中考数学专题复习:“方案设计题型”解析
- 格式:ppt
- 大小:265.00 KB
- 文档页数:25
第七篇专题复习篇专题35方案设计问题知识点名师点晴方程组与不等式二元一次方程的整数解能利用二元一次方程的整数解确定具体的方案设计一元一次不等式(组)的正整数解利用不等式或不等式组的特殊解求实际问题一次函数的应用一次函数的增减性利用一次函数的增减性和最值问题,确定最优化设计方案归纳1:方程(组)与不等式的综合问题基础知识归纳:二元一次方程(组)的应用、一元一次不等式(组)的应用基本方法归纳:方程组与不等式组的应用关键是理解题意,找出等量关系和不等关系列出对应的二元一次方程组或一元一次不等式(组)即可.注意问题归纳:解二元一次方程组的基本方法是代入消元法和加减消元法,注意二元一次方程有无数个解,但其正整数解有有限个.【例1】(2019湖北省天门市,第8题,3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【例2】(2019四川省巴中市,第20题,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.(1)请问甲、乙两种物品的单价各为多少?(2)如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?归纳2:一次函数的方案设计基础知识归纳:一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.基本方法归纳:一次函数的增减性只与k有关系,与b的取值无关.注意问题归纳:一次函数的方案设计经常与方程组或不等式(组)在一起考查,解决一次函数的最值的关键是确定自变量的取值范围以及函数的增减性.【例3】(2019湖南省常德市,第21题,7分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x 时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【2019年题组】一、选择题1.(2019四川省绵阳市,第9题,3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种2.(2019湖南省永州市,第9题,4分)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁3.(2019黑龙江省绥化市,第8题,3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种4.(2019黑龙江省鸡西市,第19题,3分)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种5.(2019黑龙江省齐齐哈尔市,第8题,3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种二、填空题三、解答题6.(2019四川省内江市,第26题,12分)某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.7.(2019四川省广元市,第20题,8分)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?8.(2019广安,第22题,8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(2019四川省泸州市,第21题,7分)某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.10.(2019莱芜区,第22题,10分)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?11.(2019滨州,第22题,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.12.(2019山东省烟台市,第21题,9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?13.(2019浙江省温州市,第23题,12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.14.(2019湖北省荆州市,第23题,10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?15.(2019湖南省张家界市,第18题,6分)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?16.(2019湖南省衡阳市,第24题,8分)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?17.(2019湖南省郴州市,第22题,8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?18.(2019贵州省遵义市,第21题,12分)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?19.(2019黑龙江省鸡西市,第27题,10分)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【2018年题组】一、选择题1.(2018黑龙江省齐齐哈尔市,第8题,3分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种2.(2018黑龙江省,第19题,3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种二、填空题3.(2018黑龙江省绥化市,第19题,3分)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有种购买方案.三、解答题4.(2018湖北省咸宁市,第22题,10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.5.(2018湖北省武汉市,第20题,8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B 型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.6.(2018湖北省黄石市,第23题,8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.7.(2018黑龙江省牡丹江市,第28题,9分)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.8.(2018黑龙江省,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?9.