LCD液晶电视材料基础知识大全
- 格式:pptx
- 大小:2.77 MB
- 文档页数:56
TFT-LCD Introduction T hin F ilm T ransistor:薄膜晶体管L iquid C rystal D isplay:液晶显示器CRT :Cathode Ray TubePDP :Plasma Display Panel紅藍綠黃白紫青OLED:Organic Light-Emitting DiodeLCD :Liquid Crystal DisplayDisplays 分类1个像素Displays 色度域红、绿、蓝的各x、y坐标连成的三角形的面积。
它和NTSC色度(下图中红色三角形)的面积比记作“NTSC比**%”。
TFT-LCD generation G10 288x313cmG8.5 220x250cmG7.5 195x225cmG6 150x185cmG5 110x130cmG4 68x88cm元件功能偏光片管制光线通过方向,仅允许与穿透轴平行之光线通过CF 实现色彩显示LC cell 调节光偏振方向TFT 调节液晶电压光源提供光源TFT-LCD 结构Printed circuit boardPrism sheet偏光板TFTODF sealantTABDriver LSI反射板Spacer分光片扩散板Back lights偏光板像素电极储存电容液晶配向膜共通电极Overcoat Color filterBlack matrix玻璃基板穿透式TFT-LCD 侧视图LC (Liquid crystal )晶体相液体相气相液晶相液晶分子的双折射特性液晶分子在不同的轴向折射系数不同,造成不同偏振方向直接的相位差,进而改变光的偏振态。
液晶对偏振光的改变效果•平行长轴方向前进,光的偏振态不变•平行短轴方向前进,光的偏振态被改变?LC (Liquid crystal )液晶的各向介电异性特性液晶在不同方向的介电系数不同,可以通过外加电场来改变液晶分子排列角度,从而达到控制液晶分子的双折射作用。
液晶显示器现已成为技术密集,资金密集型高新技术产业,透明导电玻璃则是LCD的三大主要材料之一。
液晶显示器之所以能显示特定的图形,就是利用导电玻璃上的透明导电电膜,经蚀刻制成特定形状的电极,上下导电玻璃制成液晶盒后,在这些电极上加适当电压信号,使具有偶极矩的液晶分子在电场作用下特定的方面排列,仅而显示出与电极波长相对应的图形。
在氧化物导电膜中,以掺Sn的In2O3(ITO)膜的透过率最高和导电性能最好,而且容易在酸液中蚀刻出微细的图形。
其透过率已达90%以上,ITO中其透过率和阻值分别由In2O3与Sn2O3之比例来控制,通常SnO2:In2O3=1:9。
ITO是一种N型氧化物半导体-氧化铟锡,ITO薄膜即铟锡氧化物半导体透明导电膜,通常有两回事个主要的性能指针:电阻率和光透过率。
目前ITO膜层之电阻率一般在5*10-4左右,最好可达5*10-5,已接近金属的电阻率,在实际应用时,常以方块电阻来表征ITO的导电性能,其透过率则可达90%以上,ITO膜之透过率和阻值分别由In2O3与Sn2O3之比例控制,增加氧化锢比例则可提高ITO之透过率,通常Sn2O3:In2O3=1:9,因为氧化锡之厚度超过200Å时,通常透明度已不够好---虽然导电性能很好。
如用是电流平行流经ITO脱层的情形,其中d为膜厚,I为电流,L1为在电流方向上膜厚层长度,L2为在垂直于电流方向上的膜层长主,当电流流过方形导电膜时,该层电阻R=PL1/dL2式中P为导电膜之电阻率,对于给定膜层,P和d可视为定值,P/d,当L1=L2时,怒火正方形膜层,无论方块大小如何,其电阻均为定值P/d,此即方块电阻定义:R□=P/d,式中R□单位为:奥姆/□(Ω/□),由此可所出方块电阻与IOT膜层电阻率P和ITO膜厚d有关且ITO膜阻值越低,膜厚越大。
目前在高档STN液晶显示屏中所用ITO玻璃,其R□可达10Ω/□左右,膜厚为100-200um,而一般低档TN产品的ITO玻璃R□为100-300Ω/□,膜厚为20-30um。
液晶显示器基本构造1.产品分类2.客户订制液晶屏为满足客户不同的应用要求,清显公司为客户提供从图案设计到成品制造的技术支持。
第一步:确定玻璃尺寸第二步:选择连接方式:可以用几种方法将LCD与PCB(印刷线路板)连接。
用户应当结合产品的应用场合,性能要求,加工条件等,选择合适的连接方式第三步:选择显示方式第四步:选择视角若从某一特定角度观察LCD,LCD会获得最佳对比度。
该角度是在生产中确定的。
这就叫做LCD的视角(VIEW ANGLE)。
类似于从钟表的不同时间朝钟表中心观察,因此定义了两种视角。
LCD的视角视角简单地说就是显示图案能看得清楚的角度。
它是由定向层的摩擦方向决定,不能通过旋转偏光片改变。
视角以时针的钟点来命名,如6:00视角,12:00视角等等。
6:00视角就是指在6点时针的平面方向到法线方向这个区域LCD显示效果理想;12:00视角是指12点时针的平面到法线方向区域显示理想。
LCD的视角是由LCD显示屏在仪器上的位置来确定。
例如计算器一般放在桌上或拿在手上使用,LCD做成6:00视角最好。
有些仪器上的LCD 屏装在低于人眼视线以下,一般做成12:00视角。
汽车上的时钟一般装在驾驶员的右边,做成9:00的视角最佳。
LCD视角示意图第五步:选择偏光片根据所用的反射片的不同,LCD可以是反射型、半透型或透射型。
