2019-2020年整理基因突变与单基因病汇编
- 格式:ppt
- 大小:3.75 MB
- 文档页数:97
基因突变导致的疾病预防和治疗方法基因突变是指在基因序列中发生的突然、随机性的改变,可以导致基因表达异常、蛋白质结构和功能的改变,从而产生各种遗传性疾病。
基因突变的发生往往与环境因素、个体遗传背景等多种因素有关,防治基因突变所导致的疾病是人们长期以来努力的方向之一。
在疾病的预防和治疗方法中,利用基因编辑技术的研究发展得越来越成熟,成为防治基因突变所导致疾病的新方法。
基因突变的种类和疾病类型基因突变的种类包括点突变、缺失、插入等。
例如,囊性纤维化患者常见的Delta F508突变是一种多位点缺失突变,它破坏了囊性纤维化膜传导调节基因CFTR的氨基酸序列,导致其表达和功能的异常,从而引发了囊性纤维化疾病。
其他基因突变也能引发多种疾病,如单基因遗传性疾病、肿瘤等。
预防基因突变的策略预防基因突变所导致疾病的策略主要包括两方面:生活方式和遗传咨询。
生活方式。
一些环境因素,如辐射、化学物质等,能致突变。
因此,减少接触这些因素可以降低突变的风险。
此外,科学饮食、适度运动、保持充足睡眠等也能有益于健康。
肥胖症、吸烟等不良生活方式的习惯也能促进基因突变。
遗传咨询。
对于有不良家族史的人群,尤其是存在某些危险突变的人群,如部分遗传性肿瘤患者,在生育前接受遗传咨询,采取相应遗传咨询措施能够减少下一代患病的风险。
治疗基因突变所导致疾病的策略基因编辑技术是治疗基因突变所导致疾病的新策略。
目前,基因编辑技术主要包括基因敲除、基因修复、基因插入等多种技术。
基因敲除。
基因敲除是指利用核酸脱氧核糖酶(CRISPR/Cas9)复合物对目标位点进行靶向切割,最终实现基因敲除。
通过这种方法可以使得疾病相关的基因失去功能或缺失,从而达到治疗的目的。
基因敲除的应用最早体现在动物模型中的实验中,该技术在人类细胞和动物模型中的病理调控中也逐渐受到广泛的应用。
例如在透明小鱼的血管生长研究中,研发基于CRISPR/Cas9技术的全局基因敲除模型。
基因修复。
2024北京高三一模生物汇编基因工程章节综合一、单选题1.(2024北京门头沟高三一模)下列生物技术操作不会..达成预期目标的是()A.将胰岛素基因表达质粒转入酵母菌,筛选获得产胰岛素工程菌B.将肠乳糖酶基因导入奶牛乳腺细胞,培育产低乳糖牛乳的奶牛C.将体外改造后能识别特定癌细胞的T细胞回输患者,进行癌症治疗D.将花青素代谢相关基因导入植物体细胞,获得具有特定花色的植株2.(2024北京丰台高三一模)V蛋白对登革热病毒的增殖有抑制作用。
V蛋白含有285个氨基酸,其cDNA长1241bp。
将V蛋白在大肠杆菌中诱导表达,经纯化后免疫小鼠,最终获得5株分泌V单抗的杂交瘤细胞,提取单抗与V蛋白杂交,电泳结果如下图,相关叙述错误..的是()A.V蛋白的cDNA中含有不编码V蛋白的序列B.获得的5株杂交瘤细胞都能无限增殖C.用V蛋白免疫小鼠的目的是获得相应抗体D.可培养5A8杂交瘤细胞大量生产单克隆抗体3.(2024北京西城高三一模)下列实验材料不能达到实验目的的是()AB.通过豌豆杂交实验研究伴性遗传规律C.利用鸡血进行DNA的粗提取和鉴定D.对杂交瘤细胞筛选培养获得单克隆抗体4.(2024北京朝阳高三一模)为了构建可以直接利用纤维素发酵的酿酒酵母工程菌,研究人员构建基因表达载体(如图所示),并导入不能合成尿嘧啶的酵母菌。