(2018黑龙江,第27题,10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?10.(2018内蒙古通辽市,第24题,9分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?11.(2018四川省内江市,第21题,10分)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.商场用50000元共购进A型号手机10部,B型号手机20部.(1)求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?12.(2018四川省凉山州,第27题,14分)结合西昌市创建文明城市要求,某小区业主委员会决定把一块长80m,宽60m的矩形空地建成花园小广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的直角三角形),空白区域为活动区,且四周出口宽度一样,其宽度不小于36m,不大于44m,预计活动区造价60元/m2,绿化区造价50元/m2,设绿化区域较长直角边为xm.(1)用含x的代数式表示出口的宽度;(2)求工程总造价y与x的函数关系式,并直接写出x的取值范围;(3)如果业主委员会投资28.4万元,能否完成全部工程?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(4)业主委员会决定在(3)设计的方案中,按最省钱的一种方案,先对四个绿化区域进行绿化,在实际施工中,每天比原计划多绿化11m2,结果提前4天完成四个区域的绿化任务,问原计划每天绿化多少m2.13.(2018四川省巴中市,第28题,8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.14.(2018天津市,第23题,10分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.15.(2018山东省济宁市,第19题,7分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?16.(2018山东省潍坊市,第23题,11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A 型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?17.(2018山东省莱芜市,第22题,10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?18.(2018广州,第21题,12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.一、选择题1.(2019门头沟区二模)团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()购票人数1~5051~100100以上门票价格13元/人11元/人9元/人A.20B.35C.30D.402.(2019克东县二模)某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3B.4C.5D.63.(2019潜江一模)“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和。
2021全国各地中考数学分类汇编:方案设计(含解析)----65b18319-6ea1-11ec-af6d-7cb59b590d7d2021全国各地中考数学分类汇编:方案设计(含解析)初中数学复习教材是精心编写的,推荐用于呕血。
如果他们有用,请给他们奖励和支持。
非常感谢你!方案设计选择题1.1. (2022年河北省3分)如图所示,∠ AOB=120°,平均∠ 若点m和N分别位于OA和ob上,则AOB和op=2,且△ PMN是一个等边三角形△ 满足上述条件的PMN有(d)第16题图a.1个答案:d分析:m和N分别在AO和Bo上,一个;m、 N其中一个与o点2重合;在反向延长线上有一条,所以选择D。
知识点:此题容易漏情况,要考虑全面,有规律的考虑。
先下后上,先中间后端点。
解答题1.(2022-2026点)如图所示,六个相同的小矩形构成一个大矩形。
AB是其中一个小矩形的对角线。
请在大矩形中完成以下图纸。
要求:① 只能使用无刻度尺,② 保留必要的绘图痕迹。
(1)在图1中画一个45°的角,使点a或点B为该角的顶点,ab为该角的一侧;(2)在图2中画出AB线的垂直平分线b.2个c、三,d.3个以上[测试站点]映射-应用程序和设计映射【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形和矩形的性质,对角线是相等的,并相互平分以解决该问题。
【解决方案】解决方案:(1)如图所示,∠ ABC=45°(AB和AC是小矩形的对角线)(2)线段ab的垂直平分线如图所示,点m是矩形,afbe是对角线的交点,点n是正方形ABCD的对角线的交点,直线Mn是直线ab的垂直平分线2.(2021黑龙江龙东10分)某中学开学初到商场购买a、b两种品牌的足球,购买a种品牌的足球50个,b种品牌的足球25个,共花费4500元,已知购买一个b种品牌的足球比购买一个a钟品牌的足球多花30元.(1)买a牌和B牌足球要多少钱(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进a、b两种品牌足球共50个,正好赶上商场对商品价格进行调整,a品牌足球售价比第一次购买时提高4元,b品牌足球按第一次购买时售价的9折出售,如果学校此次购买a、b两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的b种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)假设a品牌足球的单价为x元,B品牌足球的单价为y元。