反射型的LCD只可反射从前面进入的光线。
透射型的LCD不反射光线,但允许从后面来的光线通过。
半透型的LCD反射从前面进入的光线并允许从后面来的光线通过。
显示类型正性/负性点亮/非点亮部分的颜色是否需要背光特点反射型正性黑/ 白不需要不需要背光。
不过,在黑暗处不可见半透型正性负性黑/ 白,白/ 黑需要(在必要时点亮)在明亮处使用时,可关掉背光透射型正性负性黑/ 白,白/ 黑需要(总是点亮)使用时背光常点亮第六步:驱动与特性6.1 LCD 的驱动将驱动电压加在LCD的段电极与公共电极之间。
液晶成分元素
液晶成分元素
液晶显示器(Liquid Crystal Display, LCD)是一种广泛应用的显示器,它利用特殊的液晶材料进行工作,而液晶材料又由几种元素构成。
下面介绍几种常见的液晶成分元素:
1. 氟:氟是液晶的主要成份,因为它可以调节液晶的光学性能,其中添加的氟浓度对于液晶的性能有重要作用,所以与其他元素相比,氟的重要性更加凸显。
2. 砷:液晶中添加砷可以促进光电子转换及其他光学效应,弥
补因氟离子有限而引起的不足,同时也可以改善液晶的加热性能。
3. 锶:添加锶可以改善液晶的发光性能,减弱黑白液晶间的差异,使得无论是在弱光或是强光下,显示器都能维持良好的可视性。
4. 钠:钠主要用作晶体析出剂,也就是说,添加有限的钠可以
对液晶结晶度产生影响,从而改善显示器的视觉效果,增强清晰度。
5. 锗:锗是一种半导体,因其具有很强的电子转移性能,可以
对液晶材料的特性产生影响,增强发光性能。
以上就是常用的几种液晶成分元素,液晶的成分影响着液晶显示器的性能,不同的液晶成分可以提高显示器的可视性、色彩度、清晰度和亮度,以满足液晶显示器的各种需求。
- 1 -。
lcd组成结构LCD组成结构LCD,全称为液晶显示器(Liquid Crystal Display),是一种广泛应用于各种电子设备中的平面显示技术。
它以其薄、轻、省电的特点,成为了现代电子产品的主要显示屏幕。
那么,LCD是如何构成的呢?下面将从组成结构的角度来介绍LCD的构造。
一、液晶分子层LCD的基本原理是利用液晶分子的光学特性来实现图像显示。
液晶分子层是LCD的核心部分,它由两层平行排列的玻璃基板构成。
这两层基板之间填充有液晶分子,液晶分子可以根据外界电场的作用而改变排列状态,从而控制光的透过程度。
液晶分子层的构成使得LCD能够实现在不同电压下的光的透射与阻挡,从而显示出不同的图像。
二、偏振片液晶分子层之上和之下分别安装有两片偏振片。
偏振片是由聚合物材料制成的,它只允许特定方向的光通过,而将其他方向的光阻挡。
在液晶显示器中,顶部的偏振片的方向与底部的偏振片的方向垂直,这样的设计可以使得透过液晶分子层后的光能够通过底部的偏振片。
三、背光源液晶分子层和偏振片之间还需要一个背光源来提供光源,使得液晶分子层中的图像能够被照亮。
背光源通常是一种冷阴极荧光灯(CCFL)或者是LED灯。
背光源的光线通过液晶分子层后,会受到液晶分子的控制,从而形成图像。
四、驱动电路液晶分子层中液晶分子的排列状态是通过电场来控制的,所以需要一套驱动电路来给液晶分子层施加电场。
驱动电路可以根据输入信号的变化,改变电场的强度和方向,从而控制液晶分子的排列状态,进而显示出不同的图像。
五、控制器和接口液晶显示器的控制器和接口是用来接收外部信号并将其转换成驱动电路的输入信号的。
控制器和接口可以根据输入信号的不同来控制液晶分子的状态,从而显示出不同的图像。
六、辅助材料除了上述的核心组成部分外,LCD还包括一些辅助材料,如保护层、滤光片等。
这些辅助材料可以保护LCD的核心部件不受外界环境的影响,同时还可以改善显示效果,提高图像的质量。
LCD的组成结构包括液晶分子层、偏振片、背光源、驱动电路、控制器和接口,以及辅助材料等。
lcd基本结构参数(实用版)目录1.LCD 的基本结构2.LCD 的参数3.LCD 的基本结构参数的重要性正文LCD(液晶显示器)是一种广泛应用于电视、计算机、手机等电子设备的显示器。
它主要由两块透明的导电层组成,中间夹有一层液晶材料。
LCD 的基本结构参数决定了其性能和显示效果。
LCD 的参数主要包括以下几点:1.屏幕尺寸:指 LCD 屏幕的对角线长度,一般用英寸来表示。
屏幕尺寸决定了 LCD 的可视范围,对于不同用途的设备,需要选择合适尺寸的 LCD。
2.分辨率:指 LCD 屏幕上横向和纵向的像素总数。
分辨率越高,显示的图像越清晰,细节越丰富。
分辨率通常用“像素数×像素数”表示。
3.屏幕比例:指 LCD 屏幕的宽度与高度之比。
常见的屏幕比例有 4:3、16:9 和 16:10 等。
屏幕比例影响观看视频和图片的效果,不同的比例可能导致画面变形或黑边。
4.响应时间:指 LCD 屏幕从接收到图像信号到显示出图像的时间。
响应时间越短,运动画面的拖影现象越少,观看高速运动的画面时效果更好。
5.亮度:指 LCD 屏幕发出的光线强度。
亮度越高,显示的图像越明亮,适合在光线较强的环境下观看。
但过高的亮度可能导致眼睛疲劳。
6.对比度:指 LCD 屏幕上黑色和白色之间的差异。
对比度越高,显示的图像越清晰,色彩表现越丰富。
7.视角:指 LCD 屏幕可以清晰显示图像的角度范围。
视角越宽,用户在不同角度观看时图像失真越小。
LCD 的基本结构参数对显示效果具有重要意义。
第1页共1页。
lcd屏的结构和工作原理LCD(Liquid Crystal Display)屏是一种广泛应用于电子产品中的显示技术,其结构和工作原理是实现显示功能的关键。