下列相关分析不正确的是()A.尿嘧啶合成基因可以作为表达载体上的标记基因B.该方法需利用限制酶和DNA连接酶实现目的基因与载体的连接C.扩增目的基因时应在引物的5'端添加与线性化载体两端相同的DNA序列D.在以纤维素为唯一碳源的液体培养基中检测酒精含量确定工程菌发酵效果5.(2024北京顺义高三一模)下述实验操作需在无菌环境条件下进行的是()A.将外植体接种到培养基上B.从新鲜洋葱中粗提取DNAC.对平板中分解尿素细菌计数D.用PCR仪对DNA片段进行扩增6.(2024北京丰台高三一模)人白细胞介素-2(IL-2)是一种细胞因子,含有3个半胱氨酸,分别位于第58、105、125位,其中58位与105位半胱氨酸之间形成的二硫键对保持IL-2活性起重要作用。
题十二生物的变异及育种考点2基因重组、染色体变异及育种一、单选题1.(2022·福建·高考真题)某哺乳动物的一个初级精母细胞的染色体示意图如下,图中A/a、B/b表示染色体上的两对等位基因。
下列叙述错误的是()A.该细胞发生的染色体行为是精子多样性形成的原因之一B.图中非姐妹染色单体发生交换,基因A和基因B发生了重组C.等位基因的分离可发生在减数第一次分裂和减数第二次分裂D.该细胞减数分裂完成后产生AB、aB、Ab、ab四种基因型的精细胞2.(2020·山东·高考真题)在细胞分裂过程中,末端缺失的染色体因失去端粒而不稳定,其姐妹染色单体可能会连接在一起,着丝点分裂后向两极移动时出现“染色体桥”结构,如下图所示。
若某细胞进行有丝分裂时,出现“染色体桥”并在两着丝点间任一位置发生断裂,形成的两条子染色体移到细胞两极。
不考虑其他变异,关于该细胞的说法错误的是()A.可在分裂后期观察到“染色体桥”结构B.其子细胞中染色体的数目不会发生改变C.其子细胞中有的染色体上连接了非同源染色体片段D.若该细胞基因型为Aa,可能会产生基因型为Aaa的子细胞3.(2024·广东·高考真题)雄性不育对遗传育种有重要价值。
为获得以茎的颜色或叶片形状为标记的雄性不育番茄材料,研究者用基因型为AaCcFf的番茄植株自交,所得子代的部分结果见图。
其中,控制紫茎(A)与绿茎(a)、缺刻叶(C)与马铃薯叶(c)的两对基因独立遗传,雄性可育(F)与雄性不育(f)为另一对相对性状,3对性状均为完全显隐性关系。
下列分析正确的是()A.育种实践中缺刻叶可以作为雄性不育材料筛选的标记B.子代的雄性可育株中,缺刻叶与马铃薯叶的比例约为1:1C.子代中紫茎雄性可育株与绿茎雄性不育株的比例约为3:1D.出现等量绿茎可育株与紫茎不育株是基因突变的结果4.(2020·北京·高考真题)为探究干旱对根尖细胞有丝分裂的影响,用聚乙二醇溶液模拟干旱条件,处理白刺花的根尖,制片(压片法)后用显微镜观察染色体变异(畸变)的情况,细胞图像如图。
专题06 基因的分离定律和自由组合定律一、单选题1.(2022·山东·高考真题)野生型拟南芥的叶片是光滑形边缘,研究影响其叶片形状的基因时,发现了6个不同的隐性突变,每个隐性突变只涉及1个基因。
这些突变都能使拟南芥的叶片表现为锯齿状边缘。
利用上述突变培育成6个不同纯合突变体①~⑥,每个突变体只有1种隐性突变。
不考虑其他突变,根据表中的杂交实验结果,下列推断错误的是()杂交组合子代叶片边缘①×②光滑形①×③锯齿状①×④锯齿状①×⑤光滑形②×⑥锯齿状A.②和③杂交,子代叶片边缘为光滑形B.③和④杂交,子代叶片边缘为锯齿状C.②和⑤杂交,子代叶片边缘为光滑形D.④和⑤杂交,子代叶片边缘为光滑形2.(2022·山东·高考真题)家蝇Y染色体由于某种影响断成两段,含s基因的小片段移接到常染色体获得XY'个体,不含s基因的大片段丢失。