卜人入州八九几市潮王学校方案设计1.〔2021•A卷•10分〕如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中A D≤MN,矩形菜园的一边靠墙,另三边一一共用了100 米木栏.〔1〕假设a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;〔2〕求矩形菜园ABCD面积的最大值.【分析】〔1〕设AB=xm,那么BC=〔100﹣2x〕m,利用矩形的面积公式得到x〔100﹣2x〕=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进展大小比较即可得到AD的长;〔2〕设AD=xm,利用矩形面积得到S=12x〔100﹣x〕,配方得到S=﹣12〔x﹣50〕2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,那么当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣12a2.【解答】解:〔1〕设AB=xm,那么BC=〔100﹣2x〕m,根据题意得x〔100﹣2x〕=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;〔2〕设AD=xm,∴S=12x〔100﹣x〕=﹣12〔x﹣50〕2+1250,当a≥50时,那么x=50时,S的最大值为1250;当0<a<50时,那么当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣12a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣12a2.【点评】此题考察了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.2.〔2021•B卷•10分〕空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,木栏总长为100米.〔1〕a=20,矩形菜园的一边靠墙,另三边一一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;〔2〕0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.图1图2【分析】〔1〕按题意设出AD,表示AB构成方程;〔2〕根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.【解答】解:〔1〕设AD=x米,那么AB=1002x-米依题意得,(100)4502x x-=解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10 米.〔2〕设AD=x米,矩形ABCD的面积为S平方米①假设按图一方案围成矩形菜园,依题意得: S=2(100)1(50)125022x x x -=--+,0<x <a ∵0<α<50∴x<a <50时,S 随x 的增大而增大当x=a 时,S 最大=50a ﹣213a②如按图2方案围成矩形菜园,依题意得 S=22(1002)[(25)](25)244x a x a a x +-=---++,a ≤x<50+2a当a <25+4a <50时,即0<a <1003时,那么x=25+4a 时, S 最大=〔25+4a 〕2=21000020016a a ++ 当25+4a ≤a,即100503a ≤时,S 随x 的增大而减小∴x=a 时,S 最大=(1002)2a a a +-=21502a a -综合①②,当0<a <1003时,21000020016a a ++﹣〔21502a a -〕=2(3100)016a -21000020016a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a ++平方米当100503a ≤时,两种方案围成的矩形菜园面积最大值相等. ∴当0<a <1003时,围成长和宽均为〔25+4a 〕米的矩形菜园面积最大,最大面积为21000020016a a ++平方米; 当100503a ≤时,围成长为a 米,宽为〔50﹣2a 〕米的矩形菜园面积最大,最大面积为〔21502a a 〕平方米. 【点评】此题以实际应用为背景,考察了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.3.〔2021··10分〕某积极响应“三城同创〞的号召,绿化校园,方案购进A ,B 两种树苗,一共21棵,A 种树苗每棵90元,B 种树苗每棵70元.设购置A 种树苗x棵,购置两种树苗所需费用为y元.〔1〕求y与x的函数表达式,其中0≤x≤21;〔2〕假设购置B种树苗的数量少于A种树苗的数量,请给出一种费用最的方案,并求出该方案所需费用.【分析】〔1〕根据购置两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;〔2〕根据购置B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据〔1〕得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:〔1〕根据题意,得:y=90x+70〔21﹣x〕=20x+1470,所以函数解析式为:y=20x+1470;〔2〕∵购置B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最的方案是购置B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】此题考察的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描绘语,进而找到所求的量的等量关系和不等关系.4.〔2021年〕两种型号的垃圾处理设备一共10台.每台A型设备日处理才能为12吨;每台B型设备日处理才能为15吨;购回的设备日处理才能不低于140吨.〔1〕请你为该景区设计购置两种设备的方案;〔2〕每台A型设备价格为3万元,每台B型设备价格为万元.厂家为了促销产品,规定货款不低于40万元时,那么按9折优惠;问:采用〔1〕设计的哪种方案,使购置费用最少,为什么?【分析】〔1〕设购置A种设备x台,那么购置B种设备〔10﹣x〕台,根据购回的设备日处理才能不低于140吨列出不等式12x+15〔10﹣x〕≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;〔2〕分别求出各方案实际购置费用,比较即可求解.【解答】解:〔1〕设购置A种设备x台,那么购置B种设备〔10﹣x〕台,根据题意,得12x+15〔10﹣x〕≥140,解得x≤313,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购置A种设备1台,B种设备9台;方案二:购置A种设备2台,B种设备8台;方案三:购置A种设备3台,B种设备7台;〔2〕各方案购置费用分别为:方案一:3×1+×9=4>40,实际付款:4×0.9=34〔万元〕;方案二:3×2+×8=4>40,实际付款:4×0.9=37.08〔万元〕;方案三:3×3+×7=3<40,实际付款:3〔万元〕;∵37.08<34<3,∴采用〔1〕设计的第二种方案,使购置费用最少.【点评】此题考察了一次函数的应用,一元一次不等式的应用,分析题意,找到适宜的不等关系是解决问题的关键.5.〔2021湘西州12.00分〕某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店方案再一次性购进两种型号的电脑一共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.