一、LCD屏的结构LCD屏的结构主要包括液晶层、电极层、玻璃基板和偏光层等组成部分。
1. 液晶层:液晶层是LCD屏的核心部分,由液晶分子构成。
液晶分子具有特殊的光学性质,可以通过外界电场的作用改变其排列状态,从而实现光的传递和控制。
2. 电极层:电极层是液晶层的上下两个平行层,通过施加电压来控制液晶分子的排列状态。
电极层一般由ITO(Indium Tin Oxide)薄膜制成,具有优良的导电性能。
3. 玻璃基板:玻璃基板是液晶屏的支撑结构,承载着液晶层和电极层。
玻璃基板通常采用高度透明的玻璃材料,保证光线能够透过。
4. 偏光层:LCD屏中通常包含两个偏光层,分别位于玻璃基板的上下两侧。
偏光层的作用是过滤光线,使只有特定方向的光线能够通过。
二、LCD屏的工作原理LCD屏的工作原理基于液晶分子的光学特性和电场的作用,通过控制电场的变化来控制液晶分子的排列状态,从而实现光的传递和控制。
1. 液晶分子的排列:液晶分子在没有电场作用时呈现无序排列状态,无法传递光线。
当外界施加电场时,液晶分子会按照电场的方向进行排列,形成有序的结构。
2. 光的传递:液晶分子排列后,会改变光线的偏振方向。
经过第一个偏光层的滤波,只有特定方向的光线能够通过。
然后通过液晶层,光线的偏振方向会根据液晶分子的排列状态发生变化,进而控制光线的透过程度。
3. 电场控制:通过控制电极层施加的电压,可以改变液晶分子的排列状态。
当电压为零时,液晶分子呈现无序排列,光线无法透过,显示为黑色。
当施加适当的电压时,液晶分子排列有序,光线能够透过,显示为亮色。
4. 色彩显示:LCD屏通常采用三原色原理来显示彩色图像。
通过在液晶层中加入RGB(红、绿、蓝)三种颜色的滤光片,控制液晶分子的排列状态来实现不同颜色的显示。
lcd的基本构成LCD的基本构成液晶显示器(LCD)是一种广泛应用于电子设备中的显示技术。
它的基本构成包括液晶层、玻璃基板、电极、偏振片、背光源等。
本文将详细介绍LCD的基本构成。
液晶层液晶层是LCD的核心部分,它由两层平行的玻璃基板组成,中间填充着液晶材料。
液晶材料是一种特殊的有机化合物,它具有一定的电学性质,可以通过电场的作用改变其光学性质。
液晶层的厚度通常在几微米到几十微米之间,不同的厚度会影响液晶的光学性质。
玻璃基板玻璃基板是液晶层的支撑结构,它通常由两块平行的玻璃板组成。
玻璃基板的表面经过特殊处理,可以形成一层透明的导电层,用于控制液晶的取向和电场的作用。
玻璃基板的尺寸和形状决定了LCD 的显示面积和外形尺寸。
电极电极是液晶层中的重要组成部分,它由导电材料制成,通常是透明的氧化铟锡(ITO)薄膜。
电极的作用是在液晶层中形成电场,控制液晶分子的取向和排列。
电极的形状和排列方式决定了液晶的取向和显示效果。
偏振片偏振片是LCD中的重要光学元件,它可以选择性地通过或阻挡光线的传播。
液晶层中的光线是无偏振的,经过偏振片后变成了有偏振的光线。
LCD通常采用两个偏振片,一个位于液晶层的上方,一个位于液晶层的下方。
两个偏振片的偏振方向垂直,当液晶分子取向与偏振片的偏振方向相同时,光线可以通过液晶层和两个偏振片,显示出亮度和颜色;当液晶分子取向与偏振片的偏振方向垂直时,光线被阻挡,显示出黑色。
背光源背光源是LCD中的光源,它可以提供背景光,使LCD显示出亮度和颜色。
背光源通常采用冷阴极荧光灯(CCFL)或LED灯,它们的亮度和颜色可以通过控制电流和电压来调节。
背光源的位置和形状决定了LCD的显示效果和外形尺寸。
总结液晶显示器是一种广泛应用于电子设备中的显示技术,它的基本构成包括液晶层、玻璃基板、电极、偏振片、背光源等。
液晶层是LCD的核心部分,它由两层平行的玻璃基板组成,中间填充着液晶材料。
玻璃基板的表面经过特殊处理,可以形成一层透明的导电层,用于控制液晶的取向和电场的作用。
液晶基础知识什么是液晶?液晶是一种特殊的物质,在两种不同状态下会有不同的光学性质。
在液晶的有序状态下,它可以通过外加电场来控制光的传输,从而实现图像的显示。
液晶主要由有机分子和无机分子构成,其中最常见的液晶是由苯酚和苯酚酯类化合物组成的有机液晶。
液晶的工作原理液晶的工作原理基于它对电场的响应性。
当外加电场施加在液晶分子上时,液晶分子会改变它们的朝向和排列,从而改变了光的传输特性。
这种电场控制的光传输特性可以用来显示图像。
液晶显示器通常由液晶层和背光源组成。
液晶层是一个由液晶分子组成的薄膜,在其上区域加上电压时,液晶分子会重新排列,改变光的传输特性。
背光源则提供了光源,使得通过液晶层的光可以显示出来。
液晶的种类液晶根据不同的排列方式和性质可以分为各种类型,常见的液晶类型有:1.扭曲向列液晶(TN液晶):具有较高的响应速度,但是视角较窄。
2.间隔调制液晶(IPS液晶):具有较宽的视角和较好的色彩表现力,但是响应速度较低。
3.电视液晶(VA液晶):具有较高的对比度和良好的颜色饱和度,但是响应速度和视角有一定限制。
液晶显示器的优势和应用领域液晶显示器具有许多优势使其在各种应用领域得以广泛应用。
液晶显示器具有以下优势:1.节能:相比传统的CRT显示器,液晶显示器的能耗更低。
2.显示效果优越:液晶显示器具有较高的对比度、较好的色彩表现力和准确的色彩还原能力。
3.体积轻薄:液晶显示器的体积较小,重量较轻,方便携带和安装。
4.视角广:液晶显示器具有较大的视角范围,使得多个观察者可以同时看到清晰的图像。