含s基因的家蝇发育为雄性,只含一条X染色体的雌蝇胚胎致死,其他均可存活且繁殖力相同。
M、m是控制家蝇体色的基因,灰色基因M对黑色基因m为完全显性。
如图所示的两亲本杂交获得F1,从F1开始逐代随机交配获得F n。
不考虑交换和其他突变,关于F1至F n,下列说法错误的是()A.所有个体均可由体色判断性别B.各代均无基因型为MM的个体C.雄性个体中XY'所占比例逐代降低D.雌性个体所占比例逐代降低3.(2022年6月·浙江·高考真题)番茄的紫茎对绿茎为完全显性。
欲判断一株紫茎番茄是否为纯合子,下列方法不可行的是()A.让该紫茎番茄自交B.与绿茎番茄杂交C.与纯合紫茎番茄杂交D.与杂合紫茎番茄杂交4.(2022年1月·浙江·高考真题)孟德尔杂交试验成功的重要因素之一是选择了严格自花受粉的豌豆作为材料。
自然条件下豌豆大多数是纯合子,主要原因是()A.杂合子豌豆的繁殖能力低B.豌豆的基因突变具有可逆性C.豌豆的性状大多数是隐性性状D.豌豆连续自交,杂合子比例逐渐减小二、多选题5.(2022·山东·高考真题)某两性花二倍体植物的花色由3对等位基因控制,其中基因A控制紫色,a无控制色素合成的功能。
漫长的生物自然历史进化过程中,其中一些有利的或中性的突变,会随着生物的世代繁衍、交替而得以逐渐的稳定与累积。
这些突变的基因以及由此所引起的遗传性状变化,不仅是同种生物遗传性状多样性的根本渊源,而且也为不同物种的演化提供了丰富的原材料,并通过自然选择的作用而成为促进生物种系系统发育与不同种群产生、形成的原动力;而那些有害的突变基因,则会导致各种遗传性疾病的发生,构成和增加群体的遗传负荷。
发生在体细胞中的基因突变,即体细胞突变(somatic mutation),虽然不会传递给后代个体,但是却能够通过突变细胞的分裂增殖而在所产生的各代子细胞中进行传递,形成突变的细胞克隆(clone),成为具有体细胞遗传学特征的肿瘤病变甚或癌变的细胞组织病理学基础。
基因突变,一般具有以下几种主要特性:1.多向性任何基因座(locus)上的基因,都有可能独立地发生多次不同的突变而形成其新的等位基因,这就是基因突变的多向性。
譬如,在不同条件下,位于染色体某一基因座上的基因A可突变为其等位基因a1;也可以突变为a2或者a3、a4......a n等等其他等位基因形式,从而形成所谓的复等位基因(multiple alleles)。
遗传学上把群体中存在于同一基因座上,决定同一类相对性状,经由突变而来,且具有3种或3种以上不同形式的等位基因互称为复等位基因。
如大家所熟知的人类ABO血型系统,就是由位于9q34这一区域同一个基因座上的I A、I B和i三种等位基因形式所构成的一组复等位基因所决定的。
2.重复性基因突变的重复性是指:已经发生突变的基因,在一定的条件下,还可能再次独立地发生突变而形成其另外一种新的等位基因形式。
亦即,对于任何一个基因位点来说,其突变并非仅囿于某一次或某几次的发生,而是会以一定的频率反复发生。
例如:某一基因座上的基因A可突变为其等位基因a;基因a有可能独立地发生突变形成其新的等位基因a1;同样地,a1也可能再次地发生突变而形成其另外的等位基因a2;a2还可能突变为a3......,就其最终的群体遗传学效应而言,基因重复突变与基因多向突变的结果相似,也是群体中复等位基因存在的主要成因之一。
