2017年天津分类考试数学模拟题
- 格式:pdf
- 大小:2.09 MB
- 文档页数:10
2017年天津市部分区初中毕业生学业考试第一次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) (1)D (2)C (3)C (4)B (5)A (6)B (7)C(8)D(9)A(10)C(11)A(12)B二、填空题(本大题共6小题,每小题3分,共18分) (13)16(14)26x y (15)2(2)x - (16)21y x =-(答案不惟一,满足0≤b 即可)(171-(18);(Ⅱ)如图,作正方形ANMB ,取格点D ,P ,使得AD=5,AP=4,连接DN ,找到使PQ ∥DN 的格点Q ,连接PQ ,交AN 于点F ,同理找到点E ,连接EF ,则矩形AFEB 即为所求. 三、解答题(本大题共7小题,共66分) (19)(本小题8分)解:(Ⅰ)3x ≥-;…………………………………………………………………2' (Ⅱ)2x <; …………………………………………………………………4'(Ⅲ)6'(Ⅳ)32x -≤<; …………………………………………………………………8'(20)(本小题8分)解:(Ⅰ)25. ………………………………………………………………………1' (Ⅱ)观察条形统计图,∵ 1.503 1.556 1.604 1.655 1.7021.59x ⨯+⨯+⨯+⨯+⨯=≈,第(18)题∴ 这组数据的平均数约为1.59.……………………………………………3'∵ 在这组数据中,1.55出现了6次,出现的次数最多,∴ 这组数据的众数为1.55.…………………………………………………5'∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60, 有1.60 1.601.602+=, ∴ 这组数据的中位数为1.60.………………………………………………7' (Ⅲ)不能. ……………………………………………………………………8' (21)(本小题10分)证明:(Ⅰ)如图,连接OB .………………………………………………………1' ∵AB 是⊙O 的切线,∴OB AE ⊥. …………………………………………………………………2' ∵CE AE ⊥,∴OB ∥CE .………………………………………………………………………3' ∴∠OBC =∠BCE . ∵ OB OC =,∴∠OBC =∠OCB . ……………………………………………………………4' ∴∠BCE =∠OCB ,即CB 平分∠ACE .………………………………………5'(Ⅱ)如图,连接DB . 在Rt △BCE中5BC ===. ……………………………6'∵ CD 是⊙O 的直径,∴∠CBD =90°.∴CBD E ∠=∠.………………………………………………………………………7' 又∵DCB BCE ∠=∠, ∴BCE DCB ∠=∠cos cos 即BCCEDC BC =…………………………………………8' ∴554DC =即DC =254. …………………………………………………………9'25B第(20)题图B第(20)题图(22)(本小题10分)解:过点D 作DM ⊥BC 于M ,DN ⊥AC 于N ,则四边形DNCM 是矩形.………………………1' ∵DA =6,斜坡FA 的坡比i∴DN =132AD =.………………………………2' AN=………………………………………3' 设大树BC 的高度为x 米.在Rt BAC △中,48BAC ∠=︒,tan BCBAC AC∠=,………………………………4' ∴0tan 48 1.11BC xAC AC==≈. ∴ 1.11xAC ≈.………………………………………………………………………5' ∴DM =NC =AN +AC= 1.11x +. 由题意得30BDM ∠=︒,在Rt BDM △中,DMBMBDM =∠tan ,……………6' ∴tan 30)1.11x BM DM =︒==.……………………………7' 又∵BM =3BC MC x -=- ∴3)1.11xx -=. ………………………………………………………8' ∴ 12.5x ≈. ………………………………………………………………………10' 答:大树BC 的高度约为12.5米. (23)(本小题10分)解:(Ⅰ) 表一:港口从甲仓库运(吨)从乙仓库运(吨)A 港 x 100-xB 港80-xx -30………………………3'表二: 港口从甲仓库运到港口费用(元) 从乙仓库运到港口费用(元)NMA 港 14x 20(100-x )B 港10(80-x )8(x -30)………………………6' (Ⅱ)设总运费W 元,由(Ⅰ)可知,总运费为:()()()14201001080830W x x x x =+-+-+-82560W x =-+.……………………………………………………………………7' 其中,080010070x x ⎧⎨-⎩≤≤≤≤,解得30≤x ≤80 . ………………………………8'∵ 80-<,∴ W 随x 的增大而减小.∴ 当80x =时,W 取得最小值1920. …………………………………………9' 答:此时方案为:把甲仓库的物资(80吨)全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库余下的物资(50吨)全部运往B 港口. …………………………10' (24)(本小题10分)解:(Ⅰ)x =15 cm ;……………………2'(Ⅱ)(1)当0≤x ≤6时,如图2所示. ∠GDB=60°,∠GBD =30°,DB =x ,得DG =12x , BG x,重叠部分的面积为2111222y DG BG x x x=⋅=⨯=;…………4' (2)当6<x ≤12时,如图3所示. BD =x ,DG =12x ,BGx ,BE =x ﹣6,EH)6x -.重叠部分的面积为1122BDG BEHy S S DG BG BE EH =-=⋅-⋅ 即)222162y x x =--=+-;…6' ③当12<x ≤15时,如图4所示.AC =6,BC =,BD =x ,BE =(x ﹣6),EG )6x -,重叠部分的面积为1122ABC BEGy S S AC BC BE EG =-=⋅-⋅,即)226y x x=-=++8'综上所述:()))2220661212115xxxy xx x⎪⎪⎪=+-⎨⎪⎪≤≤≤+⎪≤+⎪⎩<<;………9'(Ⅲ)点M与点N10'如图5所示作NG⊥DE于G点,点M在NG上时MN最短.NG是DEF∆的中位线,12NG EF==12MB CB==又∵∠B=30°,∴12MG MB==∴MN最小==(25)(本小题10分)解:(Ⅰ)联立两直线解析式可得21y xy x=--⎧⎨=-⎩,解得11xy=-⎧⎨=⎩,∴B点坐标为(﹣1,1),…………………………………………………………………1'又C点为B点关于原点的对称点,∴C点坐标为(1,﹣1),…………………………………………………………………2'因为抛物线解析式为12-+=bxaxy把B、C两点坐标代入可得⎩⎨⎧-+=---=1111baba,解得,⎩⎨⎧-==11ba∴抛物线解析式为21y x x=--;………………………………………………………4'(Ⅱ)(1)当四边形PBQC为菱形时,则PQ⊥BC,∵直线BC解析式为y x=-,∴直线PQ解析式为y x=,……………………………5'联立抛物线解析式可得21y xy x x=⎧⎨=--⎩,解得11xy⎧=⎪⎨=⎪⎩或11xy⎧=⎪⎨=⎪⎩∴P点坐标为(1-或(1++; ……………………………………7' (2)当t=0时,四边形PBQC 的面积最大;最大面积是2.…………………………8' 理由如下:如图,过P 作PD ∥y 轴,交y x =-于点D ,分别过点B ,C 作BE ⊥PD ,CF PD ⊥,垂足分别为E ,F .则点P 的坐标为()2,1,t t t -- 点D 的坐标为(),.t t -∴ PD ()2211;t t t t =----=-+BE+CF=2.∴ PDCF PD BE PD S PBC =∙+∙=∆2121 ∴12+-=∆t S PBC∴ S 四边形PBQC ()2222122PBC S t t ∆==-+=-+.∴ 当t=0时,四边形PBQC 的面积最大,面积最大值为2.…………………………10'PDQEF。
2017年天津市滨海新区高考数学模拟试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知集合M={x|x2﹣1≤0},N=|x∈Z|<2x+1<4},则M∩N=()A.{1}B.{﹣1,0}C.{﹣1,0,1}D.∅2.(5分)若x,y满足约束条件,则z=x+y的最大值为()A.B.﹣3 C.D.13.(5分)执行如图所示的程序框图,若输入的x=2017,则输出的i=()A.5 B.4 C.3 D.24.(5分)“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)△ABC的内角A、B、C的对边分别为a,b,c,若cosA=,bcosC+ccosB=2,则△ABC外接圆的面积为()A.4πB.8πC.9πD.36π6.(5分)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.47.(5分)已知函数f(x)=(e x﹣e﹣x)x.若f(log 3x)+f(log x)≤2f(1),则x的取值范围()A.(﹣∞]∪[3,+∞)B.[,3]C.[,1]D.[1,3]8.(5分)定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对任意实数x∈[2n﹣2,2n+1﹣2](n∈N*,n≥2),都有f(x)=f(﹣1).若g(x)=f(x)﹣log a x有且仅有3个零点,则实数a的取值范围是()A.[2,10] B.[,]C.(2,10)D.[2,10)二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知i是虚数单位,若复数z=(m∈R)是纯虚数,则m=.10.(5分)一个几何体的三视图如图所示,则该几何体的体积为.11.(5分)设a=cosxdx,则(a+)6展开式中的常数项为.12.(5分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+)=1,圆C的参数方程为(θ为参数).则直线l与圆C相交所得弦长为.13.(5分)已知抛物线(t为参数),过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),|AF|=3|FB|,过AB的中点且垂于l的直线与x轴交于点G,则△ABG的面积为.14.(5分)如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且=,=,则+的最小值为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.(Ⅰ)求函数f(x)的定义域和最小正周期;(Ⅱ)求函数f(x)在x∈[﹣,0]上的最大值和最小值.16.(13分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店;5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取4名,求至多有一名倾向于选择实体店的女性购物者的概率;(Ⅱ)若分别从男性购物者和女性购物者中各随机抽取2名,设X表示抽到倾向于选择网购的人数,求X的分布列和数学期望.17.(13分)如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.(Ⅰ)求证:CP∥平面DAE;(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为.若存在,求出的值;若不存在,请说明理由.18.(13分)已知正项数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=,且b n﹣b n=.+1(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n,并证明≤T n<对一切n∈N*都成立.19.