液晶显示器在电视、计算机显示器、手机、平板电脑等领域都有广泛应用。
不仅如此,液晶显示技术还逐渐应用于汽车显示器、智能家居等领域。
液晶显示器的发展趋势随着科技的不断发展,液晶显示器也在不断创新和进步。
目前,液晶显示器的发展趋势主要体现在以下几个方面:1.高分辨率:随着显示器尺寸的增大,用户对更高分辨率的需求也越来越高。
一.TFT-LCD的基础知识培训1.显示器的发展概述1.1CRT:阴极射线管特点:电子枪结构,通过偏转线圈控制屏幕扫描位置,通过栅极控制电子加速。
优势:工艺成熟、性能稳定、像素可达0。
28mm以下,亮度高、RGB色彩缺点:体积大、辐射大、易老化1.2LED:发光二极管特点:采用半导体PN结的结构,形成点光源形式优势:寿命长,可靠性高,显示亮度高,可模块化拼装缺点:不能全彩色化1.3EL:电致发光显示特点:薄膜结构,有机薄膜电致发光真正的又轻又薄,优势:低功耗广视角,高响应速度,大规模工业生产的成本很低缺点:使用寿命目前只有几千小时。
1.4FED:场致发光显示特点:场发射平板显示器原理类似于CRT,CRT只有一支到三支电子枪,最多六支,而场发射显示器是采用电子枪阵列(电子发射微尖阵列,如金刚石膜尖锥),分辨率为VGA(640×480×3)的显示器需要92.16万个性能均匀一致的电子发射微尖,材料工艺都需要突破。
优势:同CRT缺点:工艺复杂1.5PDP:等离子显示特点:等离子体发光显示是通过微小的真空放电腔内的等离子放电激发腔内的发光材料形成的,发光效应低和功耗大是它的缺点(仅1.2lm/W,而灯用发光效率达80lm/W 以上,6瓦/每平方英寸显示面积),优势:在102~152cm对角线的大屏幕显示领域有很强的竞争优势。
缺点:驱动电压高1.6LCD:液晶显示特点:利用液晶在电场作用下,旋转的的特性优势:平板形,功耗低是目前唯一在亮度、对比度、功耗、寿命、体积和重量等综合性能上全面赶上和超过CRT的显示器件,它的性能优良、大规模生产特性好,自动化程度高,原材料成本低廉,发展空间广阔,将迅速成为新世纪的主流产品,是21世纪全球经济增长的一个亮点。
性能稳定、成本低、全彩色、安全,适应强,寿命长,重量轻是未来的发展性能综合评价:可视角、色调、亮度与对比度、响应与余辉、功耗与驱动电压1.7显示器基本常识配色:基色:R:红G:绿B:蓝配色:W: 白Y:黄C:青M:紫W=R+G+B Y=R+G C=G+B M=B+R三基色的深浅度、6500/7500/9300色温16位色+4位灰度32位真彩色,实现人眼可分辨的全部彩色64种彩色称为伪彩色帧:扫描行电极各施加一次扫描电压的时间帧频:单位时间扫描多少帧的频率占空比:扫描行电极选通时间与帧周期之比,等于扫描电极数N的倒数非存储型显示:施加电场时呈现显示状态存储型显示:脉冲驱动显示,撤掉外加电压,显示内容不变静态驱动显示:每个像素均有单独的电极动态驱动显示:像素电极呈矩阵方式显示分辨率Resolution # of Dot # of Pixel Aspect Ratio Remark320 x 240 76,800 230,400 4:3 Quarter VGA640 x 400 256,000 768,000 16:10 EGA640 x 480 307,200 921,600 4:3 VGA800 x 480 384,000 1,152,000 15:9 Wide VGA800 x 600 480,000 1,440,000 4:3 SVGA1024 x 600 614,400 1,843,200 17:10 Wide SVGA1024 x 768 786,432 2,359,296 4:3 XGA1280 x 1024 1,310,720 3,923,160 5:4 SXGA1400 x 1050 1,470,000 4,410,000 4:3 SXGA+1600 x 1200 1,920,000 5,760,000 4:3 UXGA1920 x 1200 2,304,000 6,912,000 16:10 Wide UXGA2048 x 1536 3,145,728 9,437,184 4:3 QXGA2560 x 2048 5,242,880 15,728,640 4:3 QSXGA3200 x 2400 7,680,000 23,040,000 4:3 GUXGAdpi:或ppi:每平方英寸的图素数DOT=3PIXEL对于一个15英寸的TFT显示器(1024×768)那么一个象素大约是0.0188英寸(相当于0.30mm),对于18.1英寸的TFT显示器而言(1280×1024),就是0.011英寸(相当于0.28mm)因此第一个特性即是亮度或明度,常以(cd / m2)为单位。