历年(2020-2024)全国高考生物真题分类(基因的分离定律)汇编 〖2023年高考真题〗1.(2023∙海南∙高考真题)某作物的雄性育性与细胞质基因(P、H)和细胞核基因(D、d)相关。
现有该作物的4个纯合品种:①(P)dd(雄性不育)、②(H)dd(雄性可育)、③(H)DD(雄性可育)、④(P)DD(雄性可育),科研人员利用上述品种进行杂交实验,成功获得生产上可利用的杂交种。
下列有关叙述错误的是()A.①和②杂交,产生的后代雄性不育B.②③④自交后代均为雄性可育,且基因型不变C.①和③杂交获得生产上可利用的杂交种,其自交后代出现性状分离,故需年年制种∶ D.①和③杂交后代作父本,②和③杂交后代作母本,二者杂交后代雄性可育和不育的比例为31 2.(2023∙全国∙统考高考真题)水稻的某病害是由某种真菌(有多个不同菌株)感染引起的。
水稻中与该病害抗性有关的基因有3个(A1、A2、a);基因A1控制全抗性状(抗所有菌株),基因A2控制抗性性状(抗部分菌株),基因a控制易感性状(不抗任何菌株),且A1对A2为显性,A1对a为显性、A2对a为显性。
现将不同表现型的水稻植株进行杂交,子代可能会出现不同的表现型及其分离比。
下列叙述错误的是() A.全抗植株与抗性植株杂交,子代可能出现全抗:抗性=3:1B.抗性植株与易感植株杂交,子代可能出现抗性:易感=1:1C.全抗植株与易感植株杂交,子代可能出现全抗:抗性=1:1D.全抗植株与抗性植株杂交,子代可能出现全抗:抗性:易感=2:1:1〖2022年高考真题〗1.(2022∙重庆∙统考高考真题)半乳糖血症是F基因突变导致的常染色体隐性遗传病。
研究发现F基因有两个突变位点I和II,任一位点突变或两个位点都突变均可导致F突变成致病基因。
如表是人群中F基因突变位点的5种类型。
下列叙述正确的是()类型突变位点 ① ② ③ ④ ⑤I +/+ +/‐ +/+ +/‐ ‐/‐Ⅱ +/+ +/‐ +/‐ +/+ +/+注:“+”表示未突变,“‐”表示突变,“/”左侧位点位于父方染色体,右侧位点位于母方染色体 A.若①和③类型的男女婚配,则后代患病的概率是1/2B.若②和④类型的男女婚配,则后代患病的概率是1/4C.若②和⑤类型的男女婚配,则后代患病的概率是1/4D.若①和⑤类型的男女婚配,则后代患病的概率是1/22.(2022∙河北∙统考高考真题)关于遗传物质DNA的经典实验,叙述错误的是( ) A.摩尔根依据果蝇杂交实验结果首次推理出基因位于染色体上B.孟德尔描述的“遗传因子”与格里菲思提出的“转化因子”化学本质相同C.肺炎双球菌体外转化实验和噬菌体浸染细菌实验均采用了能区分DNA和蛋白质的技术D.双螺旋模型的碱基互补配对原则解释了DNA分子具有稳定的直径3.(2022∙海南∙统考高考真题)匍匐鸡是一种矮型鸡,匍匐性状基因(A)对野生性状基因(a)为显性,这对基因位于常染色体上,且A基因纯合时会导致胚胎死亡。
千里之行,始于足下。
202X年高考生物知识点常见遗传病分类及遗传特点遗传病是由基因突变引起的疾病。
根据遗传方式的不同,遗传病可以分为单基因遗传病、多基因遗传病和染色体异常遗传病三类。
1. 单基因遗传病:单基因遗传病是由单个基因突变引起的遗传病。
这类遗传病通常可以分为两大类型:显性遗传病和隐性遗传病。
- 显性遗传病:显性遗传病是指个体只要继承了一个突变的基因,就会表现出疾病的遗传病。