(14分)已知椭圆C:+=1(a>b>0)离心率为,它的一个顶点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为﹣,求△MON的面积.20.(14分)已知函数f(x)=lnx+ax2,g(x)=+x,且直线y=﹣是曲线y=f (x)的一条切线.(Ⅰ)求实数a的值;(Ⅱ)对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.2017年天津市滨海新区高考数学模拟试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知集合M={x|x2﹣1≤0},N=|x∈Z|<2x+1<4},则M∩N=()A.{1}B.{﹣1,0}C.{﹣1,0,1}D.∅【解答】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},N={x|<2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},则M∩N={﹣1,0}故选:B2.(5分)若x,y满足约束条件,则z=x+y的最大值为()A.B.﹣3 C.D.1【解答】解:由约束条件,作出可行域如图,由解得A(0,1)化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A(0,1)时,目标函数有最大值,为z=1+0=1.故选:D.3.(5分)执行如图所示的程序框图,若输入的x=2017,则输出的i=()A.5 B.4 C.3 D.2【解答】解:根据题意,得a=2017,i=1,b=﹣,i=2,a=﹣,b=,i=3,a=,b=2017,不满足b≠x,退出循环,输出i的值为3.故选:C.4.(5分)“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:“∀x∈R,x2+ax+1>0成立”⇔△=a2﹣4<0,⇔“|a|<2”.∴“∀x∈R,x2+ax+1>0成立”是“|a|≤2”的充分不必要条件.故选:A.5.(5分)△ABC的内角A、B、C的对边分别为a,b,c,若cosA=,bcosC+ccosB=2,则△ABC外接圆的面积为()A.4πB.8πC.9πD.36π【解答】解:由题意,cosA=,∴sinA=.由正弦定理:,可得:2RsinBcosC+2RsinCcosB=2.即R(sinBcosC+sinCcosB)=1.RsinA=1.∴R=3.圆的面积为:πR2=9π.故选:C.6.(5分)已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1 B.2 C.3 D.4【解答】解:,取顶点,一条渐近线为mx﹣3y=0,∵故选D.7.(5分)已知函数f(x)=(e x﹣e﹣x)x.若f(log 3x)+f(log x)≤2f(1),则x的取值范围()A.(﹣∞]∪[3,+∞)B.[,3]C.[,1]D.[1,3]【解答】解:函数f(x)=(e x﹣e﹣x)x,x∈R,∴f(﹣x)=(e﹣x﹣e x)•(﹣x)=(e x﹣e﹣x)x=f(x),∴f(x)是定义域R上的偶函数;又f(x)=f(﹣log 3x)=f(log3x),∴不等式f(log 3x)+f(log x)≤2f(1)可化为f(log3x)≤f(1);又f′(x)=(e x﹣e﹣x)+(e x+e﹣x)x,当x≥0时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上是单调增函数;∴原不等式可化为﹣1≤log3x≤1,解得≤x≤3;∴x的取值范围是[,3].故选:B.8.(5分)定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),且对任意实数x∈[2n﹣2,2n+1﹣2](n∈N*,n≥2),都有f(x)=f(﹣1).若g(x)=f(x)﹣log a x有且仅有3个零点,则实数a的取值范围是()A.[2,10] B.[,]C.(2,10)D.[2,10)【解答】解:当x∈[0,2]时,f(x)=4(1﹣|x﹣1|),当n=2时,x∈[2,6],此时﹣1∈[0,2],则f(x)=f(﹣1)=×4(1﹣|﹣1﹣1|)=2(1﹣|﹣2|),当n=3时,x∈[6,14],此时﹣1∈[2,6],则f(x)=f(﹣1)=×2(1﹣|﹣|)=1﹣|﹣|,由g(x)=f(x)﹣log a x=0,得f(x)=log a x,分别作出函数f(x)和y=log a x的图象,若0<a<1,则此时两个函数图象只有1个交点,不满足条件.若a>1,当对数函数图象经过A时,两个图象只有2个交点,当图象经过点B 时,两个函数有4个交点,则要使两个函数有3个交点,则对数函数图象必须在A点以下,B点以上,∵f(4)=2,f(10)=1,∴A(4,2),B(10,1),即满足,即,解得,即2<a<10,故选:C.二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知i是虚数单位,若复数z=(m∈R)是纯虚数,则m=﹣2.【解答】解:复数z===+i是纯虚数,则=0,≠0,解得m=﹣2.故答案为:﹣2.10.(5分)一个几何体的三视图如图所示,则该几何体的体积为.【解答】解:由三视图可知:该几何体左边是半圆柱,右边是四棱锥.∴该几何体的体积V=+=.故答案为:.11.(5分)设a=cosxdx,则(a+)6展开式中的常数项为240.【解答】解:a=cosxdx==2,则的展开式中通项公式:T r==26﹣r,+1令3﹣=0,解得r=2.∴常数项==240.故答案为:240.12.(5分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+)=1,圆C的参数方程为(θ为参数).则直线l与圆C相交所得弦长为.【解答】解:直线l的极坐标方程为ρsin(θ+)=1,展开可得:ρsinθ+=1,化为直角坐标方程:x+y﹣2=0.圆C的参数方程为(θ为参数),化为普通方程:=4,可得圆心,半径r=2.圆心C到直线l的距离d==.∴直线l与圆C相交所得弦长=2=2=.故答案为:.13.(5分)已知抛物线(t为参数),过其焦点F的直线l与抛物线分别交于A、B两点(A在第一象限内),|AF|=3|FB|,过AB的中点且垂于l的直线与x轴交于点G,则△ABG的面积为.【解答】解:抛物线(t为参数),消去参数化为:y2=4x.设直线l的方程为:y=k(x﹣1),A(x1,y1),B(x2,y2).联立,化为:k2x2﹣(4+2k2)x+k2=0,△>0,∴x1+x2=,x1x2=1,(*)可得线段AB的中点M.∵|AF|=3|FB|,∴=3,∴1﹣x1=3(x2﹣1),与(*)联立可得:k2=3,取k=.∴M,∴过AB的中点且垂于l的直线方程为:y﹣=﹣(x﹣),令y=0,可得G,∴点G到直线l的距离d==.|AB|===.∴△ABG的面积S=•d•|AB|=×=.故答案为:.14.(5分)如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且=,=,则+的最小值为3.【解答】解:由向量共线定理可得:=m+(1﹣m)=+(1﹣m)×.==+.∴,(1﹣m)×=.化为:a﹣1=.∴+=b﹣2+≥2,当且仅当b=a=3时取等号.故答案为:2.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.(Ⅰ)求函数f(x)的定义域和最小正周期;(Ⅱ)求函数f(x)在x∈[﹣,0]上的最大值和最小值.【解答】解:(Ⅰ)由题意,函数f(x)=cosx•tan(x+)cos(x+)﹣cos2x+.根据正切函数的性质可得x+≠,k∈Z,可得:x≠,k∈Z,函数f(x)的定义域为{x∈R|x≠,k∈Z}.将函数f(x)化简可得:f(x)=cosx•sin(x+)﹣cos2x+=sinxcosx+cos2x﹣cos2x+.=sin2x﹣cos2x=sin2x﹣=sin2x﹣cso2x=sin(2x﹣)∴函数f(x)的最小正周期T=.(Ⅱ)由(Ⅰ)可知f(x)=sin(2x﹣)当x∈[﹣,0]上时,可得:2x﹣∈[,].当2x﹣=时,f(x)取得最小值为﹣.当2x﹣=时,f(x)取得最大值为.故得函数f(x)在x∈[﹣,0]上的最大值为,最小值为.16.(13分)随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店;5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(Ⅰ)若从这10名购物者中随机抽取4名,求至多有一名倾向于选择实体店的女性购物者的概率;(Ⅱ)若分别从男性购物者和女性购物者中各随机抽取2名,设X表示抽到倾向于选择网购的人数,求X的分布列和数学期望.【解答】解:(Ⅰ)设“至多有1名倾向于选择实体店的女性购物者”为事件A,则P(A)=+=;(Ⅱ)根据题意,X的取值为0,1,2,3,4;则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==;∴随机变量X的分布列为:数学期望为E(X)=0×+1×+2×+3×+4×=2.17.(13分)如图,已知直角梯形ABCD所在的平面垂直于平面ABE,∠EAB=∠ABC=90°,∠DAB=60°,AB=AD=AE,P为线段BE的中点.(Ⅰ)求证:CP∥平面DAE;(Ⅱ)求平面CDE与平面ABE所成的锐二面角θ的余弦值;(Ⅲ)在线段EC上是否存在一点Q,使直线PQ与平面CDE所成的角的正弦值为.若存在,求出的值;若不存在,请说明理由.【解答】(Ⅰ)证明:取AE的中点F,连接DF、PF,∵P为BE中点,∴PF∥AB,且PF=,又直角梯形ABCD中,∠DAB=60°,AB=AD,可得DC∥AB,且DC=,∴PF∥DC,且PF=DC,则四边形DCPF为平行四边形,可得PC∥DF.而DF⊂平面EAD,PC⊄平面EAD,∴CP∥平面DAE;(II)解:∵∠BAE=90°,平面ABCD平面ABE,在平面ABCD内过A作Az⊥AB.∴以点A为原点,直线AE为x轴,直线AB为y轴,Az为z轴建立空间直角坐标系A﹣xyz,设AB=AD=AE=2,由已知,得E(2,0,0),C(0,2,),D(0,1,).∴,,设平面ECD的法向量为=(x,y,z),则,取z=2,得平面ECD的一个法向量为=(,0,2).又∵平面ABC的一个法向量为=(0,0,1).∴cosθ=|cos<>|=,即平面CDE与平面ABE所成的锐二面角θ的余弦值为;(Ⅲ)解:线段EC上存在点Q,使直线PQ与平面CDE所成的角的正弦值为,此时=或=.设Q(x,y,z),且,则(x﹣2,y,z)=(﹣2),∴,即Q(2﹣2λ,2λ,),P(1,1,0),则.∵直线PQ与平面CDE所成的角的正弦值为,∴|cos<>|=||=.解得:或.∴=或=.18.(13分)已知正项数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=,﹣b n=.且b n+1(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n,并证明≤T n<对一切n∈N*都成立.﹣b n=.∴,,【解答】解:(Ⅰ)∵b n+1解得a1=1 (负值舍去)即数列{a n}是公差为2,首项为1的等差数列,∴a n=2n﹣1b n+1﹣b n==.,,…由累加法得:,∴(Ⅱ)∵(2﹣b n)2=∴c n==,T n=…①T n=++…+++…②①﹣②得﹣==∴T n=.令f(n)=,∵f(n+1)﹣f(n)=∴令f(n)=,当n∈N+时递减,则T n=递增.∴,即≤T n<对一切n∈N*都成立.19.(14分)已知椭圆C:+=1(a>b>0)离心率为,它的一个顶点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为﹣,求△MON的面积.【解答】解:(Ⅰ)∵椭圆的焦点在x轴上,抛物线x2=4y的准线,y=﹣1,由椭圆的顶点在抛物线的准线上,则b=1,椭圆的离心率e===,则a=2,∴椭圆C的方程为;(Ⅱ)当直线MN的斜率存在时,设其方程为y=kx+m,(m≠0),设M(x1,y1),N(x2,y2),由,消去y,得:(4k2+1)x2+8kmx+4m2﹣4=0,则x1+x2=﹣,x1x2=,∴|MN|==,点O到直线y=kx+m的距离d=,S△MON=×丨MN丨×d=2,∵k 1k2=﹣,∴k1k2=====﹣,∴4k2=2m2﹣1,=2=2=1.