,主要材料三大主要材料:液晶,ITO玻璃,偏光片(对手彩色液晶显示器还必须加上滤色膜);其他材料:取向材料,封接材料,衬垫料,金属引线腿等:还有一些参于液晶显示器的生产过程和最终在产品中不存在的原材料:如光刻胶,各种稀释剂,溶剂,清洗剂,摩擦布等.1.液晶显示用平板玻璃(1)液晶显示对平板玻璃的要求:①含钠成分很低.因玻璃板中含钠成分600度高温时变化极小.③要求玻璃板表面光滑平整,两板之间:的间隙均匀,同时要求在加工过程中经受一定温度时,仍然保持其间隙均匀.④玻璃板表面没有缺陷咸缺陷在10nm级以下,并且没有气泡.⑤玻璃板在加热过程中不产生应力.⑥有一定的抗蚀能力.目前,只有基本上符合上述要求的玻璃;但是用普通工艺,即使加上抛光工艺,也不能达到上述要求.(2)液晶显示玻璃板的生产技术首先对玻璃成分进行优选,将碱(Li20,Na20,K20等)成分控制在(0.1-0.2)Wt%以下,同时采用新的工艺,才能制出合格的LCD用平板玻璃.生产液晶显示平板玻璃有两项新技术:①熔融拉伸法:熔融的玻璃从两个高温管之间由于重力的作用流出,形成一定厚度的均匀玻璃板.该工艺可以产生真正无缺陷的玻璃板,而不需经抛磨加工.现在利用这项技术已能生产1m 宽的玻璃板;②浮法生产玻璃板:玻璃料连续地从熔化炉中流到熔化的锡槽内,玻璃在锡上慢慢冷却,取出并退火.浮法生产的玻璃板表面较粗糙,尚需进行抛光才能满足液晶显示器的要求.(3)液晶显示用的玻璃板含石灰的玻璃板和硼硅玻璃颇舶软化点为500t,可以用于a-Si:H FT的衬底.无碱玻璃系列的硼铝硅玻璃橡(7069,1733,1724型),膨胀系数低,加工特性好,适合作有源矩阵LCD的基板.其中1733型玻璃工艺温度为615°C,是设计用于p-Si:H TFT-LCD的基板,甄1724型玻璃的工艺温度为650℃,1729玻璃板变形点是799℃,工艺温度可达775℃,接近热栅多晶硅工艺温度范围.碱土铝玻璃变形温度高达800℃,若增加硅的成分,变形温度可高于800℃.若全部成分是Si02,就是石英,工艺温度可达1000℃.随着玻璃中Si02成分增加,熔化和加工都很困难,增加了工艺难度和制造成本.玻璃的最高使用温度(工艺温度)常选在它的变形点以下25℃.一般定义玻璃变形点的粘度为1014.5泊,退火点的粘度为1013泊,软化点的粘度为107.6泊.以上提到的几种玻璃型号都是美国康宁公司的产品.其中7059型玻璃是用熔融拉伸法制造的,适合作液晶基板·,已完全商品化,供应全世界.1733,玻璃也是用熔融拉伸法制造,工艺温度比7059高,也广泛用于液晶显示,而1724,1729型则是用浮法工艺生产的.(4)玻璃板的热稳定性液晶显示板在制造过程中,尤其是制造TFT-LCD时,需要几次光刻和退火,因而对玻璃板尺寸的热稳定性要求很高.对于TFT-LCD时的玻璃板,要求尺寸热稳定为几个ppm.玻璃的稳定结构是晶体,但玻璃板制造过程中有急冷过程,所以含有大量非晶态结构.玻璃的非晶态有向晶态转化的倾向,只是转化过程与温度有关.如7059玻璃,在900℃时,几秒钟就转化完毕;在600℃时转化需几天;在300℃时,转化需要1个世纪.,在转化过程中,伴随着尺寸的缩小,称为"密化".急冷的玻璃,在变形温度下退火,尺寸变化会达到1000ppm.这对TFT-LCD玻片是不能允许的,何况这种密化程度与退火温度,退火时间和冷却速度有关,即与玻璃板的热加工历史有关.为了在液晶显示板加工过程中,玻璃板不再有大的尺寸收缩量,应对来料玻璃板进行预退火,使密化增加.退火时间在50min以上,冷却速度在1℃/min左右能达到较好的预密化(退化温度为650℃),使玻板在加工过程中尺寸的变化控制在1.5 ppm左右.(5)在玻璃板上镀阻挡层阻止碱离子迁移平板显示用玻璃板要求没有碱离子,而真正的无碱玻璃的其他特性又不易做好.目前平板显示用的玻璃板是低碱玻璃;在工艺温度低时,尚能满足要求,但在P—Si:H TFT工艺温度较高时,甚至在玻璃中碱离子含量在几个ppm情况下,也会发生碱离子传染.在玻璃板表面上,镀一层约200nm的Al2O3阻挡层能有效阻止碱离子侵人;镀Al2O3的方法有电子束蒸发和射频溅射,但溅射制成的Al2O3膜对阻挡碱离子的效果更好.Na+于675℃下在Al2O3中的扩散系数和在550℃下在Si02中相同,即Al2O3的阻挡效果优于Si02.在普通硬玻璃上,镀一层Al2O3阻挡层,就可以制造Poly-Si:H TFT的基板.(6)液晶显示板的抗蚀性HCl,H2SO4,H20对7059和1733型平板玻璃的腐蚀作用如表3.19所示,表中数字单位为μg/cm2.由上表可知①1733玻璃板比7059玻璃板更耐酸,耐碱;②·盐酸的腐蚀作用远大于硫酸,③去离子水的腐蚀作用可以忽略不计;④在强酸作用下,碱土金属氧化物,硼氧化物有一定损失2.透明导电玻璃透明导电玻璃是指在普通玻璃的—个表面镀有透明导电膜的玻璃.最早的透明导电膜的商品名为NESA膜,它是为制造防止飞机舷窗结冻和制造监视加热液体内部反应情况的透明反应管而研制的,它的成分是SnO2.但SnO2透明导膜不易刻蚀.现在采甩的ITO(1ndiumTin Oxide 氧化铟锡)的成分是In2O3和SnO2,ITO膜是在In2O3的晶核中掺人高价Sn的阳离予,掺杂的量以Sn的含量为10%重量比最佳.ITO是一种半导体透明导电材料,禁带宽度为3eV以上,具有两个施主能级,为n型施主能级,离导带很近,自由电子密度=1020~1021个/cm3;迁移率为10—30 cm3/v.s.所以电阻率很低,可低至l0-4Ω.cm量级.用Sn+4离子占据晶格中In+3离子的位置,会形成一个正1价电荷中心和1个多余的价电子,这个价电子挣脱了束缚便成为导电电子.一般的玻璃材料为钠钙玻璃,这种玻璃衬底与ITO之间要求有1层SiO2阻挡层,似阻挡玻璃中的钠离子渗透.因ITO膜生产过程中,玻璃衬底处于150'℃~300℃温度下,如果玻璃中的钠离子扩散进入ITO膜中,形成受主能级,对施主起补偿作用,引起导电性能下降.如果玻璃村底为无钠硼硅玻璃;,则可不用SiO2阻挡层.对于某些高档产晶的制造,有时需在ITO外层加1层SiO2层,这是为了增加横向的绝缘性.在玻璃衬底上制备透明导电膜的方法有喷雾法,涂覆法,浸渍法,真空蒸发法,溅射法等多种.