典型的显性遗传病有先天愚型、多指综合症等。
- 隐性遗传病:隐性遗传病是指个体只有在继承了两个突变的基因时才会表现出疾病的遗传病。
典型的隐性遗传病有苯酮尿症、囊性纤维化等。
2. 多基因遗传病:多基因遗传病是由多个基因的突变引起的遗传病。
这类遗传病通常是多个基因中的一些突变同时存在才会导致疾病。
典型的多基因遗传病有高血压、糖尿病、冠心病等。
3. 染色体异常遗传病:染色体异常遗传病是由染色体结构异常或染色体数目异常引起的遗传病。
这类遗传病通常可以分为染色体数目异常和染色体结构异常两种。
- 染色体数目异常:染色体数目异常包括三体综合症(如唐氏综合症)、性染色体数目异常(如克氏综合症)等。
- 染色体结构异常:染色体结构异常包括染色体片段缺失、染色体片段替代等。
典型的染色体结构异常遗传病有克隆氏综合症、智力低下等。
遗传病的特点:第1页/共2页锲而不舍,金石可镂。
- 遗传性:遗传病是由基因突变引起的,通常有家族中的遗传病史。
- 多样性:遗传病种类繁多,涵盖了各个系统和器官的疾病。
- 可预防性:有些遗传病可以通过遗传咨询、基因检测和家族规划等手段进行预防,避免遗传病的发生。
总结起来,遗传病可分为单基因遗传病、多基因遗传病和染色体异常遗传病三类。
了解遗传病的分类及遗传特点有助于我们更好地预防和治疗这些疾病,减少其对个人和社会的不良影响。
《单基因遗传性心血管疾病基因诊断指南》(2019)要点单基因遗传是指个体性状受一对等位基因控制,按照孟德尔遗传定律进行传递。
单基因遗传性心血管疾病是指以心血管损害为唯一表型或伴有心血管损害的单基因遗传性疾病,数量达百余种。
本指南主要针对临床较为常见、致病基因明确的单基因遗传性心血管疾病。
多数单基因遗传性心血管疾病患病率不高,但并非全部如此,如肥厚型心肌病(HCM)的患病率为约1/500。
加之我国人口基数大,而此类疾病又呈现家族聚集性,因此单基因遗传性心血管疾病患者总数庞大,且涉及对患者整个家族的影响,不容小觑。
基因诊断不仅有助于单基因遗传性心血管疾病患者及其亲属的早期诊断和鉴别诊断,还对预后危险分层、治疗策略制定、遗传筛查以及选择性生育等有重要的指导作用。
单基因遗传性心血管疾病基因诊断总则1.检测基因:大多数单基因遗传性心血管疾病存在多个致病基因,但各个基因致病性的证据强弱不一。
本指南仅推荐筛查有家系共分离证据支持的明确致病基因(I,A)。
若筛查可能致病基因,对发现的基因变异致病性应通过家系共分离证据判断,并谨慎解释(a,B)。
2.适用人群:临床证据确诊的单基因遗传性心血管疾病患者(I,A)。
临床证据疑似的单基因遗传性心血管疾病患者(a,B)。
先证者发现致病基因突变,推荐家系直系亲属通过Sanger测序进行同一基因突变检测(I,A);如果致病基因突变在家系中与疾病不连锁,推荐使用目标基因靶向测序、全外显子测序等二代测序技术(NGS)对不连锁患者重新进行基因筛查,检测是否存在其他致病基因突变(a,C)。
先证者发现携带意义未明的基因变异时,应通过家系筛查明确变异致病性(a,B)。
先证者未发现致病基因突变时,不推荐对家系成员(无论是否患病)进行基因检测(,A)。
3.临床应用推荐:患者发现致病基因突变,结合临床表型,可以帮助确诊和鉴别诊断(I,A)。
先证者未检出致病基因突变不能完全排除遗传致病(I,A)。
原创不容易,【关注】店铺,不迷路!
高水平孕前遗传筛查——筛查单基因遗传病携带者
什么是单基因病?