∴S△MON∴△MON的面积1.20.(14分)已知函数f(x)=lnx+ax2,g(x)=+x,且直线y=﹣是曲线y=f (x)的一条切线.(Ⅰ)求实数a的值;(Ⅱ)对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),求实数b的取值范围;(Ⅲ)已知方程f(x)=cx有两个根x1,x2(x1<x2),若b=1时有g(x1+x2)+m+2c=0,求证:m<0.【解答】(I)解:f(x)=lnx+ax2,(x>0),f′(x)=+2ax.设切点为,则f′(x0)=+2ax0=0,lnx0+=﹣,解得x0=1,a=﹣.(II)解:对任意的x1∈[1,],都存在x2∈[1,4],使得f(x1)=g(x2),⇔函数f(x)的值域A是函数g(x)的值域B的子集,即A⊆B.(i)由(I)可得:f(x)=lnx﹣x2,x∈[1,],f′(x)=﹣x=.可知:函数f(x)在x∈[1,]单调递减,∴f(x)=f(1)=﹣,f(x)min=f()=.max∴A=.(ii)g′(x)=1﹣=.b≤1时,g′(x)≥0,函数g(x)在x∈[1,4]单调递增,g(1)=b+1,g(4)=4+.∴B=.∵A⊆B.∴,解得,满足条件.b>1时,g(x)=x+>0,不满足A⊆B,舍去.综上可得:实数b的取值范围是.(III)证明:方程f(x)=cx有两个根x1,x2(x1<x2),∴lnx1﹣=cx1,lnx2﹣=cx2,∴lnx2﹣lnx1+﹣=cx2﹣cx1,∴2c=﹣(x2+x1).(*)b=1时有g(x1+x2)+m+2c=0,∴+(x2+x1)+m+2c=0,把(*)代入上式可得:++m=0,即﹣m=+,证明m<0⇔+>0,∵x 1<x 2,∴x 2﹣x 1>0,ln>ln1=0,∴+>0,因此m <0.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
武清区2017学年度高三年级第三次模拟高考数学(理科)试题注意事项:1.选择题选出答案后,请用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
2.请用黑色墨水的钢笔或签字笔解答填空题、解答题。
一.选择题(本大题共8 小题,每小题5分,共40分。
每小题给出的四个选项中,只有一项是符合题目要求的) 1.若i 为虚数单位,则复数ii +3等于( )(A )i 2321+-(B )i 2321+ (C )i 4341+- (D )i 4341+2.函数34log 2)(2+⋅+=x a x a x f 在区间)1,21(上有零点,则实数a 的取值范围是( )(A )21-<a (B )23-<a(C )2123-<<-a (D )43-<a3.在下列命题中,真命题是( )题号 一 二三总分 15 16 17 18 19 20 得分(A )“抛物线12+-=x y 与x 轴围成的封闭图形面积为34”;(B )“若抛物线的方程为x y 42=,则其焦点到其准线的距离为2”的逆命题;(C )“若向量)12,4,3(=a,则|a|=13”的否命题; (D )“若3|2||1|=++-x x ,则21≤≤-x ”的逆否命题.4.一个几何体的三视图如图所示,则这 个几何体的体积为( )(A )38 (B )316(C )8 (D )3325.要得到函数)6cos(2π-=x y 的图象,可把函数x x y cos sin +=的图象( )(A )向左平移125π个单位长度 (B )向右平移125π个单位长度(C )向左平移12π个单位长度 (D )向右平移12π个单位长度6.已知数列{n a }对任意的*∈N n 有1)1(11++-=+n n a a n n 成立,若11=a ,则10a 等于( )(A )1091 (B )10101(C )11111 (D )111227.函数{}221,max )(x x x x f --=的单调增区间是( )(A )⎥⎦⎤⎢⎣⎡-0,21,[)∞+,1 (B )⎥⎦⎤⎝⎛-∞-21,,[]1,0 (C )⎥⎦⎤⎢⎣⎡-1,21 (D )[]1,0 8.若1>k ,0>a ,则222)1(16a k a k -+取得最小值时,a 的值为( )(A )1 (B )2(C )2 (D )4二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)9.若y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+00520532x y x y x ,则目标函数y x z 3+=的最大值为 . 10.5人排成一排,其中甲、乙二人不能相邻的不同排法共有 种. 11.阅读右边的程序框图,运行相应的程序,则输出n 的值为 .12.双曲线C :)0,0(12222>>=-b a by a x 的右焦点在直线l :2)4sin(=+πθρ(原点为极点、x 轴正半轴为极轴)上,右顶点到直线l 的距离为22,则双曲线C的渐近线方程为 .13.如图,P 是圆O 外的一点,PA 为切线,A 为切点,割线PBC 经过圆心O ,6,23PC PA ==,则PCA ∠= .PABCO点P ,14.如图,在ABC ∆中,BN AC AN AB AM ,41,31==与CM 交于且),(R y x AC y AB x AP ∈+=,则=+y x .三.解答题(本大题共6小题,共80分,解答题应写出文字说明、证明过程或演算步骤)。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分)(19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分.. ……6分第(18)题图∵ 在这组数据中,5出现了8次,出现的次数最多,∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分 (21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分 又∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分 ∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-第(21)题图 1第(21)题图2222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=-∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分(22)(本小题10分)解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分 ∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中,DCDPDCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分 ∴︒=∠=∠90EQB DPQ ∴DP ∥EQ第(22)题图QP又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ ∴,20==PQ DE 8.38==DP EQ 又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm )答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分) 解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB ∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠ ∴C A B A C B ''∠=''∠ ………... ……4分 ∴A B C B ''=' 又∵AB B A ='' ∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分 ②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE ∴点A '(6,6) ………... ……6分 过点B '作E A F B '⊥',垂足为点F 由︒='∠45O A E ,得︒=''∠45B A E ∴2222=⨯='='F A F B ∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分 ( 注:C B '扫过的图形是平行四边形) (25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y 取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分 取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分 设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入, F EyxA /B /C OBA图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AGAQ∴Q A R ∆≌G A P ∆ ∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO ∵︒=∠60AGQ ∴︒=∠90QGO ∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QCQNAC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形, ∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQCNCP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
高考数学模拟(选择填空)03一、选择题1.7+3i =( ) A. 316− 716i B. 316+ 716i C. −316+ 716i D. −316− 716i 2.已知,满足,则的最大值为( )A. 3B. 4C. 6D. 73.执行如下图所示的程序框图,输出s 的值为( )A. 1B.C.D.4.函数y ( )A .(-∞,-3]B .(-∞,-1]C .[1,+∞) D.[-3,-1]5.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左焦点为F ,第二象限的点M 在双曲线C 的渐近线上,且|OM |=a ,若直线MF 的斜率为b a ,则双曲线C 的近线方程为( ) A. y =±x B. y =±2x C. y =±3x D. y =±4x6.将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有( )A. 18种B. 36种C. 48种D. 60种7.“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.如图,在梯形ABCD 中,CD AB //,2=AB ,4=CD ,,E ,F 分别是AD ,BC 的中点,对于常数λ,在梯形ABCD 的四条边上恰有8个不同的点P ,使得λ=⋅PF PE 成立,则实数λ的取值范围是( )A二、填空题9.某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取35岁以下职工人数为.10.某几何体的三视图如下图所示,且该几何体的体积为2,则正视图的面积=_____.11.等比数列{}n a 的前n 项和为n S (*n N ∈),已知11a =,1a ,2S ,5成等差数列,则数列{}n a 的公比q =__________.12.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos B =45,cos C =513,c =4,则a =__________.13.曲线{1x cos y sin θθ==+(θ为参数)与直线10x y +-=相交于A ,B 两点,__________.培优辅导,陪你更优秀!答案第1页,总1页 参考答案1.B2.D3.D4.A6.D7.B8.D9.2510.211.2 12.21513.2。