目前大生产中主要用直流磁控溅射法,气功以稳定,膜的质量好,但靶材料利用率只有25%-30%.现在已开发出使用交流电源驱动磁场移动的方法,可使靶材料利用率增至40%左右.溅射靶材过去用高纯铟锡合金,其比例为Sn/(In+Sn)=8%~13%,合金熔点为173℃.现在直接采用氧化铟锡靶镀膜工艺,但ITO靶比铟锡合金靶贵得多,目前还是靠进口-的.用于液晶显示器的导电玻璃必须符合一定要求,具体的指标为:①透光率好.一般要求大于85%;另一方面要求光干涉颜色均匀,其不均匀性小于10%;②方块电阻小.薄膜的电阻率常用方块电阻来表示,()对于低档的TN产品,ITO膜的方块电阻要求为100~30(Ω/口),相应的膜厚为200—300A;对于STN产品要求ITO膜的R口小于10Ω/口;(对于VGA为Ω/口,;对于SVGA为3—5Ω/口),相应的膜厚为1000-2000Ao 显然,ITO层厚度增加虽然可以降低R口,但是透光率必然也变差,所以控制ITO膜制造工艺使其电阻率小是最关键的.③平整度好.平整度是指玻璃表面在一定长度乙范围内的起伏程度,用h/L表示,其中丸为长度L范围内表面最高与最低点的差值.由于液晶层厚只有10μm左右,基片不平整直接影响液晶层厚的不均匀,所以对液晶显示器的质量有直接影响.ITO玻璃基片的平整度包括玻璃表面粗糙度,表面波纹度,基板翘曲度;基板平行度和ITO膜表面租糙度,膜厚均匀度.液晶盒使用的玻璃一般厚度为芍0.3~1.1mm的浮法玻璃,用于TN-LCD时,对于1.1mm厚的要求平整度小于0.15μm/20mm;:对于0.7mm厚的要求平整度小于0.2μm/20mm,电阻不均匀性小于土15%,允许有机少量的缺陷.用于中高档STN-LCD时,玻璃要经过抛光,要求平整度小于0.075—0.05μm/mm,电阻不均匀性小于±10%.不允许有任何缺陷.3.偏光片在液晶显示器中大量使用偏光片(偏振片),它的特殊性质是只允许某一个方向振动的光波通过,这个友向称为透射轴,而其他方向振动的光将被全部或部分地阻挡,这样自然光通过偏光片以后,就成了偏振光.同样,当偏振光透过偏光片时,如果偏振光振动方向与偏光片的透射方向平行一致时,就几乎不受到阻挡,这时偏光片是透明的;如果偏振光的振动方向与偏光片的透射方向相垂直,则几乎完全不能通过,偏光片就成了不透明的了.因此,偏光片可以起检测偏振光的作用.偏光片的制备过程有4步:{1)制膜偏光片的基片常采用聚乙烯醇(PV A)膜,它是一种线性高分子聚合物,在很长的分子键上均匀地挂着许多强极性的—OH基团用来制作偏光片的PV A膜在光学上是均匀各向同性的,大分子键在各个方向上都是完全均匀的,无规律排列聚集成膜.(2)浸液将用普通方法制得的各向均匀的PV A膜浸入含碘的有机或无机化合物中进行反应,在薄膜中形成碘链.碘链的特点是能吸收振动方向平行于碘链的光,而振动方向垂直于碘链的光将可以通过,即碘链具有三向色性.(3)拉伸将反应后的膜加以机械拉伸.在拉伸之后,几乎所有的大分子键都被迫按照拉伸力作用的方向伸展开来,虽然没有形成结晶式完全有序的规则排列,却达到了高度的取向,形成了像栅栏一样的结构.在这样的膜中,碘链将会沿拉伸方向整齐排列.从整体上讲,薄膜能强烈吸收沿拉伸方向振动的光,而让垂直于拉伸方向的振动光通过.(4)胶合保护膜由于PV A膜具有亲水性,在湿热环境下会很快变形,收缩,松弛,衰退,而且强度很低,质脆易破,不便于使用和加工,因而要在这种偏光膜的两边都复合上一层强度高,光学上各向同性,透光率高而又耐高热的高聚物片基,一般采用三醋酸纤维素脂,即TAC,赋予偏光片以良好的机械性能和耐气候性能,经浸液,拉伸后的PV A膜的两面复合上TAC膜后组成偏光片的基本结构,称为原偏光片.(5)粘附外保护膜原偏光片的两个外表面上通常都要粘附上一层柔软的外保护膜.为适应在液晶显示器中使用的需要,要在原偏光片的一面附上一层压敏胶,并贴上压敏胶的隔离膜,这就是透射性的偏光片.拆去隔离膜,露出压敏胶,偏光片可以方便牢固地妨剥液晶显示器的玻璃面上.反射型偏光片是在原偏光片的一面附上压敏胶及隔离膜,而在另一面复合上一层镀有金属垣光层舶反光膜.于图3—122中示出了透射型偏光片和反射型偏光片的基本结构.偏光片的总厚度约为0.45mm左右.偏光片的主要光学技术指标有:①颜色.普通偏光片为灰色,细分为中撂色和蓝灰色两种,但目前已开发出多种彩色偏光片,如红色,洋红色,蓝色,黄色,紫色,紫蓝色等.②偏光度.偏光片的偏光度也称偏光片的偏振效率,其定义为:目前,最好的偏振光的偏光度可达99%以上,通常对普通偏光片,要求偏光度大于85%;对彩色偏光片,要求偏光度大于80%.③透光串和透射光谱.实际偏光片的透光率都赂低于50%;只有在整个可见光范围内的透光率是均匀的,才能实现理想的黑白显示,否则出射光会带有颜色,影响显示效果;4.液晶显示器其他常用材料(1)取向材料液晶盒内直接与液晶接触的一薄层物质称为取向层.取向工艺虽有多种,但实际上广泛使用的工艺是:光在玻璃表面涂覆1层有机高分子薄膜,再用绒布类材料高速摩擦来实现取向.这种有机高分子薄膜最常用的材料是聚酰亚胺,简称PI.聚酰亚胺的单体是聚酰亚胺酸(PA),具有良好的可溶性,浓度和粘度调节容易,是一种透明的黄褐色液体.将PA先涂敷在液晶基片内表面,在250℃-300℃下,约1h左右,脱水固化形成PI 膜.PI膜具有优良的化学稳定性,优良的机械性能和优良的电介质特性.以摩擦方式使PI膜表面磨出沟槽;使液晶分子定向排列;以达到显示要求.