单基因遗传病是由单个基因突变引起的遗传病,也称为孟德尔遗传病。
其遗传模式遵循孟德尔定律,有突变统计(WHO),全球出生人口中所有单基因遗传病的累积发病率高达10/1000。
单基因遗传病危害很大,多为致畸、致残甚至致死,缺乏有效治疗。
单基因疾病可以预防吗?
目前可以在孕前筛查单基因遗传病。
对单基因遗传病携带者的筛查是指在怀孕前收集夫妇的外周血或唾液样本,帮助他们了解他们是否是常见遗传病的基因突变携带者,并通过进一步的基因咨询和产前或植入前基因诊断,阻断致病突变的传播,减少缺陷婴儿的出生(PGD)。
检测出哪些疾病?
针对哪些群体?
1.希望通过辅助生殖生下健康婴儿的夫妇
2.有不良妊娠和分娩史的夫妇(反复流产、反复试管婴儿种植失败、早期胎儿中止妊娠)
3.准备怀孕并关注自己和孩子健康的夫妇
我们每个人都可能是遗传病的携带者。
单基因遗传病基因筛查,全部针对儿童。
【素材积累】
宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
在近70年的漫长岁月里,经过护法运动(1917年)、国民大革命(1924—1927年)、国共对立十年(1927—1937年)、抗日战争(1937—1945年)、解放战争(1945—1949年),她始终忠贞不渝地坚持孙中山的革命主张,坚定地和中国人民站在一起,为祖国的繁荣富强和人民生活的美满幸福而殚精竭虑,英勇奋斗,在中国现代历史上,谱写了光辉的篇章。
宋庆龄因此被誉为20世纪最伟大的女性之一。
一、概述下列哪些是单基因遗传病的遗传方式( )提交并继续图 1.2 系谱图二、常染色体显性遗传病如果疾病的致病基因位于第 1 到 22 号染色体上,其遗传方式是显性的,即杂合时可以发病,这种疾病称为常染色体显性遗传病。
其常见婚配类型是一个患常染色体显性遗传病的患者和一个表型正常的人结婚,其后代会有 50% 遗传到致病基因,50% 遗传到正常基因的染色体(图 2.1 );另一种情况是常染色体显性遗传新生突变,即两个正常的人婚配,生出患病的子代(图 2.2 )。
(一)常染色体显性遗传的系谱特征合子,只是出现根腱部的腱黄瘤(图 2.8 ),症状比患者轻,血胆固醇也比患者(纯合型)低,由于症状较轻,发生动脉粥样硬化、冠心病的时间会相应的晚一些(二三十岁、三四十岁)。
( 2 )短肢侏儒症另外较常见的是短肢侏儒,此类病人大多为软骨发育不全,其特征是头部较大,前额突出,面中部发育不良,躯干相对较长,同时有 O 型腿(膝内翻),手指伸开后呈车轮状或者称三叉手;同时患者的腰椎明显前突(图 2.9 )。
其基因改变是明显的杂合改变,此类患者是可以生存的。
图 2.9 软骨发育不全的杂合表现图 2.10 是软骨发育不全的纯合改变,此类患者骨骼严重畸形,在宫内时胸廓很小,所以因为呼吸窘图 2.11 三节拇指并多指患者图 图 2.12 三节拇指并多指患者母亲图 2.13 三节拇指并多指系谱图图 2.14 是 A 型轴后多指的系谱,四代出现 1 个患者(图 2.15 ),患者的父亲母亲无任何表型,但子代出现患者,说明其是不外显患者。
轴后多指的额外指在小指一侧,A 型的额外指发育良好,与第 5指形成关节,外显率可达 75% ;B 型的额外指发育不良,常常只形成一个皮肤赘,外显率为 65% 。
图 2.14 A 型轴后多指的系谱图 图 2.15 A 型轴后多指患者( 2 )表现度导致不规则显性的另一个原因是表现度。
表现度是指致病基因的表达程度,可以有轻度、中度和重度的不同,称为可变的表现度。