2017年天津市河东区高考数学模拟试卷一、选择题(共25分,每个3分)1. 已知全集,集合,集合,则集合A. B. C. D.【答案】B【考点】交、并、补集的混合运算【解析】求出集合的补集,然后求解交集即可.【解答】解:全集,集合,,又集合,则集合.故选:.2. 已知变量,满足约束条件,则的最大值为()A. B. C. D.【答案】B【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用的几何意义,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由得,平移直线由图象可知当直线经过点时,直线的截距最大,此时最大,由,即,即,此时,故选:3. 已知命题,,则()A.¬,B.¬,C.¬,D.¬,【答案】C【考点】命题的否定【解析】利用“¬”即可得出.【解答】解:∵命题,,∴¬,.故选:.4. 设条件;条件,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】根据充分必要条件的定义进行判断即可.【解答】解:若,则,是充分条件,若,解得:或,不是必要条件,故选:.5. 设,则()A. B. C. D.【答案】C【考点】分段函数的应用函数的求值【解析】直接利用分段函数,由里及外逐步求解即可.【解答】解:,则().故选:.6. 函数,在处的切线斜率为()A. B. C. D.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】求曲线在点处得切线的斜率,就是求曲线在该点处得导数值,先求导函数,然后将点的横坐标代入即可求得结果.【解答】解:∵∴,令,即可得斜率为:.故选.7. 等于()A. B. C. D.【答案】D【考点】三角函数的化简求值【解析】由诱导公式和特殊角的三角函数值求出即可.【解答】解:根据诱导公式得:.故选:.8. 若直线与圆有公共点,则实数的取值范围是()A.B.C.D.【答案】C【考点】直线与圆相交的性质【解析】直线与圆有公共点等价于圆心到直线的距离不大于半径.【解答】解:的圆心,半径,圆心到直线的距离,∵直线与圆有公共点,∴,解得,∴实数的取值范围是.故选:.9. 椭圆的离心率为()A. B. C. D.【答案】B【考点】椭圆的定义和性质【解析】根据椭圆方程和椭圆基本量的平方关系,可得、,从而算出,由此即得该椭圆离心率的值.【解答】解:∵椭圆的方程为,∴,,可得,因此椭圆的离心率,故选:10. 若焦点在轴的双曲线,一条渐近线为,则的值为()A. B. C. D.【答案】A【考点】双曲线的特性【解析】根据双曲线的方程求得渐近线方程为,即可求出的值,【解答】解:∵双曲线的渐近线方程为,又已知一条渐近线方程为,∴,,故选:11. 若抛物线,准线方程为,则的值为()A. B. C. D.【答案】C【考点】抛物线的求解【解析】利用抛物线的准线方程求解即可.【解答】解:抛物线,准线方程为,∴,解得,故选:12. 在等差数列中,若,,则A. B. C. D.【答案】B【考点】等差数列的性质【解析】直接利用等差中项求解即可.【解答】解:在等差数列中,若,,则,解得.故选.13. 等比数列中,,前项之和,则公比的值为()A. B. C.或 D.或【答案】D【考点】等比数列的通项公式【解析】当公比时,满足;当公比时,可得,解方程可得.【解答】解:∵等比数列中,,前项之和,∴当公比时,,满足;当公比时,可得,解得或(舍去),综上可得公比的值为:或故选:.14. 函数,是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】C【考点】三角函数的周期性及其求法【解析】由函数,根据余弦函数的图象和性质,三角函数的周期性及其求法即可解得.【解答】解:函数,显然函数是偶函数,函数的周期是.故选.15. 若,,,则()A. B. C. D.【答案】A【考点】三角函数的恒等变换及化简求值【解析】利用估值法知大于,在与之间,小于.【解答】,由指对函数的图象可知:,,,16. 函数在定义域内零点的个数为()A. B. C. D.【答案】C【考点】函数的零点对数函数的单调性与特殊点【解析】先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数,的图象求出方程的根的个数,即为函数零点的个数.【解答】解:由题意,函数的定义域为;由函数零点的定义,在内的零点即是方程的根.令,,在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选.17. 完成下列两项调查:①从某社区户高收入家庭、户中等收入家庭、户低收入家庭中选出户,调查社会购买能力的某项指标;②从某中学的名艺术特长生中选出名调查学习负担情况,宜采用的抽样方法依次是()A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样【答案】B【考点】收集数据的方法【解析】由于①中,某社区户高收入家庭、户中等收入家庭、户低收入家庭中选出户,其收入差别较大,故要用分层抽样,而②中总体和样本容量较小,且无明显差别,可用随机抽样.【解答】解:∵社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,①用分层抽样法;而从某中学的名艺术特长生,要从中选出人调查学习负担情况的调查中,个体之间差别不大,且总体和样本容量较小,∴ ②用随机抽样法.故选.18. 对于给定的两个变量的统计数据,下列说法正确的是()A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系【答案】C【考点】变量间的相关关系【解析】本题主要考查对变量间的相关关系的理解.【解答】解:给出两个变量的统计数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,更不一定能得出两个变量有线性相关关系或函数关系.故选.19. 下列四式不能化简为的是()A.B.C.D.【答案】A【考点】向量加减混合运算及其几何意义【解析】由向量加法的三角形法则和减法的三角形法则,分别将、、三个选项中的向量式化简,利用排除法得正确选项【解答】解:由向量加法的三角形法则和减法的三角形法则,,故排除故排除,故排除故选20. 已知,,则与夹角的余弦为()A. B. C. D.【答案】A【考点】数量积表示两个向量的夹角【解析】利用向量的模的坐标公式求出向量的坐标,利用向量的数量积公式求出两个向量的数量积;利用向量的数量积求出向量的夹角余弦.【解答】解:,,,设与夹角为,所以故选.21. 已知、均为单位向量,它们的夹角为,那么A. B. C. D.【答案】C【考点】数量积表示两个向量的夹角向量的模【解析】求向量模的运算,一般要对模的表达式平方整理,平方后变为向量的模和两个向量的数量积,根据所给的单位向量和它们的夹角代入数据求出结果.【解答】解:∵均为单位向量,它们的夹角为∴,,∴故选.22. 如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是A. B. C. D.【答案】A【考点】简单空间图形的三视图【解析】由三棱柱的三视图中,两个矩形,一个三角形可判断①的对错,由四棱柱的三视图中,三个均矩形,可判断②的对错,由圆柱的三视图中,两个矩形,一个圆可以判断③的真假.本题考查的知识点是简单空间图形的三视图,其中熟练掌握各种几何体的几何特征进而判断出各种几何体中三视图对应的平面图形的形状是解答本题的关键.【解答】解:存在正三棱柱,其三视图中有两个为矩形,一个为正三角形满足条件,故①为真命题;存在正四棱柱,其三视图均为矩形,满足条件,故②为真命题;对于任意的圆柱,其三视图中有两个为矩形,一个是以底面半径为半径的圆,也满足条件,故③为真命题.故选23. 复数(为虚数单位)在复平面内对应的点所在象限为A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【考点】复数代数形式的乘除运算复数的代数表示法及其几何意义【解析】先将复数进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到代数形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.【解答】解:∵∴复数在复平面对应的点的坐标是∴它对应的点在第四象限.故选.24. 在中,,,,则的值是()A. B. C. D.【答案】B【考点】正弦定理【解析】由条件利用同角三角函数的基本关系求得,再由正弦定理求得的值.【解答】解:∵在中,,,,,∴.再由正弦定理可得,解得.故选.25.某产品的广告费用与销售额的统计数据如下表:额为()A.万元B.万元C.万元D.万元【答案】B【考点】求解线性回归方程【解析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为代入,预报出结果.【解答】解:∵,,∵数据的样本中心点在线性回归直线上,回归方程中的为,∴,∴,∴线性回归方程是,∴广告费用为万元时销售额为.故选.二、填空题(共5小题,每小题5分,共25分)过且与直线垂直的直线方程为________.【答案】【考点】直线的一般式方程与直线的垂直关系【解析】根据要求的直线与已知直线垂直,运用两垂直直线的斜率之积等于求出斜率,然后直接代入直线方程的点斜式.【解答】解:因为直线的斜率为,要求的直线与该直线垂直,所以所求直线的斜率为,所以所求直线方程为,即.故答案为.某中学田径共有名队员,其中男生名、女生名,采用分层抽样的方法选出人参加一个座谈会.求运动员甲被抽到的概率以及选出的男、女运动员的人数为________.【答案】,,【考点】古典概型及其概率计算公式【解析】由等可能事件概率计算公式能求出运动员甲被抽到的概率,由分层抽样性质能求出选出的男、女运动员的人数.【解答】解:某中学田径共有名队员,其中男生名、女生名,采用分层抽样的方法选出人参加一个座谈会.运动员甲被抽到的概率.男生选出:人,女生选出:人.故答案为:,,.甲乙两人进行中国象棋比赛,甲赢的概率为,下和的概率为,则甲不输的概率为________.【答案】【考点】互斥事件的概率加法公式【解析】利用互斥事件的概率加法公式即可得出【解答】解:∵甲不输与甲,乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率.故答案为:.已知正数,满足,使得取最小值的实数对是________.【答案】【考点】基本不等式【解析】利用“乘法”和基本不等式的性质即可得出.【解答】解:∵正数,满足,∴,当且仅当时取等号.∴使得取最小值的实数对是.故答案为:.执行如图所示的程序框图,则输出的值等于________.【答案】【考点】程序框图【解析】根据题意,模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,知该程序运行后输出的算式为.故答案为:.。