液晶分子在取向层上排列时有一个预倾角,即表面分子长轴方向与取向层表面所形成的夹角.该角主要取决于PI材料的特性,另外与取向处理工艺也有关.通常TN型LCD器件要求PI层造成的预倾角为1.-2.,对于高档的STN型LCD显示器,则要求预倾角大于3'.(2) 环氧树脂环氧树脂是—种生活中常用粘接剂,具有良好粘接性,优异的电气以及机械性能的高分子化合物.在液晶显示器中作为胶粘剂将两片玻璃粘接起来,同时保持一定的间隙,称为封框胶.用于将上下玻璃电极导通时,称其为银点胶;环氧树脂的化学结构特点是大分子主链含有活泼的环氧基团.是线型大分子.在通常情况下,它是一种胶状流体.加人固化剂:如已二胺,二亚乙基三胺乙,酸酐等可将环氧树脂的单体中的环氧基团打开,使得分子间互相交联起来,形成网状结构;达到固化目的.用作边框的环氧树脂,为了提高它的粘接性和弹性,通常加入Al2O3,Si02粉末作为填料.银点胶是指在环氧树脂中加人银粉和固化剂;环氧树脂本身不导电,使用前把银点胶分为组分A和纽分B.组分A是环氧树脂和银粉,组分B是固化剂和银粉.使用时将AB两种成分以1定比例混合.如果以石墨代替银粉,则是石墨导电胶,也可用于连接上下玻片间的电极.常用封框胶固化温度在150℃左右,固化时网为1h;所以环氧树脂是热固化胶,应用比较广泛.但是在制作高精度的液晶显示屏时,则采用紫外光固化胶,固化时间小于15S.(3)紫外光固化胶紫外光固化胶是指在1定波长紫卦光照射下能发生聚合固化的高分子化合物.现在使用的紫外光固化胶是变性丙烯酸脂类化合物,外观为微黄色粘稠液体.紫外光固化胶用作封口胶,即将已灌好液晶后的注入口封死.这时不宜用热固化胶.先将封口处玻璃表面液晶擦干净,将有1定粘度的封口胶点在封口处,紫外光照射数秒钟左右即可.(4)衬垫料液晶显示器上下玻璃间的间隙决定了液晶的厚度,一般为几个微米.为保证间隙均匀性,必须加入—些村垫料,同时在显示区内也均匀散布一些衬垫料.这些衬垫料分为①玻璃纤维.这是一种直径均匀的玻璃纤维,.可根据液晶层间隙不同选择不同的玻璃纤维的直径,常用的尺寸是5.3μm,5.5μm,6.3μm,7.0μm,8.0μm等.它们以一定比例掺加到封框胶中,使两片玻璃在重合时支撑边框;②树脂粉.这是一种直径均匀的球状树脂粉,均匀地散布在液晶的显示区中,与封框胶中的玻璃纤维共同保证液晶盒间隙的一致性.树脂粉的直径要比边框中玻璃纤维直径小0.1μm ~0.3μm,其直径的不均匀性为±0.03μm.二,液晶显示器的主要工艺1.光刻工艺为了形成显示矩阵或显示字符图案,都要对透明导电层进行光刻.由于液晶显示器中线条尺寸大多是10μm以上,所以可采用接触式曝光进行光刻.其基本过程如下:(1)涂胶将光刻胶均匀地涂敷在ITO玻璃表面,涂胶方法有浸涂,甩涂,辊涂等.;辊涂质量最好,它是通过胶辊将光刻胶均匀辊涂在玻璃上.光刻胶中溶剂含量影响着光刻胶在ITO上的厚薄,选取原则是既使光刻胶具有良好的抗蚀能力,又要求有较高的分辨能力,而这两者之间对光刻胶厚度的要求是互相矛盾的,只能折衷选之.(2)前烘前烘的目的是促使胶膜内溶剂充分挥发使胶膜干燥以增加胶膜与ITO表面的粘附性和胶膜的耐磨性.目前多采用红外炉烘干,效果好且时间短.(3)曝光曝光就是在涂好光刻胶的玻璃表面覆盖掩模版,通过紫外光进行选择性照射,使受光照都位的光刻胶发生化学反应,改变了这部分胶膜在显影液中的溶解度.曝光过程中注意紫外灯预热,掩模版与ITO玻璃互相对准和控制好曝光量.(4)显影显影就是将感光部分光刻胶溶去,留下未感光部分的胶膜,从而显示出所需的图形,可见这是一种正性胶.显影时必须控制好显影的时间与温度,它们直接影响显影速度.显影过分会发生对未曝光区钻溶;显影不足,则感光区的光刻胶溶解不充分,留下残痕,保护了不该保护的ITO 部位.(5)坚膜坚膜是在显影后必须在适当温度下烘干玻璃以除去水分的工艺;增强胶膜与玻璃的粘附性. (6) 刻蚀刻蚀需用一定比例的酸液,把玻璃上未受光刻胶保护的ITO膜蚀掉;一般选用一定比例的HCl,HNO3和水的混合液作为腐蚀液,因为它能腐蚀掉1TO膜,而又不损伤玻璃表面与光刻胶.(7)去膜和清洗用碱液把刻蚀后玻璃上剩余的光刻胶去干净,同时用滚刷擦洗玻璃,最后用高纯水将玻璃上残留碱液与残胶冲洗干净.2.取向排列工艺在TN和STN液晶显示器件的制造工艺中,取向排列工艺是一个关键工艺.TN型要求两玻璃片内表面处液晶分子的排列方向互成90度;STN型要求两玻璃片内表面处液晶分子的排列方向互成180度—240度.取向排列的主要方法是倾斜蒸镀法和摩擦法,前者不适合于大生产,只能是一种实验室技术,所以在工业生产中全部使用摩擦法.直接用棉布等材料摩擦玻璃基片表面,有定向效果,但效果不佳.一般采用在玻璃基片上先涂覆一层无机物膜(如SiO2,MgO或MrF2等)或有机膜(如表面活性剂,硅烷偶合剂,聚酰亚胺树脂等),再进行摩擦可以获得良好的取向效果.由于聚酰亚胺树脂的突出优点,目前在液晶显示器制造中广泛被选用为取向材料.聚酰亚胺与A1的粘附性最好,Si次之,Si02最差.为了增加聚酰亚胺与ITO玻璃SiO2层之间的粘附性,可以在SiO2上先涂一层含硅的有机化合物活性剂,一般称为耦联剂.取向排列工艺有下列几个步聚:(1)清洗光刻工序处理后的1TO玻璃表面虽然已清洗干净,但在本工序中还必须用高纯水,超声波和高效有机溶剂作进一步彻底清洗,以除去微尘和保证玻璃表面有很小的接触角.(2)涂膜常用的涂膜方法有旋涂法,浸泡法和凸版印刷法三种.