B
x
y
6、如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,
若PQ=2,则此三角形移动的距离PP′______
7、如图,在△ABC中,G是BC的中点,E是AG的中点,CE的延长线交AB于点D,则._____DEEC
8、如图, 在已建立直角坐标系的4×4的正方形方格纸中,△ABC是格点三角形(三角形的三个顶点都
是小正方形的顶点), 若以格点P、A、B为顶点的三角形与△ABC相似(全等除外),则格点P的坐
标是 .
9、直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点
旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为
第6题 第7题 第8题 第9题
10、在△ABC中,∠B=35°,AD是BC边上的高,并且CDBDAD2,则∠BCA的度数为___________。
二、解答题
1.如图,Rt△AB C 是由Rt△ABC绕点A顺时针旋转得到的,连结CC 交斜边于点E,CC 的延长线交BB
于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=,∠CAC =,试探索、满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.
2. 已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连结AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,
求AS和OR的长.
3.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,
且DM交AC于F,ME交BC于G.
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.
、
4、如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于
点E.
(1)求证:AB·AF=CB·CD
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=xcm(x>0),四边形BCDP的面积为ycm2.
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值.
5、如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动..,以BE为边,在BE的
上方作正方形BEFG,连接CG。请探究:
(1)线段AE与CG是否相等?请说明理由。
(2)若设xAE,yDH,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?
A B M
F
G
D
E
C
D
P
A
EFCB
6、 在图1至图3中,直线MN与线段AB相交于点O,∠1 = ∠2 = 45°.
(1)如图1,若AO = OB,请写出AO与BD 的数量关系和位置关系;
(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO = OB.求证:AC = BD,AC ⊥ BD;
(3)将图2中的OB拉长为AO的k倍得到图3,求ACBD的值.
7、问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请
按图示数据填空:四边形DBFE的面积S ,△EFC的面积1S ,△ADE的面积2S .
探究发现(2)在(1)中,若BFa,FCb,DE与BC间的距离为h.请证明2124SSS.
拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,
试利用..(2.)中的结论....求△ABC的面积.