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分) (19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分∵ 在这组数据中,5出现了8次,出现的次数最多,.. ……6分第(18)题图∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分(21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分又∵四边形ABCD 是平行四边形∴AB ∥CD∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=- ∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分 第(21)题图 1 第(21)题图2(22)(本小题10分) 解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中, DCDP DCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分∴︒=∠=∠90EQB DPQ∴DP ∥EQ又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ∴,20==PQ DE 8.38==DP EQ又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分 ∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm ) 答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分)解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠∴C A B A C B ''∠=''∠ ………... ……4分∴A B C B ''='第(22)题图 Q P又∵AB B A =''∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A 由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE∴点A '(6,6) ………... ……6分过点B '作E A F B '⊥',垂足为点F由︒='∠45O A E ,得︒=''∠45B A E∴2222=⨯='='F A F B∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分( 注:C B '扫过的图形是平行四边形)(25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入,FEyxA /B /C O B A 图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k ∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分 点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AG AQ∴Q A R ∆≌G A P ∆∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO∵︒=∠60AGQ∴︒=∠90QGO∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QC QN AC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形,∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQ CN CP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学试卷第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是符合题目要求的).1.计算4(6)+-的结果等于().A.2-B.2C.10D.10-2.sin45︒的值等于().A.3B.33C.12D.223.在一些美术字中,有的汉字是轴对称图形,下面四个汉字,不属于轴对称图形的是().A.B.C.D.4.2017年春运期间,全国水运旅客发送量约为43500000人次.将43500000用科学记数法表示应为().A.70.43510⨯B.643.510⨯C.743.510⨯D.74.3510⨯5.从正面观察如图的两个立体图形,得到的平面图形是().A.B.C.D.6.如图,数轴上点A表示的数可能是().A .2B.3C.5D.107.矩形具有而菱形不具有的性质是().A.对角线互相平分B.对角线互相垂直C .对角线相等D .对角线平分一组对角8.已知反比例函数6y x=,当13x <<时,y 的最小整数值是( ).A .2B .3C .4D .59.把ABC △沿BC 方向平移,得到A B C '''△,随着平移距离的不断增大,A CB '△的面积大小变化情况是( ).A .增大B .减小C .不变D .不确定10.若分式2273x x y-中的x 和y 均扩大为原来的10倍,则分式的值( ). A .缩小到原分式值的110 B .缩小到原分式值的1100C .缩小到原分式值的11000D .不变11.把八个等圆按如图摆放,每相邻两圆只有一个公共点,称为切点,其圆心的连线(连线过切点)构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S 的值是( ).A .34B .35C .23D .112.如果抛物线2y x bx =-+与x 轴交于A 、B 两点,且顶点为C ,那么当120ACB ∠=︒时,b 的值是( ). A .233±B .33±C .233D .33第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分) 13.计算(3)(6)x y x --=___________.14.在一个不透明的袋子中有3个白球,4个黄球,5个红球,这些球除了颜色不同外其余完全相同,从袋子中摸出一个球,则它是红球的概率是___________.15.如图,点P 在MON ∠的平分线上,点A 、B 在MON ∠的两边上,若要使AOP △≌BOP △,那么需要添加一个条件是___________.16.为解决群众看病贵问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价,降价后售价为81元,设平均每次降价的百分率为x ,根据题意可列方程为___________.17.如图,已知矩形ABCD ,8cm AB =,6cm BC =,点Q 为BC 中点,在DC 上取一点P ,使APQ △的面积等于218cm ,则DP 的长度为___________cm .18.如图,在每个小正方形的边长为1的网格中,点A ,B 均在格点上.(Ⅰ)线段AB 的长为___________.(Ⅱ)请利用网络,用无刻度的直尺在AB 上作出点P ,使453AP =,并简要说明你的作图方法(不要求证明).___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ __________________________________________________________________________________________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题8分)解不等式组12(1)231(2)xx x≥->-⎧⎨+-⎩.请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得__________.(Ⅱ)解不等式(2),得__________.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_________.20.(本小题8分)某校260名学生参加植树活动,要求每人植47-棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类人数绘制了扇形统计图(如左图)和条形统计图(如右图),请根据相关信息解答下列问题:(Ⅰ)左图中m的值为__________.(Ⅱ)补全右图,并求出抽查的20名学生每人植树量数据的众数、中位数.(Ⅲ)求抽查的20名学生平均每人的植树量(保留一位小数,)并估计全校260名学生共植树多少棵.21.(本小题10分)已知四边形ABCD是平行四边形,CD为⊙O的切线,求C是切点.(Ⅰ)如图,若AB为⊙O直径,求四边形ABCD各内角的度数.(Ⅱ)如图,若AB为弦,⊙O的半径为3cm,当2cmBC=时,求CD的长.22.(本小题10分)左图是一种折叠椅,忽略其支架等的宽度,得到它的侧面简化结构图(右图),支架与坐板均用线段表示,若坐板DF 平行于地面MN ,前支撑架AB 与后支撑架AC 分别与坐板DF 交于点E 、D ,现测得20cm DE =,40cm DC =,58AED ∠=︒,76ADE ∠=︒.(Ⅰ)求椅子的高度(即椅子的坐板DF 与地面MN 之间的距离).(Ⅱ)求椅子两脚B 、C 之间的距离(精确到1cm )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,sin760.97︒≈,cos760.24︒≈,tan76 4.00︒≈).23.(本小题10分)下表是某校七-九年级某月课外兴趣小组(分文艺小组和科技小组)活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动 总时间h文艺小组活动次数科技小组活动次数七年级 12.5 43 八年级 10.5 33 九年级7ab(Ⅰ)请你完成以下的分析,求出a ,b 的值;观察表格,七、八年级科技小组活动次数相同,文艺小组活动次数相差_______次,活动总时间相差_______h ,由此可知文艺小组每次活动时间为_______h ,进而可知科技小组每次活动时间为h . 依题意可得a 与b 的关系式为_______,因为a 与b 是自然数,所以a =_______,b =_______.(Ⅱ)若学校重新规定:九年级每月课外兴趣小组活动总次数为8次,在文艺小组与科技小组每次活动的时间保持不变的情况下,求出九年级每月课外兴趣小组活动总时间(h)y 与文艺小组活动次数x (次)之间的函数关系式(其中规定x 为大于1且小于8的自然数). 24.(本小题10分)在平面直角坐标系中,O 为坐标原点,点A 坐标为(23,0)-,90OAB ∠=︒,30AOB ∠=︒,将O A B △绕点O 按顺时针方向旋转,旋转角为α(0150≤α︒<︒),在旋转过程中,点A 、B 的对应点分别为点A '、B '.(Ⅰ)如图,当60α=︒时,直接写出点A '_______、B '_______的坐标.(Ⅱ)如图,当135α=︒时,过点B '作AB 的平行线交AA '延长线于点C ,连接BC ,AB ', ①判断四边形AB CB '的形状,并说明理由. ②求此时点A '和点B '的坐标.(Ⅲ)当α由30︒旋转到150︒时,(Ⅱ)中的线段B C '也随之移动,请求出B C '所扫过的区域的面积?(直接写出结果即可). 25.(本小题10分)已知抛物线223y x x =--+交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B . (Ⅰ)求A ,B ,C 三点坐标;(Ⅱ)如图,点D 为AC 中点,点E 在线段BD 上,且2BE DE =,连接CE 并延长交抛物线于点M ,求点M 坐标.(Ⅲ)如图,将直线AB 绕点A 按逆时针方向旋转15︒后将y 轴于点G ,连接CG ,点P 为ACG △内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边APR △和等边AGQ △,求P A P C P G ++的最小值,并求当PA PC PG ++取得最小值时点P 的坐标(直接写出结果即可).。