由于凸版印刷法是一种选择性涂覆,可以把指向膜只印在指定范围内,而不印在边框处和银点处,所以被广泛使用.凸版印刷法的原理如图3—123所示.先将取向材料溶液加到转印版上,然后用刮刀刮平,开动印刷滚筒,将转印板上的溶液粘附在印刷用的凸板上.当滚筒开到工作台上时,凸版上的溶液进而转印到ITO玻璃上.整个过程与印刷过程一样,只是用取向溶液代替溜墨.(3)预烘膜层刚涂印完时,膜面会起伏不平,适当加温可降低粘度,使膜面平坦化.预烘温度会影响预倾角,预烘温度为80℃.(4)固化需在300~350℃下固化1—2h才能将聚酰亚胺酸脱水,生成聚酰亚胺膜,这才是所需要的取向膜.(5)摩擦取向在取向膜上用绒布向一个方向摩擦,就可以形成取向层.摩擦取向的微观机理可以从下列几个方面来理解:①摩擦形成密集的深浅,宽窄不一的沟槽,其中与液晶分子尺寸相当的纳米量级沟槽必然会对液晶分子取向产生作用;②经过摩擦后,定向层高分子会发生定向排列和电介质发生定向极化,使液晶分子按一致取向排列.由此可知,摩擦强度大小对定向质量影响巨大,极细的沟槽在取向中起了关键作用,所以摩擦强度太大,则造成较多的宽沟槽,对取向效果无益;如果摩擦强度太小,则又将造成细微沟槽密度的下降. 目前摩擦取向工艺大多数已全部自动化.3.丝网印刷制液晶盒工艺制盒即上下两玻璃基片贴合,在贴合前要用丝网印刷技术把公共电极转印点和密封胶印刷到显示面玻璃基板上.丝网印刷是将丝织物或金属丝网绷在网框上,利用感光材料通过照相制版的方法制作丝网印匪,即使丝网印版上图文部分的丝网孔为通孔,而非图文部分的丝网孔被堵住.印刷时通过刮板的挤压,使印刷胶体通过图文部分的网孔转移到承印物上,形成与原稿一样的图文.在这儿,承印物便是玻璃基片,玻璃被分为两组,一组印封框胶,则丝网印版上的图文便是要涂覆上封框胶的地方,即有一定边宽的方框;印刷胶体便是混有玻璃纤维的环氧树脂;另1组印导电点胶,则丝网印版上的图文便是公共电极的转印点,印刷胶体便是导电胶.但这组玻璃在印好导电胶点后要经过喷粉工序,使该玻璃上均匀散布一定粒径的玻璃或塑料微粒,然后两片玻璃在对位压合机上对位成盒,再经热压一定时间,环氧树脂便固化,液晶空盒便制作好了.4.灌注液晶及封口工艺在向空盒注入液晶之前,需将空盒真空除气,以将吸附在盒内表面的水气及有害气体释放掉.抽气孔便是液晶注入孔,由于孔径小,抽气要花费一定时间.若对空盒加温,可以大大提高抽气效果.注入液晶是利用毛细管现象.使液晶空盒的注人孔与吸满液晶材料的海绵条接触,在一定真空条件下,利用液晶盒的毛细管现象平静地将液晶注人液晶盒内..但这只能灌满液晶盒的大半部分,因此需要将干燥氮气充人液且灌注室内进行加压,直到充满为止.于图3—124示出灌注示意图.一般不推荐边抽真空边吸人液晶的工艺,因为吸人液晶流有喷射状,会破坏液晶在表面的取向.灌注完毕后,将封口处擦净,便可进行封口.封口工艺有两种:(1)先用封口胶把封且封涂,然后冷冻使液晶收缩带人少量的封口胶,并固化.此种方法操作简单,成本低,但盒均匀性差.(2)让液晶盒内的液晶受热膨胀从盒内排出一少部分的液晶,然后点封口胶,让胶少量收缩再将胶固化.这种方法需要设备较复杂,但盒的均匀性好,STN产品生产多采用这种方法目前封口胶多用紫外光照射固化,其固化质量比热固化容易控制.液晶盒灌注液晶之后,通常液晶的排列取向达不到要求,需要进行再排向工艺处理是将液晶盒置于加温箱内,于80℃下保温30min.三, 液晶显示器的连接方法液晶显示器的上下两块玻璃贴合在一起,但不完全重合,其中一片(或两片)的一侧有凸出台阶.台阶上有密布的透明电极引脚/金属插胶,驱动信号就是通过这些引脚加到液晶上去的.液晶显示器件与线路板(PCB)和其他零部件的连接方式与传统焊接方式不同.1.导电橡胶连接导电橡胶条是由一薄层导电橡胶(黑色)和一薄层绝缘橡胶(白色)交替地一层层叠在一起,经热压成型后,垂直于薄层面切成一条条成品,外观为黑白间隔,类似于斑马身上条纹,所以常称为斑马橡胶条.显然斑马橡胶条纵向不导电,而横向导电.一般层与层之间只有0.4~0.5mm距离,可以确保不会有电极被漏接.在使用斑马橡胶条时,胶条被专用框紧紧压在液晶显示器和印刷电路板之间,使它们彼此间的对应电极互相导通.显然印刷电路板上电极的尺寸与排列必须设计得与液晶显示器上的引脚相符合.斑马橡胶条压接原理示于图于3-126.如图3—127中示出了各种斑马橡胶条的横截面.不同的类型适用于不同的连接要求,其中YL,YI,YS,YP为普通型,YI,YS两侧有绝缘保护层,YP两侧为海绵橡胶.其他为特殊型,如YD是一种双层导电橡胶条,专门为双层外引线液晶显示器设计的.2.金属插脚连接通常的焊接方法是很可靠的,并被人们广泛地认可,金属插脚连接就是为此设计的.金属插脚为金属冲压件,外形有图3—128所示几种.首先将金属插脚插在液晶显示器外引线部位,点上导电胶,使外引线与插脚可靠地电接触,然后在外面再涂覆一层环氧树脂予以固定.这样,用户即可直接将金属插脚焊接在线路板上或直接插在线路板的插座上.3.热压胶片软连接热压导电胶带的基片是聚酯膜片,在基片上印有一条条石墨导电条,然后在导电条上涂一层导电性热粘剂,最后在导电条间隙填满绝缘热压胶.如图3—129所示.热压导电胶带是一种软膜.使用时,将热压导电胶带的一端导电条纹对准液晶显示器件外引线端,贴上,加热,加压,然后将热压导电胶带的另一端导电条纹对准线路板引线端,贴上,加热,加压,这样通过石墨导电条将液晶显示器的外引线与线路板引线端连接起来.在安装连接时,对加压和加温有严格要求,需使用专门的热压机.。