〔1〕求y关于x的函数关系式;〔2〕该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?〔3〕实际进货时,厂家对A型电脑出厂价下调a〔0<a<200〕元,且限定商店最多购进A型电脑60台,假设商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】〔1〕根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量〞可得函数解析式;〔2〕根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数〞求得x的范围,再结合〔1〕所求函数解析式及一次函数的性质求解可得;〔3〕据题意得y=〔400+a〕x+500〔100﹣x〕,即y=〔a﹣100〕x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进展求解.【解答】解:〔1〕根据题意,y=400x+500〔100﹣x〕=﹣100x+50000;〔2〕∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y获得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;〔3〕据题意得,y=〔400+a〕x+500〔100﹣x〕,即y=〔a﹣100〕x+50000,1333≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足1333≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y获得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考察了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x 值的增大而确定y值的增减情况.6.〔2021••7分〕绿水青山就是金山银山〞,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:人均支出费用各是多少元;〔2〕在人均支出费用不变的情况下,为节约开支,两村准备抽调40人一共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,那么有哪几种分配清理人员方案?【解答】解:〔1〕设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得1595700010+1668000x yx y+=⎧⎨=⎩,解得:20003000 xy=⎧⎨=⎩,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;〔2〕设m人清理养鱼网箱,那么〔40﹣m〕人清理捕鱼网箱,根据题意,得:20003000(40)1020040m mm m+-≤⎧⎨-⎩,解得:18≤m<20,∵m为整数,∴m=18或者m=19,那么分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.7.〔2021··10分〕某为改善办学条件,方案采购A.B两种型号的空调,采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.〔1〕求A型空调和B型空调每台各需多少元;〔2〕假设方案采购两种型号空调一共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校一共有哪几种采购方案?〔3〕在〔2〕的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】〔1〕根据题意可以列出相应的方程组,从而可以解答此题;:〔2〕根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;〔3〕根据题意和〔2〕中的结果,可以解答此题.【解答】解:〔1〕设A型空调和B型空调每台各需x元、y元,3239000456000x y x y +=⎧⎨-=⎩,解得,90006000x y =⎧⎨=⎩ ,答:A 型空调和B 型空调每台各需9000元、6000元;〔2〕设购置A 型空调a 台,那么购置B 型空调〔30﹣a 〕台,90006000(30)217001(30)2a a a a +-≤⎧⎪⎨≤-⎪⎩ ,解得,10≤a≤1213,∴a=10.11.12,一共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;〔3〕设总费用为w 元,w=9000a+6000〔30﹣a 〕=3000a+180000,∴当a=10时,w 获得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【点评】此题考察一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.8.〔2021••12分〕准备购进一批甲、乙两种办公桌假设干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,假设购进20张甲种办公桌和15张乙种办公桌一共花费24000元;购置10张甲种办公桌比购置5张乙种办公桌多花费2000元.〔1〕求甲、乙两种办公桌每张各多少元?〔2〕假设购置甲乙两种办公桌一共40张,且甲种办公桌数量不多于乙种办公桌数量的3 倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】〔1〕设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000〞列方程组求解可得;〔2〕设甲种办公桌购置a张,那么购置乙种办公桌〔40﹣a〕张,购置的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数〞得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍〞得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:〔1〕设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:2015700024000 10510002000x yx y++=⎧⎨-+=⎩,解得:400600 xy=⎧⎨=⎩,答:甲种办公桌每张400元,乙种办公桌每张600元;〔2〕设甲种办公桌购置a张,那么购置乙种办公桌〔40﹣a〕张,购置的总费用为y,那么y=400a+600〔40﹣a〕+2×40×100=﹣200a+32000,∵a≤3〔40﹣a〕,∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y获得最小值,最小值为26000元.。