天津市开发区2017届高考模拟试卷(文科数学)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填涂在答题卡上!)1.复数(其中i为虚数单位)的虚部等于()A.﹣i B.﹣1 C.1 D.02.设集合A={x|x>2},若m=lne e(e为自然对数底),则()A.∅∈A B.m∉A C.m∈A D.A⊆{x|x>m}3.某程序框图如图所示,该程序运行后输出的结果为()A.7 B.6 C.5 D.44.在等差数列{an }中,若a2+a3=4,a4+a5=6,则a9+a10=()A.9 B.10 C.11 D.125.“a>3”是“函数f(x)=ax+3在(﹣1,2)上存在零点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知向量=(3,﹣2),=(x,y﹣1)且∥,若x,y均为正数,则+的最小值是()A.B.C.8 D.247.在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②8.已知F1,F2分别为双曲线﹣=1(a>0,b>0)的左右焦点,如果双曲线上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为()A.e>B.1<e<C.e>D.1<e<二.填空题:(本大题共6小题,每小题5分,共30分.请将答案填在答题纸上!)9.公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,则他能等到公共汽车的概率为.10.已知变量x,y满足约束条件,则z=2x•4y的最大值为.11.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于m.12.如图,P为圆O外一点,由P引圆O的切线PA与圆O切于A点,引圆O的割线PB与圆O交于C点.已知AB⊥AC,PA=2,PC=1,则圆O的面积为.13.已知,,点C在∠AOB内,∠AOC=45°,设,则= .14.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为.三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)15.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.16.已知函数(其中ω>0)的周期为π. (Ⅰ)求ω的值;(Ⅱ)将函数y=f (x )的图象向右平移个单位长度,再将所得图象各点的横坐标缩小为原来的(纵坐标不变)得到函数y=g (x )的图象.求函数g (x )在上的单调区间.17.如图,四棱锥P ﹣ABCD 的底面ABCD 是平行四边形,BA=BD=,AD=2,PA=PD=,E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明EF ∥平面PAB ;(Ⅱ)若二面角P ﹣AD ﹣B 为60°,(i )证明平面PBC ⊥平面ABCD ;(ii )求直线EF 与平面PBC 所成角的正弦值.18.已知各项均为正数的数列{a n }满足a n+2+2=4a n+1﹣a n (n ∈N *),且a 1=1,a 2=4.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n =的前项n 和为S n ,求证:S n <1.19.如图,在平面直角坐标系xOy中,椭圆=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|+|CD|=3.(Ⅰ)求椭圆的方程;(Ⅱ)求由A,B,C,D四点构成的四边形的面积的取值范围.20.已知函数f(x)=lnx+,g(x)=x﹣2m,其中m∈R,e=2.71828…为自然对数的底数.(Ⅰ)当m=1时,求函数f(x)的极小值;(Ⅱ)对∀x∈[,1],是否存在m∈(,1),使得f(x)>g(x)+1成立?若存在,求出m的取值范围;若不存在,请说明理由;(Ⅲ)设F(x)=f(x)g(x),当m∈(,1)时,若函数F(x)存在a,b,c三个零点,且a<b<c,求证:0<a<<b<1<c.天津市开发区2017届高考数学模拟试卷(文科)参考答案与试题解析一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填涂在答题卡上!)1.复数(其中i为虚数单位)的虚部等于()A.﹣i B.﹣1 C.1 D.0【考点】复数代数形式的混合运算.【专题】计算题.【分析】两个复数的商的乘方,等于被除数的乘方,除以除数的乘方.【解答】解:由于,所以虚部为﹣1,故选 B.【点评】本题主要考查复数代数形式的混合运算,属于基础题.2.设集合A={x|x>2},若m=lne e(e为自然对数底),则()A.∅∈A B.m∉A C.m∈A D.A⊆{x|x>m}【考点】元素与集合关系的判断.【专题】集合.【分析】先求出m的值,从而判断出m属于结合A.【解答】解:∵m=elne=e,∴m∈A,故选:C.【点评】本题考查了集合和运算的关系的判断,是一道基础题.3.某程序框图如图所示,该程序运行后输出的结果为()A.7 B.6 C.5 D.4【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,k的值,当S=2059时,不满足条件S<100,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,S=0满足条件S<100,S=1,k=1满足条件S<100,S=1+2=3,k=2满足条件S<100,S=3+8=11,k=3满足条件S<100,S=11+2048=2059,k=4不满足条件S<100,退出循环,输出k的值为4.故选:D.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基本知识的考查.4.在等差数列{an }中,若a2+a3=4,a4+a5=6,则a9+a10=()A.9 B.10 C.11 D.12【考点】等差数列的性质.【专题】计算题.【分析】设出此等差数列的公差为d,利用等差数列的通项公式化简已知的两等式,得到关于a1与d的方程组,求出方程组的解得到a1与d的值,然后再利用等差数列的通项公式化简所求的式子,将a1与d的值代入即可求出值.【解答】解:设等差数列{a n }的公差为d ,∵a 2+a 3=(a 1+d )+(a 1+2d )=2a 1+3d=4①,a 4+a 5=(a 1+3d )+(a 1+4d )=2a 1+7d=6②,∴②﹣①得:4d=2,解得:d=,把d=代入①,解得:a 1=,则a 9+a 10=(a 1+8d )+(a 1+9d )=2a 1+17d=2×+17×=11.故选C【点评】此题考查了等差数列的性质,以及等差数列的通项公式,熟练掌握性质及公式是解本题的关键.5.“a>3”是“函数f (x )=ax+3在(﹣1,2)上存在零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据a >3判断出:f (﹣1)=﹣a+3<0、f (2)=2a+3>0,得到充分性成立;再由函数的零点存在性定理列出不等式求出a 的范围,可得到必要性不成立.【解答】解:①充分性:当a >3时,f (﹣1)=﹣a+3<0、f (2)=2a+3>0,所以函数f (x )=ax+3在(﹣1,2)上存在零点”,成立;②因为函数f (x )=ax+3在(﹣1,2)上存在零点,所以f (﹣1)f (2)<0,则(﹣a+3)(2a+3)<0,即(a ﹣3)(2a+3)>0,解得a >3或a <,不成立,综上可得,“a>3”是“函数f (x )=ax+3在(﹣1,2)上存在零点”是充分不必要条件,故选:A .【点评】本题考查了充要条件的判断,以及函数的零点存在性定理的应用,属于中档题.6.已知向量=(3,﹣2),=(x ,y ﹣1)且∥,若x ,y 均为正数,则+的最小值是( )A .B .C .8D .24【考点】基本不等式;平面向量共线(平行)的坐标表示.【专题】不等式的解法及应用;平面向量及应用.【分析】利用向量共线定理可得2x+3y=3,再利用“乘1法”和基本不等式即可得出.【解答】解:∵,∴﹣2x﹣3(y﹣1)=0,化为2x+3y=3,∴+===8,当且仅当2x=3y=时取等号.∴+的最小值是8.故选:C.【点评】本题考查了向量共线定理、“乘1法”和基本不等式,属于中档题.7.在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②【考点】简单空间图形的三视图.【专题】计算题;空间位置关系与距离.【分析】在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解答】解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.8.已知F 1,F 2分别为双曲线﹣=1(a >0,b >0)的左右焦点,如果双曲线上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .e >B .1<e <C .e >D .1<e <【考点】双曲线的简单性质.【专题】计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】运用对称性,可得MF 1=F 1F 2=2c ,设直线PF 1:y=(x+c ),代入双曲线方程,得到x 的二次方程,方程有两个异号实数根,则有3b 2﹣a 2>0,再由a ,b ,c 的关系,及离心率公式,即可得到范围.【解答】解:设点F 2(c ,0),由于F 2关于直线PF 1的对称点恰在y 轴上,不妨设M 在正半轴上,由对称性可得,MF 1=F 1F 2=2c ,则MO==c ,∠MF 1F 2=60°,∠PF 1F 2=30°,设直线PF 1:y=(x+c ),代入双曲线方程,可得,(3b 2﹣a 2)x 2﹣2ca 2x ﹣a 2c 2﹣3a 2b 2=0,则方程有两个异号实数根,则有3b 2﹣a 2>0,即有3b 2=3c 2﹣3a 2>a 2,即c >a ,则有e=>. 故选A .【点评】本题考查双曲线的性质和方程,考查对称性的运用,考查直线方程和双曲线方程,联立消去y,运用韦达定理,考查运算能力,属于中档题和易错题.二.填空题:(本大题共6小题,每小题5分,共30分.请将答案填在答题纸上!)9.公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,则他能等到公共汽车的概率为.【考点】几何概型.【专题】概率与统计.【分析】由已知中公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,我们可以分别求出所有基本事件对应的时间总长度和事件“他能等到公共汽车”对应的时间总长度,代入几何概型公式可得答案.【解答】解:∵公共汽车在8:00到8:20内随机地到达某站,故所有基本事件对应的时间总长度L=20Ω某人8:15到达该站,记“他能等到公共汽车”为事件A则L=5A故P(A)=;故答案为.【点评】本题考查的知识点是几何概型,几何概型分长度类,面积类,角度类,体积类,解答的关键是根据已知计算出所有基本事件对应的几何量和满足条件的基本事件对应的几何量10.已知变量x,y满足约束条件,则z=2x•4y的最大值为32 .【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由z=2x•4y得z=2x+2y,设m=x+2y,作出不等式组对应的平面区域,利用m的几何意义,即可得到结论.【解答】解:z=2x•4y得z=2x+2y,设m=x+2y,得y=﹣x+m,平移直线y=﹣x+m由图象可知当直线y=﹣x+m经过点A时,直线y=﹣x+m的截距最大,由,解得,即A(3,1),此时m最大为m=3+2=5,此时z最大为z=2x+2y=25=32,故答案为:32【点评】本题主要考查线性规划的应用,利用图象平行以及指数函数的运算法则,利用数形结合是解决线性规划问题中的基本方法.11.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于120(﹣1)m.【考点】解三角形的实际应用.【专题】应用题;解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故答案为:120(﹣1).【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.12.如图,P为圆O外一点,由P引圆O的切线PA与圆O切于A点,引圆O的割线PB与圆O交于C点.已知AB⊥AC,PA=2,PC=1,则圆O的面积为.【考点】直线与圆的位置关系;与圆有关的比例线段.【专题】计算题.【分析】利用切割线定理求出PB,推出BC,求出圆的半径,得到圆的面积.【解答】解:由题意可知PB经过圆的圆心,所以BC 是圆的直径,由切割线定理的可得PC•PB=PA2,所以PB=4,BC=3,所以圆的半径为:,所以圆O的面积为:.故答案为:.【点评】本题考查切割线定理与圆的面积的求法与应用,考查计算能力.13.已知,,点C在∠AOB内,∠AOC=45°,设,则= .【考点】向量的线性运算性质及几何意义.【专题】计算题.【分析】将向量沿与方向利用平行四边形原则进行分解,建立平面直角坐标系,便于计算.【解答】如图所示,建立直角坐标系.则=(1,0),=(0,),∴=m +n=(m, n),∴tan45°==1∴=.故选B【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量.14.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为(0,2).【考点】分段函数的应用.【专题】函数的性质及应用.【分析】由y=f(x)﹣a|x|=0得f(x)=a|x|,分别作出函数f(x)和y=a|x|的图象,利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a=0时,两个函数的交点有3个,不满足条件,当a<0时,两个函数的交点最多有2个,不满足条件,当a>时,当x≤0时,两个函数一定有2个交点,要使两个函数有4个交点,则只需要当x>0时,两个函数有2个交点即可,当a≥2时,此时y=a|x|与f(x)有三个交点,∴要使y=a|x|与f(x)有4个交点,则0<a<2,故答案为:(0,2)【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)15.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【专题】概率与统计.【分析】(Ⅰ)设污损处的数据为a,根据甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,列举出从乙班这10名同学中随机抽取两名身高不低于173cm的同学的基本事件个数,及事件A包含的基本事件个数,进而可得身高为176cm的同学被抽中的概率.【解答】解:(Ⅰ)设污损处的数据,∵甲班同学身高平均数为170cm,∴=(158+162+163+168+168+170+171+179+a+182)=170 …解得a=179 所以污损处是9.…(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,从乙班10名同学中抽取两名身高不低于173 cm的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173}共10个基本事件,…而事件A含有4个基本事件,…∴P(A)==…【点评】本题考查的知识点是茎叶图,列举出计算基本事件及事件发生的概率,难度不大,属于基础题.16.已知函数(其中ω>0)的周期为π.(Ⅰ)求ω的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位长度,再将所得图象各点的横坐标缩小为原来的(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)在上的单调区间.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用三角恒等变换化简f(x)的解析式为 2sin(2ωx+)+,再根据它的周期为=π,求得ω的值.(Ⅱ)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)=2sin(4x﹣).令2kπ﹣≤4x﹣≤2kπ+,k∈z,求得x的范围,再根据x∈,可得函数的增区间.【解答】解:(Ⅰ)∵函数=sin2ωx+2•﹣=2[sin2ωx+cos2ωx]=2sin(2ωx+),(其中ω>0)的周期为=π,∴ω=1.(Ⅱ)将函数y=f(x)的图象向右平移个单位长度,可得函数y=2sin[2(x﹣)+]=2sin(2x﹣)的图象.再将所得图象各点的横坐标缩小为原来的(纵坐标不变)得到函数y=g(x)=2sin(4x﹣)的图象.令2kπ﹣≤4x﹣≤2kπ+,k∈z,求得﹣≤x≤+.再根据x∈,可得函数的增区间为.【点评】本题主要考查三角函数的恒等变换,正弦函数的单调性和周期性,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.17.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;(ii)求直线EF与平面PBC所成角的正弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定;直线与平面所成的角.【专题】空间角;空间向量及应用;立体几何.【分析】(Ⅰ)要证明EF∥平面PAB,可以先证明平面EFH∥平面PAB,而要证明面面平行则可用面面平行的判定定理来证;(Ⅱ)(i)要证明平面PBC⊥平面ABCD,可用面面垂直的判定定理,即只需证PB⊥平面ABCD即可;(ii)由(i)知,BD,BA,BP两两垂直,建立空间直角坐标系B﹣DAP,得到直线EF的方向向量与平面PBC 法向量,其夹角的余弦值的绝对值即为所成角的正弦值.【解答】解:(Ⅰ)证明:连结AC,AC∩BD=H,∵底面ABCD是平行四边形,∴H为BD中点,∵E是棱AD的中点.∴在△ABD中,EH∥AB,又∵AB⊂平面PAB,EH⊄平面PAD,∴EH∥平面PAB.同理可证,FH∥平面PAB.又∵EH∩FH=H,∴平面EFH∥平面PAB,∵EF⊂平面EFH,∴EF∥平面PAB;(Ⅱ)(i)如图,连结PE,BE.∵BA=BD=,AD=2,PA=PD=,∴BE=1,PE=2.又∵E为AD的中点,∴BE⊥AD,PE⊥AD,∴∠PEB即为二面角P﹣AD﹣B的平面角,即∠PEB=60°,∴PB=.∵△PBD中,BD2+PB2=PD2,∴PB⊥BD,同理PB⊥BA,∴PB⊥平面ABD,∵PB⊂平面PBC,∴平面PAB⊥平面ABCD;(ii)由(i)知,PB⊥BD,PB⊥BA,∵BA=BD=,AD=2,∴BD⊥BA,∴BD,BA,BP两两垂直,以B为坐标原点,分别以BD,BA,BP为X,Y,Z轴,建立如图所示的空间直角坐标系B﹣DAP,则有A(0,,0),B(0,0,0),C(,﹣,0),D(,0,0),P(0,0,),∴=(,﹣,0),=(0,0,),设平面PBC的法向量为,∵,∴,令x=1,则y=1,z=0,故=(1,1,0),∵E ,F 分别是棱AD ,PC 的中点,∴E (,,0),F (,﹣,),∴=(0,,),∴===﹣,即直线EF 与平面PBC 所成角的正弦值为.【点评】本题主要考查空间直线与平面平行的判定定理以及线面角大小的求法,要求熟练掌握相关的判定定理.18.已知各项均为正数的数列{a n }满足a n+2+2=4a n+1﹣a n (n ∈N *),且a 1=1,a 2=4.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n =的前项n 和为S n ,求证:S n <1.【考点】数列递推式;等差关系的确定. 【专题】等差数列与等比数列.【分析】(Ⅰ)通过已知条件,利用配方法推出等差数列的等差中项形式,判断数列是等差数列. (Ⅱ)求出数列{a n }的通项公式,然后利用裂项法求解S n ,即可推出所证明的不等式.【解答】解:(Ⅰ)∵且a n >0,∴,∴,∴是首项为,公差为的等差数列.(Ⅱ)由(Ⅰ)得,∴,∴…=.【点评】本题考查数列的递推关系式的应用,数列的求和以及数列是等差数列的判定,考查计算能力以及转化思想的应用.19.如图,在平面直角坐标系xOy中,椭圆=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|+|CD|=3.(Ⅰ)求椭圆的方程;(Ⅱ)求由A,B,C,D四点构成的四边形的面积的取值范围.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用椭圆的离心率,以及,|AB|+|CD|=3.求出a、b,即可求椭圆的方程;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,直接求出面积.②当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),且设直线AB的方程为y=k(x﹣1),与椭圆方程联立,利用韦达定理以及弦长公式,求出AB,CD即可求解面积的表达式,通过基本不等式求出面积的最值.【解答】解:(Ⅰ)由题意知,,则,∴,所以c=1.所以椭圆的方程为.(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意知;②当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),且设直线AB的方程为y=k(x﹣1),则直线CD的方程为.将直线AB的方程代入椭圆方程中,并整理得(1+2k2)x2﹣4k2x+2k2﹣2=0,所以.同理,.所以=,∵当且仅当k=±1时取等号∴综合①与②可知,【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,弦长公式的求法以及基本不等式的应用,是综合性比较强的题目.20.已知函数f(x)=lnx+,g(x)=x﹣2m,其中m∈R,e=2.71828…为自然对数的底数.(Ⅰ)当m=1时,求函数f(x)的极小值;(Ⅱ)对∀x∈[,1],是否存在m∈(,1),使得f(x)>g(x)+1成立?若存在,求出m的取值范围;若不存在,请说明理由;(Ⅲ)设F(x)=f(x)g(x),当m∈(,1)时,若函数F(x)存在a,b,c三个零点,且a<b<c,求证:0<a<<b<1<c.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题;证明题;导数的综合应用.【分析】(Ⅰ)m=1时,f(x)=lnx+,x>0;从而求导可得f′(x)=﹣=;从而由导数求极小值;( II)令h(x)=f(x)﹣g(x)﹣1=lnx+﹣x+2m﹣1,x∈[,1],m∈(,1),则h(x)>0对x∈[,1]恒成立,求导h′(x)=﹣﹣1=,x∈[,1],从而可判断h(x)在[,1]上单减.从而化为最值问题.( III)化简F(x)=f(x)g(x)=(lnx+)(x﹣2m),易知x=2m为函数F(x)的一个零点,从而函数F(x)的最大的零点c>1,再讨论f(x)lnx+的零点情况即可.【解答】解:(Ⅰ)m=1时,f(x)=lnx+,x>0;∴f′(x)=﹣=;由f′(x)>0,解得x>;由f′(x)<0,解得0<x<;∴f(x)在(0,)上单调递减,(,+∞)上单调递增.(x)=f()=ln+1=1﹣ln2.∴f极小值( II)令h(x)=f(x)﹣g(x)﹣1=lnx+﹣x+2m﹣1,x∈[,1],m∈(,1),由题意,h(x)>0对x∈[,1]恒成立,∵h′(x)=﹣﹣1=,x∈[,1],∵m∈(,1),∴在二次函数y=﹣2x2+2x﹣m中,△=4﹣8m<0,∴y=﹣2x2+2x﹣m<0恒成立;∴h′(x)<0对x∈[,1]恒成立,∴h(x)在[,1]上单减.∴h(x)=h(1)=m﹣2>0,min即m>.故存在m∈(,1),使f(x)>g(x)+1对∀x∈[,1]恒成立.( III)证明:F(x)=f(x)g(x)=(lnx+)(x﹣2m),易知x=2m为函数F(x)的一个零点,∵m>,∴2m>1,因此据题意知,函数F(x)的最大的零点c>1,下面讨论f(x)lnx+的零点情况,∵f′(x)=﹣=;易知函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.由题知f(x)必有两个零点,∴f(x)=f()=ln+1<0,解得0<m<,极小值∴<m<,即me∈(,2).∴f(1)=ln1+=>0,f()=﹣1+<0.又f(e﹣10)=•e10﹣10>0.∴0<e﹣10<a<<b<1<c.∴0<a<<b<1<c.【点评】本题考查了导数的综合应用及恒成立问题,同时利用了构造函数的方法,属于难题.。
河东区2017年高二模考试数学试卷(理工类)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数i t z +=21,i z 212-=,若21z z 为实数,则实数t 的值是( ) A .41-B .-1C .41D .1 2. 设集合}01{2<-=x x A ,},2{A x y y B x∈==,则=B A ( ) A .(0,1) B .(-1,2) C .),1(+∞- D .)1,21(3. 已知函数⎩⎨⎧<≥∙=-0,20,2)(x x a x f x x (R a ∈).若1)]1([=-f f ,则=a ( )A .41 B .21C .2D . 1 4. 若a ,R b ∈,直线l :b ax y +=,圆C :122=+y x .命题p :直线l 与圆C 相交;命题q :12->b a .则p 是q 的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件5. 为丰富少儿文体活动,某学校从篮球,足球,排球,橄榄球中任选2种球给甲班学生使用,剩余的2种球给乙班学生使用,则篮球和足球不在同一班的概率是( ) A .31 B .21 C. 32 D .65 6. 已知抛物线x y 82=的准线与双曲线116222=-y a x 相交于A ,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为( ) A .3 B .12+ C.2 D .3 7. 若数列}{n a ,}{n b 的通项公式分别为a a n n ∙-=+2016)1(,nb n n 2017)1(2+-+=,且n n b a <,对任意*∈N n 恒成立,则实数a 的取值范围是( )A .)21,1[-B .[-1,1) C.[-2,1) D .)23,2[- 8. 已知函数⎩⎨⎧≤++<+=a x x x ax x x f ,25,2)(2,若函数x x f x g 2)()(-=恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[-1,2) C. [-2,2) D .[0,2]第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.函数x e x x f )3()(-=的单调递增区间为 .10.执行如图所示的程序框图,若输入的a ,b 值分别为0和9,则输出的i 值为 .11.某几何体的三视图如图所示,则该几何体的体积为 .12.已知0>a ,0>b ,且42=+b a ,则ab1的最小值是 .13.已知0>ω,在函数x y ωsin =与x y ωcos =的图象的交点中,距离最短的两个交点的距离为3,则ω值为 .14.如图,已知ABC ∆中,点M 在线段AC 上,点P 在线段BM 上,且满足2==PBMPMC AM ,2=3=,︒=∠120BAC ,则BC AP ∙的值为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数+-=)32cos()(πx x f )4sin()4sin(2ππ+-x x .(Ⅰ)求函数)(x f 的最小正周期和图象的对称轴方程; (Ⅱ)讨论函数)(x f 在区间]2,12[ππ-上单调性求出的值域. 16. 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与P ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率P ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. 17. 如图,直三棱柱111C B A ABC -中,4=AC ,3=BC ,41=AA ,BC AC ⊥,点D 在线段AB 上.(Ⅰ)证明C B AC 1⊥;(Ⅱ)若D 是AB 中点,证明//1AC 平面CD B 1; (Ⅲ)当31=AB BD 时,求二面角1B CD B --的余弦值. 18. 已知数列}{n a 的前n 项和n n S n 832+=,}{n b 是等差数列,且1++=n n n b b a . (Ⅰ)求数列}{n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+,求数列}{n c 的前n 项和n T . 19. 在平面直角坐标系xOy 中,椭圆C :)0(12222>>=+b a b y a x 的离心率为23,直线x y =被椭圆C 截得的线段长为5104. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点),点D 在椭圆C 上,且AB AD ⊥.直线BD 与x 轴、y 轴分别交于M ,N 两点.设直线BD ,AM 的斜率分别为1k ,2k ,证明存在常数λ使得21k k λ=,并求出λ的值. 20.选修4-4:坐标系与参数方程 设函数xmx x f +=ln )(,R m ∈. (Ⅰ)当e m =时,求函数)(x f 的极小值;(Ⅱ)讨论函数3)()(xx f x g -'=零点的个数; (Ⅲ)若对任意的0>>a b ,1)()(<--ab b f a f 恒成立,求m 的取值范围.河东区2017年高考二模考试 数学试卷(理工类)参考答案一、选择题1-5:ADABC 6-8:ADB二、填空题9. ),2(+∞ 10.3 11. 335 12. 21 13. π14.-2三、解答题15.解:(Ⅰ)+-=)32cos()(πx x f )4sin()4sin(2ππ+-x x++=x x 2sin 232cos 21 )cos )(sin cos (sin x x x x +- x x x x 22cos sin 2sin 232cos 21-++= x x x 2cos 2sin 232cos 21-+= )62sin(π-=x .∴周期ππ==22T . 由)(262Z k k x ∈+=-πππ,得)(32Z k k x ∈+=ππ. ∴函数图象的对称轴方程为)(32Z k k x ∈+=ππ. (Ⅱ)∵]2,12[ππ-∈x ,∴]65,3[62πππ-∈-x . )62sin()(π-=x x f 在区间]3,12[ππ-上单调递增,在区间]2,3[ππ上单调递减, 当3π=x 时,)(x f 取最大值1.∵21)2(23)12(=<-=-ππf f .∴12π-=x ,23)(max -=x f . 所以值域为]1,23[-. 16.解:(Ⅰ)设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得161)1())(1(22=-=-p B P , 解得43=p 或45=p (舍去),所以乙投球的命中率为43.(Ⅱ)由题设和(Ⅰ)知21)(=A P ,21)(=A P ,43)(=B P ,41)(=B P .ξ可能的取值为0,1,2,3,故P A P P )()0(==ξ321)41(21)(2=⨯=∙B B , )()()1(B B P A P P ∙==ξ)()()(12A P B P B P C +3272141432)41(212=⨯⨯⨯+⨯=, )()()3(B B P A P P ∙==ξ329)43(212=⨯=, 3215)3()0(1)2(==-=-==ξξξP P P .ξ分布列为:所以321320++⨯=ξE 2323322=⨯+⨯+. 17. 解:(Ⅰ)证明:如图,以C 为原点建立空间直角坐标系xyz C -.则)0,0,3(B ,)0,4,0(A ,)4,4,0(1A ,)4,0,3(1B ,)4,0,0(1C .)0,4,0(-=AC ,)4,0,3(1--=C B , 01=∙C B AC ,所以C B AC 1⊥.(Ⅱ)解法一:)4,4,0(1-=设平面CD B 1的法向量),,(z y x =,由)4,0,3(1--=∙m C B 043),,(=--=∙y x z y x , 且∙=∙)0,2,23(0223),,(=+=y x z y x , 令4=x 得)3,3,4(--=,所以0)3,3,4()4,4,0(1=--∙-=∙AC , 又⊄1AC 平面CD B 1,所以//1AC 平面CD B 1; 解法二:证明:连接1BC ,交1BC 于E ,DE . 因为直三棱柱111C B A ABC -,D 是AB 中点, 所以侧面C C BB 11为矩形,DE 为1ABC ∆的中位线. 所以1//AC DE ,因为⊂DE 平面CD B 1,⊄1AC 平面CD B 1, 所以//1AC 平面CD B 1. (Ⅲ)由(Ⅰ)知BC AC ⊥, 设)0,0)(0,,(>>b a b a D ,因为点D 在线段AB 上,且31=AB BD ,即=BD 31BA . 所以2=a ,34=b ,=BD )0,34,1(-.所以)4,0,3(1--=C B ,)0,34,2(=.平面BCD 的法向量为)1,0,0(1=n . 设平面CD B 1的法向量为)1,,(2y x n =,由021=∙n B ,02=∙n ,得⎪⎩⎪⎨⎧=+=+0342043y x x ,所以34-=x ,2=y ,=2n )1,2,34(-.设二面角1B CD B --的大小为θ,所以613cos ==θ. 所以二面角1B CD B --的余弦值为61613. 18. 解:(Ⅰ)由题知,当2≥n 时,561+=-=-n S S a n n n ;当1=n 时,1111==S a ,符合上式.所以56+=n a n .设数列}{n b 的公差d ,由⎩⎨⎧+=+=,,322211b b a b b a 即为⎩⎨⎧+=+=,3217,21111d b d b ,解得41=b ,3=d ,所以13+=n b n .(Ⅱ)112)1(3)33()66(+++=++=n nn n n n n c ,n n c c c T +++=...21,则 +⨯+⨯⨯=322322[3n T ]2)1(...1+⨯++n n ,+⨯+⨯⨯=432322[32n T ]2)1(...2+⨯++n n ,两式作差,得+++⨯⨯=-4322222[3n T ]2)1(2...21++⨯+-+n n n]2)1(21)21(44[32+⨯+---+⨯=n n n223+∙-=n n .所以223+∙=n n n T .19. 解:(Ⅰ)∵23=e ,∴23=a c ,4322222=-=a b a a c ,∴224b a =.① 设直线x y =与椭圆C 交于P ,Q 两点,不妨设点P 为第一象限内的交点.∴5104=PQ ,∴)552,552(P 代入椭圆方程可得222245b a b a =+.②由①②知42=a ,12=b ,所以椭圆的方程为:1422=+y x . (Ⅱ)设)0)(,(1111≠y x y x A ),(22y x D ,则),(11y x B --,直线AB 的斜率为11x y k AB =,又AD AB ⊥,故直线AD 的斜率为11x y k -=.设直线AD 的方程为m kx y +=,由题知 0≠k ,0≠m 联立⎪⎩⎪⎨⎧=++=1422y x m kx y ,得mkx x k 8)41(22++0442=-+m . ∴221418k mk x x +=+,)(2121x x k y y +=+24122kmm +=+,由题意知021≠+x x , ∴1121211441x y k x x y y k =-=++=,直线BD 的方程为)(41111x x x y y y +=+.令0=y ,得13x x =,即)0,3(1x M ,可得=2k 112x y -,∴2121k k -=,即21-=λ.因此存在常数21-=λ使得结论成立.20. 解:(1)由题设,当e m =时,xex x f +=ln )(,易得函数)(x f 的定义域为),0(+∞, 221)(xex x e x x f -=-='.∴当),0(e x ∈时,0)(<'x f ,)(x f 在),0(e 上单调递减; ∴当),(+∞∈e x 时,0)(>'x f ,)(x f 在),(+∞e 上单调递增;所以当e x =时,)(x f 取得极小值2ln )(=+=eee ef ,所以)(x f 的极小值为2. (2)函数=-'=3)()(x x f xg 312x x m x --)0(>x ,令0)(=x g ,得x x m +-=231)0(>x .设)0(31)(2≥+-=x x x x ϕ,则=+-='1)(2x x ϕ)1)(1(+--x x .∴当)1,0(∈x 时,0)(>'x ϕ,)(x ϕ在(0,1)上单调递增; ∴当),1(+∞∈x 时,0)(<'x ϕ,)(x ϕ在),1(+∞上单调递减; 所以)(x ϕ的最大值为32131)1(=+-=ϕ,又0)0(=ϕ,可知: ①当32>m 时,函数)(x g 没有零点; ②当32=m 时,函数)(x g 有且仅有1个零点;③当320<<m 时,函数)(x g 有2个零点;④当0≤m 时,函数)(x g 有且只有1个零点. 综上所述:当32>m 时,函数)(x g 没有零点;当32=m 或0≤m 时,函数)(x g 有且仅有1个零点;当320<<m 时,函数)(x g 有2个零点.(3)对任意0>>a b ,1)()(<--a b a f b f 恒成立,等价于a a f b b f -<-)()(恒成立. )(*.设=-=x x f x h )()()0(ln >-+x x xmx ,∴)(*等价于)(x h 在),0(+∞上单调递减.∴011)(2≤--='xmx x h 在),0(+∞上恒成立,∴=+-≥x x m 241)21(2+--x )0(>x 恒成立,∴41≥m (对41=m ,0)(='x h 仅在21=x 时成立).∴m 的取值范围是),41[+∞.。